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9. Planetary Orbits 8. Describe the Earth’s climatic zones.
9. Describe the Zodiacal Belt. Why are the planets normally found in this belt?
The orbits of the planets are not co-planar with the plane of the Earth’s orbit nor with the 10. What is meant by: Ascending and Descending Nodes?
planes of each other’s orbits. Their orbital planes make small angles, not usually more than a 11. Show the greatest daily altitude of the Sun on the days of the equinoxes is equal to the
. few degrees, with that of the Earth’s orbit. The orbits of the planets projected from the Earth complement of the Latitude of the observer.
i onto the celestial sphere results in paths which lie near to the ecliptic. It follows that the 12. Describe: Direct and Retrograde Motion as these terms apply to the apparent motions of
" planets lie in or near to the zodiacal belt. certain planets.

‘ The plane of a planet’s orbit around the Sun cuts the plane of the ecliptic at two points on
the celestial sphere which are known as the Nodes of the planet. The straight line joining the
two nodes of a planet is known as a Line of Nodes or as a Nodal line.

When the planet whose orbit is illustrated in fig. 26:10
appears to be at the ecliptic at position NV, it is said to be at its
Descending Node. When at position N, it is at an Ascending
Node. At its descending node a planet crosses the ecliptic
from north to south: at an ascending node it crosses the
ecliptic from south to north.

Should an inferior planet lie at a node at the same time as
it is at inferior conjunction it may be observed as a small disc
crossing the face of the Sun. Such a phenomenon is known as
a Transit of the planet

‘ 10. Direct and Retrograde Motion

5‘5} The motion of the Sun relative to the fixed stars is known as Direct Motion. Other
‘,’ celestial bodies which move relative to the fixed stars in this direction are said to move with
‘ Direct Motion. Celestial bodies which move relative to the fixed stars in the opposite
direction are said to move with Retrograde Motion.

| The apparent motion of a planet relative to the fixed stars is the resultant of its own
“ orbital motion around the Sun and that which is imparted to it by virtue of the Earth’s
' ‘! orbital motion. If the path of a planet is plotted on a star map, it will be found that, in some
i cases, the motion relative to the stars is sometimes direct and sometimes retrograde. When
Il the motion changes from direct to retrograde and back again, the planet traces out a loop
i known as a Retrogressive Loop.

(i Exercises on Chapter 26

} ‘ 1. Describe the motions of the Earth. What natural units of time are derived from these
| motions?

Define: Solar Day; Sidereal Day. Compare the lengths of these units of time.

Draw a diagram to illustrate the Ecliptic and the Celestial Equator. Name the points of

intersection of these circles.

Explain why the Ecliptic and the Earth’s Orbit are co-planar.

What are the causes of the seasons? State the dates of the commencements of the seasons.

Describe the causes of unequal lengths of daylight and darkness during the year.

Explain the meaning of: Equinox; Solstice.
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CHAPTER 27
DEFINING CELESTIAL POSITIONS
1. The Cartesian System of Co-ordinates

The common system of describing the position of a point in a plane is the Cartesian
System, named after the French philosopher René Descartes. In this system a position is
described relative to two axes of reference—usually called the x- and y-axes, respectively,
which are mutually perpendicular straight lines in the plane. The axes of reference intersect
each other at a point called the Origin, and distances measured x-wards from the y axis and
y-wards from the x axis are Abscissae and Ordinates respectively. The abscissa and ordinate
of a given point in the plane are called the Co-ordinates of the point.

An extension of the Cartesian System is used for describing positions on a spherical
surface. In this case the position is described relative to two great circles the plane of which
are perpendicular to one another, and the two co-ordinates are the respective arcs of these
great circles of reference. To describe a position on the surface of the spherical Earth, for
example, the two great circles of reference are the Equator, from which the co-ordinate
Latitude is measured; and the Greenwich Meridian from which the co-ordinates Longitude is
measured. In other words the Latitude and Longitude of a point on the Earth are the
co-qr_dinates of the points in terms of the commonly used system of defining terrestrial
positions.

2. The Ecliptic System of Defining Celestial Positions

In the Ecliptic System of defining a celestial position the two co-ordinates are known,
respectively, as Celestial Latitude and Celestial Longitude. The two reference great circles, in
this case, are the Ecliptic, from whch Celestial Latitude is measured; and the Secondary to
the Ecliptic through the First Point of Aries from which Celestial Longitude is measured.

Secondaries to the Ecliptic are known as Circles of Latitude. All circles of Latitude
converge to the Pole of the Ecliptic. In other words, a circle of Latitude is a semi-great circle
which connects the poles of the ecliptic.

Th? questial Latitude of a point is defined as the arc of the circle of Latitude on which
the point is located, measured from the ecliptic to the point. It is named North or South
according as the point lies north or south of the ecliptic, respectively.
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The Celestial Longitude of a point is defined as the arc of the ecliptic measured eastwards
from the First Point of Aries to the circle of Latitude on which the point is located. In other
words, it is the angle at the pole of the ecliptic
contained between the circles of Latitude through the
First Point of Aries and the point.

In fig. 27-1:
Arc Ax = Celestial Latitude of X
Arc vy A = Celestial Longitude of X
Arc BY = Celestial Latitude of Y
Reflex Arc vy PB = Celestial Longitude of Y

=
| Circle of

LL}titude
\

Fig. 27-1

3. The Horizon System of Defining Celestial Positions

Only a half of the celestial sphere is visible to an observer at any instant of time. This
follows because the opaque Earth itself obscures the observer’s view. The great circle on the
celestial sphere which divides the celestial sphere into the Visible and Invisible Hemispheres
is known as the Celestial Horizon. The poles of the celestial horizon are the Zenith for the
visible hemisphere, and the Nadir for the invisble hemisphere.

Because they cross the celestial horizon at 90° secondaries to the celestial horizon are
called Vertical Circles. A vertical circle is defined as a semi-great circle which connects the
zenith and nadir of an observer.

The co-ordinates used in the horizon system of defining celestial positions are Altitude
and Bearing or Azimuth. The Altitude of a celestial point is the angle at the centre of the
celestial sphere contained between the point and the horizon measured in the plane of the
vertical circle on which the point lies. The altitude of the zenith is 90°, and the altitude of
every point on the celestial horizon is 0°.

All points on the celestial sphere having the same altitude are located on a small circle
which is parallel to the celestial horizon. Such a small circle is called a Parallel of Altitude.

The Bearing of a celestial point is the arc of the celestial horizon, or the angle at the zenith
of an observer, contained between the vertical circle which lies in the North-South plane, and
the vertical circle on which the point is located. The bearing of a point is usually given as an
acute angle contained between the North or South point of the horizon and the direction of
the point.

Because celestial meridians converge towards the celestial pole the direction of either of
the Earth’s Poles from any observer is in the plane of the meridian on which the observer is
located. The celestial meridian which lies in the same plane as that of the observer’s terrestrial
meridian is known as the Observer’s Celestial Meridian; or, more simply as the Observer’s
Meridian. The zenith of an observer and also the celestial poles are located on the observer’s
celestial meridian.

The observer’s celestial meridian is divided into two semi-great circles each terminating at
the celestial poles. That part of the observer’s celestial meridian which contains the observer’s
zenith is called the Observer’s upper, or Superior, Celestial Meridian. The other part, which
contains the observer’s nadir, is called the Observer’s Lower, or Inferior, Celestial Meridian.
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The observer’s celestial meridian coincides with the vertical circle passing through the
North and South points of his horizon. The bearing of a celestial point may, therefore, be
defined as the acute angle at the zenith contained between the observer’s celestial meridian
and the vertical circle passing through the point.

The Azimuth of a celestial point is the angle at an observer’s zenith contained between the
observer’s upper celestial meridian and the vertical circle on which the point is located.

N
on

: In fig. 27-2:
AX or XOA = Altitude of X
4 NA or NOA = Bearing of X
/ £ NA or NZA = Azimuth of X
X BY or YOB = Altitude of ¥
SB or SOB = Bearing of Y
1 NB or NZB = Azimuth of Y

Fig. 27-2

The bearing of a celestial point is named from North or South, whichever direction is
nearer to that of the point itself, to East or West according as the point is to the east or the
west, respectively, of the observer’s celestial meridian.

4. The Celestial Equatorial System of Defining Celestial Positions

In the celestial equatorial system of defining celestial positions the co-ordinates are
known as Declination and Hour Angle.

The celestial equator or equinoctial divides the celestial sphere into two celestial
hemispheres. Every point in the Northern Celestial Hemisphere, the pole of which is the
North Celestial Pole, is said to have North De¢lination. Every point in the South Celestial
Hemisphere has South Declination.

The declination of a celestial position or point is the spherical distance of a great circle arc
secondary to the celestial equator, measured from the celestial equator to the position or
point. Secondaries to the celestial equator are known as Celestial Meridians. The declination
of a point may, therefore, be defined as the arc of a celestial meridian intercepted between the
celestial equator and the point.

All points having the same declination in either the northern or the southern celestial
hemisphere lie on a small circle which is parallel to the celestial equator. Such a small circle is
known as a Parallel of Declination. Parallels of Declination on the celestial sphere are
analogous to parallels of Latitude on the Earth.

All celestial meridians converge towards two points on the celestial sphere known as the
Celestial Poles. The North Celestial Pole is the point on the celestial sphere which is vertically
above the Earth’s North Pole, that is to say, it is at the zenith of the North Pole. The South
Celestial Pole is at the zenith of the Earth’s South Pole. Celestial meridians on the celestial
sphere are analogous to meridians on the Earth.

Celestial meridians are sometimes known as Hour Circles. This follows because the angle
at the celestial pole at any instant, measure westwards from the observer’s upper celestial
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meridian,. to the celestial meridian of a heavenly body, is the measure of the time that has
elapsed since the body was on the observer’s upper celestial meridian. That is to say, it is a
measure of the time since the body was at Meridian Passage.

The angle at the celestial pole measured westwards from the observer’s upper celestial
meridian to the Hour Circle of a celestial body is known as the Local Hour Angle (L.H.A.) of
the body.

The': angle at the celestial pole between the Greenwich upper celestial meridian and the
hour qlrcle of a given celestial body, measured westwards from the Greenwich upper celestial
meridian, is known as the Greenwich Hour Angle (G.H.A.) of the body.

.The angle at the celestial pole measured westwards from the celestial meridian of the First
Point of Aries to the celestial meridian of a celestial body is known as the Sidereal Hour
Angle (S.H.A.) of the body.

In fig. 27-3:
L.H.A. of star¥=0X
G.H.A. of star k=GX
S.H.A. of star *=cp X
In fig. 27-4:

Declination of star X = XB
Declination of starY = YC
SHA. of star Y= v C

The nautical astronomical problem of finding Longitude is one in which the navigator
relates the position of an observed heavenly body using the co-ordinates of the Horizon
System, with the body’s position at the instant of the observation, using co-ordinates of the
Celestial Equatorial System. A detailed discussion on this is given in Chapter 34 under the
heading “The Astronomical Triangle”.
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Exercises on Chapter 27

Describe the Cartesian System of defining the position of a point in a plane, and explain
how this system is adapted for describing terrestrial positions. o
Define each of the co-ordinates used in each of the three systems employed for describing
celestial positions.

Define: Sidereal Hour Angle; Local Hour Angle; Greenwich Hour Angle.‘ ‘
Define the position of the First Point of Aries using the Ecliptic and Celestial Equatorial
Systems.

C}(I)mpute the Celestial Latitude and the Celestial Longitude of a star whose declination is
30° 00’ N. and whose S.H.A. is 311° 15". ‘
What is the Sun’s celestial position using (@) Ecliptical co-ordinates, and () Celestial
Equatorial co-ordinates, when it is at the Summer Solstice? ' |

What is the S.H.A. and the declination of a star whose Celestial Latitude is 30° 00" N.
and whose Celestial Longitude is 50° 00" E.?

Define: Parallel of Altitude; Circle of Latitude; Parallel of Declination; Parallel of
Latitude.

. Distinguish between Celestial Meridian and Hour Circle.

Explain the distinction between Bearing and Azimuth. o ’

Explain the difference between Observer’s Upper Celestial Meridian and Observer’s
Lower Celestial Meridian. ‘

Show that the celestial equator passes through the East and West points of any
observer’s celestial horizon. .

Prove that for a given instant the difference between the L.H.A. of a star and its G.H.A.
is a measure of the observer’s Longitude. .

Prove that if at a certain instant the G.H.A. of y is 120° 50" and the S.H.A. .of a star is
15° 18, the Longitude of an observer is 60° 00° W. if the L.H.A. of the star is 76° 08".

CHAPTER 28
THE APPARENT DIURNAL MOTION OF CELESTIAL BODIES
1. Diurnal Circles
Because of the axial rotation of the Earth towards East, the celestial sphere appears to

revolve around the Earth towards the West. This causes the celestial bodies to perform daily
circular paths around the Earth with the celestial pole as centre. These apparent daily paths

are called Diurnal Circles.

In fig. 28-1, which illustrates diurnal circles as they appear to
an observer in latitude 90°, the celestial horizon of the observer
is coincident with the celestial equator.

A heavenly body whose declination is 0° travels around the
celestial horizon of an observer at either of the Earth’s poles,
completing its diurnal circle in the time taken for the Earth to
rotate once on its axis. Other celestial bodies to the same
observer maintain constant altitudes which equal their respective
declinations. All stars alter their bearings or azimuths to the
extent of 15°02"5 per hour, and all objects in the visible
hemisphere are above the horizon for the whole day.

If the time of the year is northern Spring or Summer, the Sun would be above the horizon
of an observer at the Earth’s North Pole for the whole day; but, unlike the stars, its altitude
would change at a slow rate equivalent to the rate of change of its declination.

Celestial bodies which are above the horizon throughout the day are known as
Circumpolar Bodies. At either pole of the Earth, all bodies in the visible hemisphere are
circumpolar bodies.

In fig. 28-2, which illustrates diurnal circles as they appear
to an observer in latitude 0°, the celestial horizon of the
observer is coincident with a celestial meridian. The diurnal
circles of all celestial bodies are bisected by the observer’s
celestial horizon. This means that all celestial bodies to an
observer on the equator are above the celestial horizon for
exactly half the day and below it for the other half. At the
equator all celestial bodies rise and set, so that there are no

“circumpolar bodies. 7' = o

Fig. 282 When a heavenly body crosses an observer’s celestial
meridian it is SWWQMM\_?MW. A celestial body at
the point of culmination on an observers upper celestial meridian reaches its greatest altitude
for the day.
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From figs. 28-3 and 28-4 it will be noticed that, to an observer in latitude 0°, a star having 2 Fig. 28-6 illustrates diurnal circles projected onto the
a declination of 0° culminates with an altitude of 90°. The point of culmination is the zenith J plane of the horizon of an observer in Latitude 50°N
of the observer. Such a body crosses the sky in its diurnal path such that its bearings is always ]
due East or due West. Its diurnal circle is a great circle on the celestial sphere which passes e It will be noticed from figs. 28-5 and 28:6 that some
through the East and West points of the observer’s celestial horizon. This great circle is L celestial bodies cross the prime vertical circle during their

known as the Prime Vertical Circle, or more commonly as the P.V. diurnal paths, whereas others do not. The conditions

N n Herizon lg B )
. - S N e ! . 4 necessary for a celestial body to be

The celestial meridian which is coincident with the horizon of 1 e y to cucumpol_ar, and .the
| ; ot conditions necessary for a body to cross the prime vertical

an observer on the equator, cuts the observer’s celestial meridian , circle of an observer. will now be considered

at an angle of 90°. Any celestial body on this meridian, which is & ’ )
known as the Six o-Clock Hour Circle, is 6 hours from the ; Fig. 28'7 serves to demonstrate the very important
observer’s celestial meridian. " relationship between the altitude of the celestial pole and

Fig. 28-7 the latitude of the observer.

It will be seen in fig. 28-4 that the interval between the
instants at which a body rises and of its culmination is 6 hours. In fie. 28-7
The interval from its culmination to its setting is also 6 hours. R-Lig. ‘

more than half the day.

F or a quy to be circumpolar its polar distance must be less than the observer’s latitude.
Thus, in LatlFude 30°N., all stars whose declinations are greater than 60° (the complement of
30°) will be circumpolar. It follows, therefore, that for a star to be circumpolar its declination

It will be noticed in fig. 28-5 that some celestial bodies are
above the horizon throughout the day. These are circumpolar

bodies. - must be greater than the co-latitude of the observer. Moreover, the Latitude and the
] A circumpolar body crosses an observer’s celestial declination must have the same name.

‘ Fig. 28-5 meridian on two occasions, at both of which the body is above
{ the horizon, during the day. The transit at which its altitude is greater than that of the
f celestial pole is known as its upper or Superior Transit: the other is known as its Lower or

Fig. 28-5 illustrates diurnal circles as they appear to an og = QZ = Laotitude of observer O
observer in any latitude other than 0° or 90°. In this case, the PQ = 90 ’
celestial pole lies between the horizon and the zenith of an Thus: Pz = (92 — 07
i observer. The horizon, therefore, cuts the celestial equator at ZN = 90
i an angle which depends upon the Latitude of the observer. Thus: PN = (9%2" - (é’ OZ°)
l\ . . A celestial body having a declination of 0° rises at the East = 0z oo
;\ g point of the horizon and sets at the West point, and is above But: QZ = Latitude of observer O
‘ ‘ 8 the horizon, regardless of the Latitude of the observer, for and: PN = Altitude of Celestial Pole
i | < exactly half a day. Therefore:
| . _ . ;
“ A body which has a north declination rises such that its Latitude of Observer = Altitude of Celestial Pole
| bearing is between North and East, and it sets such that its The sre of 4 celestial tisridizn contilied. betw : ; .
ing 1 : een a celestial body and the celestial pole is
{ R bearing is between North and West. Such objects are above. known as the Polar Distance of the body. The polar distance of a heavenly body is equal to
}, the horizon of any observer in the nothern hemisphere for 90° + declination of the body

Fig. 28-8 shows projections of the celes-
tial sphere onto the planes, respectively, of
the horizons of observers situated in the
northern hemisphere. The arc NP is equal to

il Inferior Transit.

el #

!
' A circumpolar body at upper transit is said to be on the the altitude of the celestial pole: it is
’ | meridian above the Pole: when at lower transit it is said to be therefore, equal to the latitude of thé
| on the meridian Below the Pole. observer.
Il The number of stars above the horizon at both upper and PO = 90°
' lower transits depends upon the Latitude of the observer. The s Ng _ 90°
. greater the Latitude, the greater the number of circumpolar ' Fig. 28-8 Therefore: ZO' = NP 2 Lati
stars. It will be remembered that to an observer at either of the ltarel 26 = = Lthia of, GRS,
Earth’s poles all celestial bodies above the horizon are For a celestial body to be circumpolar its polar distance must be less than the Latitude of
circumpolar. the observer.
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Fig. 289 shows projections of the celes-
tial sphere onto the planes of the horizons of
observers in North and South Latitudes,
respectively. It serves to illustrate that for a
celestial body to cross the prime vertical
circle of an observer its declination must be
less than, but of the same name as, the
latitude of the observer.

Exercises on Chapter 28

. Describe the apparent daily motions of a fixed star as viewed by a stationary observer

located (a) in Latitude 90°, () at the South Pole, (c) on the equator, and (d) in Latitude
40°N.

. What is the Latitude of an observer whose celestial horizon coincides with the ecliptic?
. Explain why celestial bodies having North declination are above the horizon of an

observer in the northern hemisphere for more than 12 hours during each day.

. What is meant by the term Culmination? What other terms are used to denote the same

phenomenon?

. Prove that all stars having declinations greater than 36°N. are circumpolar to an

observer in Latitude 54°N.

. What are the conditions necessary for a star not to rise above the horizon of any given

observer?

. What are the conditions necessary for a star to cross the prime vertical circle of an

observer?

. Prove that the altitude of the celestial pole is equal to the latitude of the observer.
. Explain how an observer may find his latitude from an observation of a star on his

meridian above the pole.

Explain how the latitude of an observer may be found from the altitudes of a star above
and below the pole, repectively, when the declination of the star is not known.

What is meant by the Six o0-Clock Hour Circle? What are the conditions necessary for a
celestial body to cross the Six o-Clock Hour Circle?

Explain why it is that all celestial bodies rise out of and set into the horizon of an
observer on the equator at an angle of 90°.

CHAPTER 29

TIME
1. The Units of Time

Time, in the astronomical sense, denotes that which persists while events take place.
Events are contained in time as objects are contained in space. Time exists before an event
and after an event, and it measures the event as it occurs. Time is, therefore, measurable
duration.

Time is normally measured by a clock the mechanism of which is adjusted so that the
clock registers, in hours, minutes and seconds, the interval that has elapsed since a certain
astronomical event took place.

The Earth, itself, because of its relatively uniform rate of rotation, affords the means of
establishing a suitable unit of time. The Earth’s real axial motion is made manifest by the
apparent diurnal motion of the objects on the celestial sphere. The rotation of the Earth on
its axis is almost perfectly uniform, and the time taken for it to perform one rotation is a
natural unit of time known as a Day. Depending upon what celestial body is used to establish
this unit of time, determines the type of day and its length. The unit derived from the
apparent motion of a fixed celestial body is referred to as a Star- or a Sidereal-Day. The unit
derived from the apparent diurnal motion of the Sun is known as a Sun- or Solar-day. The
unit derived from the apparent diurnal motion of the Moon is known as a Moon- or
Lunar-day.

Because of the Earth’s and Moon’s orbital motions the lengths of the different time units
are not equal. Moreover, because of the irregularities of the Earth’s and Moon’s orbital
motions, the lengths of the Solar and Lunar Days are not uniform.

The day commences at the instant at which the celestial body used in its determination is
on the observer’s lower celestial meridian.

The Solar Day starts when the Sun is on the observer’s lower celestial meridian: a solar
clock set to solar time indicates 00 h. 00 m. 00 s. at this instant.

The fixed point on the celestial sphere used for determining the Sidereal Day is the point
at which the Sun, in its apparent annual path, crosses the celestial equator from the southern
into the northern celestial hemisphere. This point is the Spring Equinox, more usually known
as the First Point of Aries when dealing with time.

213
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The Sidereal Day commences at the instant at which the First Point of Aries is on the
observer’s upper celestial meridian: a clock set to sidereal time registers 00 h 00 m. 00 s. at this
instant.

A Sidereal Day is defined as the interval which elapses between two successive transits of
the First Point of Aries across the UPPER meridian of a stationary observer.

A Solar Day is defined as the interval between successive transits of the Sun across the
LOWER meridian of an observer.

Although the Earth is moving in her orbit with a speed of about 18-5 miles per second, the
direction of the First Point of Aries, or that of any other fixed point in space, does not
change lbecause theradiusof thescelestial'sphiere is infinite’ The sidereal day, therefore, is the
interval of time taken for the Earth to make exactly one rotation on its axis. Thus, for each
angle of 15° through which the Earth rotates one sidereal hour passes.

TIME 215

Mean Sun moves at the average speed of the True Sun but, instead of moving along the

»¥ _ecliptic, which is the path traced out by the True Sun, the Mean Sun moves in the Earth’s

rotation; that is to say, it moves along the celestial equator.

The unit of time derived from the apparent diurnal motion of
the Mean Sun is known as the Mean Solar Day. The True Solar
Day is usually known as the Apparent Solar Day because it is
derived from the diurnal motion of the Sun which is an
“apparent” motion.

Fortunately the celestial meridian of the Mean Sun is
never very far from that of the True Sun. Time by the Mean Sun,
therefore, is very nearly the same as time by the True Sun.

Fig.29-2
2. Time at an Instant

As explained in Chapter 28, celestial meridians are sometimes called hour circles. The
angle contained between an observer’s celestial meridian and the meridian, or hour circle,

As the Earth moves in its orbit around the Sun,
s relative to the fixed stars, appears to move eastwards
any across the sky at the rate of 360/365°, or approxi-

fixed

SUN

The Sidereal Time at any instant for any place may be defined as the Hour Angle of the

\
}
“‘ passing through a given celestial point is known as the Hour Angle of that point.
First Point of Aries. This is illustrated in fig. 29-2, in which it is seen that the Hour Angle of

star mately 1°, per day. It follows that, in the interval
between two successive transits of the Sun across the
upper meridian of a stationary observer, the Earth
rotates through an angle of about 361° on its axis.

Fig. 29-1

Referring to fig. 29-1 imagine the Sun and any
fixed star to be on the upper meridian of the observer denoted by O. The next time that the
star occupies the upper meridian of the observer occurs after the observer has been carried
with the Earth to position 2, and when he is at O,. In travelling from O to O, the observer has
been carried around the Earth’s axis through an angle of exactly 360°. Before the Sun is
again on the observer’s upper meridian, the Earth has to rotate through a further angle of
about 1° in order to carry the observer to position O,. A Solar Day, therefore, is a longer

period of time than a Sidereal Day.

The sidereal day, assuming a uniform rate of rotation for the Earth, is a constant unit of
time: but, because of the Earth’s erratic orbital speed—being fastest when the Earth is at
perihelion, and slowest when at aphelion—the length of the Solar Day is not uniform. In
January for example, when the Earth is near perihelion, the daily angle swept out by the
Earth in its orbit around the sun is more than 1°: In July, when the Earth is near aphelion,
the angle is less than 1° per day. The Solar Day, therefore, is longer in January than it is in
July.

It is not convenient to use Sidereal Time in everyday affairs because the Sun governs
these to a large extent. But the Sun is not perfectly suitable because the length of the Solar
Day is not constant.

In order to overcome the inconvenience of the inconstancy of the Solar Day, and yet use
the Sun as the basis of time-keeping, an artificial point known as the Mean Sun is used. The

the First Point of Aries is a measure of the time that has elapsed since the meridian passage of
the First Point of Aries. Thus, at any instant.

Local Sidereal Time (L.S.T.) = L.H.A. of T

The Apparent Solar Day commences when the True Sun crosses an observer’s lower
celestial meridian. Thus, the Apparent Solar Time at any instant is defined as the angle at the
celestial pole measured westwards from the observer’s lower celestial meridian to the
meridian, or hour circle, of the True Sun at that instant. It follows that because Solar Time is
measured from the observer’s lower meridian, whereas Hour Angle is always measured from

.an observer’s upper meridian, the Hour Angle of the True Sun differs from the Solar Time by~

12 hours.

The Local Mean Time at any instant is defined as the angle at the celestial pole, or the
arc of the celestial equator, measured westwards from an observer’s lower meridian to the
meridian of the Mean Sun at the instant. It is the time that has elapsed since the Mean Sun
occupied the observer’s lower celestial meridian. Thus, at any instant:

Local Mean Time (L.M.T.) = Hour Angle of the Mean Sun % 12 hours
Local Apparent Time (L.A.T.) = Hour Angle of the True Sun + 12 hours

Or: LM.T. = HAM.S. + 12 hr.
L.AT. = HA.TS. £ 12 hr.
In fig. 29-3:
LM.T. = HAAM.S. — 12 hr.
L.A-T. = HA.T.S. — 12 hr.
In fig. 29-4:
LM.T. = HAM.S. + 12 hr.
L.AT. = HA.TS. + 12 hr.
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0

Fig. 293 Fig. 29-4

Because the True and Mean Suns usually occupy different hour circles, L.M.T. and
L.A.T. at any given instant are not the same. The L.M.T. differs from the L.A.T. by a
quantity which is equivalent to the angle at the celestial pole, or the corresponding arc of the
celestial equator, contained between the hour circles of the True and Mean Suns,
respectively. This quantity, expressed in units of time, is called the Equation of Time. The
Equation of Time is sometimes defined as the excess of L.M.T. over L.A.T. It is the amount
of time that must be applied to the L.M.T. (or L.A.T.) to get the corresponding L.A.T. (or
L.M.T.). If, for example, the L.M.T. is 11 h. 45 m. at the instant the L.A.T. is 11 h. 49 m., the
excess of L.M.T. over L.A.T. is a negative amount, and the equation of time in this
circumstance takes a minus sign and is described as — 4 minutes. If, on the other hand
L.M.T. is 11 h. 49 m. and the corresponding L.A.T. is 11 h. 45 m. the equation of time is + 4
minutes.

Equation of Time (¢) = L.M.T. — L.A.T.

or: e = HHAM.S. — HA.TS.

The equation of time is positive when the Mean Sun lies to the west of the True Sun, and

it is negative when the Mean Sun lies to the east of the True Sun.
L

Fig. 29-5 Fig. 296

o
Fig. 297 Fig. 29-8
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Figs. 29-5, 296, 29-7, and 29-8, serve to illustrate the relationship between Time and Hour
Angle. In these figures.

P denotes the North celestial pole.

PO denotes the observer’s upper celestial meridian.

PL denotes the observer’s lower celestial meridian

PM and PT denote, respectively, the meridians of the Mean and True Suns
PX denotes the celestial meridian of any celestial body other than the Sun
P T denotes the celestial meridian of the First Point of Aries

TO = L.S.T.
LOM = LM.T.
LOT = L.A.T.

OM = H.A.M.S.

OT = H.A.T.S.

MT = e

TX = SSHA.of X

Note carefully that:

LM.T. = H. AM.S. = 12 hr.
L.AT. = HA.T.S. = 12 hr.

e = LM.T. — LAT. ( —ve)
LS.T. = HA.of X — SSH.A. of X

In figs. 29-7 and 29-8, the True Sun and the Mean Sun are East of the observer’s upper
meridian. In this case:
H.AM.S. — 12 hr.
H.A.T.S. — 12 hr.

L.M.T.
L.AT.

3. The Equation of Time

The True Sun is not a perfect timekeeper for two reasons, viz:
1. Its motion in its apparent annual orbit around the Earth is irregular.
2. It moves in the ecliptic whereas the Earth rotates in the plane of the celestial equator.

The equation of time, therefose, is considered to be composed of two parts. The first is
due to (1) above, and is known as the component due to Eccentricity; and the second, due to
(2) above is known as the component due to Obliquity.

The True Sun moves irregularly in the ecliptic. Consider a point moving in the ecliptic at
a uniform rate equal to the average rate of the True Sun. This point is known as the
Dynamical Mean Sun (D.M.S.). The component of the equation of time due to eccentricity is
a measure of the difference between the Hour Angles of the true Sun and the Dynamical

Mean Sun.
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It will be remembered that the Sun’s apparent orbit around the
Earth is an ellipse having the Earth at one of its foci; and that the
speed of the Sun in the celestial sphere is greater when it is near
perihelion than when it is near aphelion.

cuiptic

In fig. 29-9, the ellipse represents the apparent annual orbit of

the Sun around the Earth. T'and D represent, respectively, the True

Sun and the D.M.S. P is the point in the Sun’s apparent annual

T orbit at which it is closest to the Earth, and A represents the point

Fig. 29-9 " at which its distance is greatest. These points are perihelion and
aphelion respectively

The line of apsides bisects the Sun’s apparent annual orbit. The time taken by the True
Sun to move from P to A is, therefore, the same as that taken for it to move from A4 to P.
This follows, because, according to Kepler’s Second Law, the times taken for the Sun’s radius
vector to sweep out equal areas are equal.

The D.M.S. is coincident with the True Sun at perihelion. Now the D.M.S. moves such
that it sweeps out equal ANGLES in equal intervals. The D.M.S. moves from 4 to P,
therefore, in the same time as that taken for the True Sun to move from P to 4. Thus, the
True Sun and the D.M.S. are again in coincidence at aphelion.

In travelling from P to A the True Sun, which moves fastest when at perihelion moves
ahead of the D.M.S., and their greatest angular separation occurs half way between
perihelion and aphelion. This maximum separation, which amounts to about 2°, occurs in
early April. From April until July—which is the time of aphelion—the angular separation
decreases until the time when the True Sun and the D.M.S. are in coincidence at aphelion.

At aphelion the True sun moves slowest. Therefore, the D.M.S. moves ahead of the True
Sun. The maximum separation occurs in early Ocotober. After this date the separation
decreases until the True Sun and the D.M.S. are again in coincidence at the next perihelion.

The maximum difference of time between that of the True Sun and the D.M.S. amounts
to about 8 minutes. From perihelion to aphelion the True Sun is ahead of the D.M.S. The
component of the equation of time due to eccentricity, therefore, is positive. From aphelion
to perihelion the D.M.S. is ahead of the True Sun and this component, accordingly, is
negative.

G The component of the equation of time due to

v o N ikl eccentricity is represented graphically in fig. 29-10.
A B Eam :ﬁ.\ =% W b I,

i N o The D.M.S. increases its Celestial Longitude at

" LT a uniform rate. If the planes of the Earth’s rotation

s a and the ecliptic were coincident, the D.M.S. would

Fg 2010 be a perfect timekeeper. But because of the

obliquity of the ecliptic, the point which is to afford the means of measuring time must move
at a constant rate in the celestial equator. Consider a point on the celestial equator which is
coincident with the D.M.S. at the Spring Equinox. Imagine this point to move such that its
S.H.A. decreases uniformly at the same rate as the changing Celestial Longitude of the
D.M.S. This point is known as the Astronomical Mean Sun (AMS) or, more commonly, as
simply the Mean Sun.
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The component of the¢ equation of time due to obliquity is a measure of the difference
between the Hour Angles of the D.M.S. and the A.M.S.

Component due to Obliquity = H.A. of the A.M.S. — H.A. of the D.M.S.

In fig. 29-11 D represents the D.M.S., and A represents the
A.M.S. The arc T D is equal to the arc T A4; in other words, the
Celestial Longitude of the D.M.S. is equal to 360° — S.H.A. of the
A.M.S. It is evident from fig. 29-11 that in the northern Spring the
S.H.A. of the A.M.S is less than the S.H.A. of the D.M.S. In
Spring, therefore, the components of the equation of time due to
obliquity is a negative quantity.

Fig. 29-11 By the time of the Summer Solstice the D.M.S. will have
increased its Celestial Longitude by 90°. The A.M.S. will have decreased its S.H.A. and
increased its Celestial Longitude by the same amount. At the time of the Summer Solstice the
component due to obliquity is zero because the D.M.S. is coincident with the A.M.S. The
maximum value of the difference in the Hour Angles of the D.M.S. and the A.M.S. occurs
half way between the times of the Spring Equinox and the Summer Solstice. At that instant
the difference in times by the A.M.S. and the D.M.S. is about 10 minutes.

From the date of the Summer Solstice to that of the Autumnal Equinox, the D.M.S. is
ahead of the A.M.S., and the component due to obliquity is a positive quantity. From the
time of the Autumnal Equinox to that of the Winter Solstice, the D.M.S. is to the East, of the
A.M.S. During this part of the year the component due to obliquity is a negative quantity.
From the date of the Winter Solstice to that of the Spring Equinox the component due to the
obliquity is positive; and from the time of the Spring Equinox to that of the Summer Solstice
it is negative.

The component of the equation of time due to obliquity is shown graphically in fig. 29-12.

By combining the graphs of the two components, as shown in fig. 29-13, the equation of
time for any time in the year may be found.

Fig. 29-12

F3 a4z 3gecsmonsaap s ER 8y
< 3

N\,

»

~~~~~~ Ellipticity component
-------- Obliquity component
Equation of Time

Fig. 29-13

It will be noticed in fig. 29-13 that the equation of time is zero on four occasions each
year. The dates of these times may be verified by inspection in the Nautical Almanac.
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4. Comparison of Solar and Sidereal Time Units

The Earth makes one revolution in its orbit in the time it takes to make 365Y rotations on
its axis. During this interval the Sun revolves once in the ecliptic and, therefore, makes one
apparent revoltion with respect to the fixed stars. Thus, in relation to the stars, the Earth
makes 3664 rotations in the time it takes to make 365! rotations with respect to the Sun.
Thus:

365Y% Solar Days = 3664 Sidereal Days

From this relationship we see that:

1 Solar Day = 1 d. 00 h. 03 m. 56°5 s. of Sidereal Time
1 Sidereal Day = 0 d. 23 h. 04 m. 041 s. of Solar Time

5. Time and Longitude

The angle at the celestial pole contained between the celestial meridians of any two
observers is a measure of the difference in Longitude between the positions of the observers.

in fig. 29-14 x and y denote two observers whose upper
celestial meridians are PO, and PO,, and whose lower celestial
meridians are PL, and PL,, respectively.

The L.M.T. at x is equal to the arc of the celestial equator
L M. The L.M.T. at y is equal to the arc L,M. The difference
between these arcs is arc L;L,, which is equal to the arc 0,0, or
arc xy. This, in turn, is equal to the difference of Longitude
between x and y. Thus, the D. Long. between two observers is
equal to the difference between their L.M.T.s. It may be seen
from fig. 29-14 that D. Long. is also equal to the difference between L.S.T.s at the two
meridians. It is clear that time and Longitude are closely related.

Longitude is measured East or West from the Greenwich Meridian. Thus the difference
between the local time at the Greenwich Meridian and that at an
observer’s meridian at a given instant, is a measure, in time units, of
the D. Long. between the Greenwich and observer’s meridian, and.
this is equal to the Longitude of the observer.

In fig. 29-15, at the instant when the Mean Sun is at position M,
the G.M.T. is equal to the arc G;M; and the L.M.T. for an observer
whose meridian is TO is equal to the arc LM. The arc Gy M is
greater than the arc LM by an amount equal to arc G;L which is

) 5 equal to the arc GO, which is equal to the Longitude of the
Fig. 29-15 observer.
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In fig. 29-16 the difference between G.M.T. and L.M.T. is also
equal to the arc GO; but, in this case, the Greenwich Meridian lies
to the West of the observer, whereas in fig. 29-15 the observer’s
meridian lies to the West of Greenwich Meridian.

From figs. 29-14, 29-15 and 29-16, it is seen that when the
G.M.T. is greater than the L.M.T. the Longitude of the observer is
Fig.29-16 ¢ named West, and that when the G.M.T. is less than the L.M.T. the
Longitude of the observer is named East.

Hence the mnemonical rule:
Longitude West Greenwich time best
Longitude East Greenwich time least.

6. Time at Sea

The respective local times at two places which lie on different meridians differ to the
extent of the D. Long. between the two places. It follows that, if it is desired to keep L.M.T.
on a moving vessel it will be necessary to adjust the clock steadily as the vessel moves
eastwards or westwards. For a change of each 15° of Longitude the clock will have to be
altered 1 hour; for each 15’ of change of Longitude it will have to be altered by 1 minute; and
for each 15” of change of Longitude it will have to be altered by 1 second. It is not
convenient, neither is it necessary, to continually change the clock this time in this way.

In days gone by it was customary to set the clock, usually in the late evening, so that it
registered the Apparent Time (A.T.S.) corresponding to the meridian at which the vessel was
expected to reach at noon. (L.A.T.) on the following day. It will be remembered that at noon
(L.A.T.) the Sun attains its greatest daily altitude. If this altitude is measured it is
comparatively easy for the navigator to ascertain the Latitude of his vessel. It was, therefore,
convenient to have the clock set such that the navigator could be warned of the time to make
his noon observation.

In many vessels a system of timekeeping known as Zone Time is used. In this system the
clock is always an exact number of hours different from G.M.T. to facilitate the use of Zone
Time, the Earth’s surface is divided into Time Zones which are depicted on a Time Zone
Chart. Time Zones are regions bounded by meridians whose Longitudes differ by 15°. The
region known as Zone O is bounded by the meridians of 7/4° E. and 7%4° W. All vessels
keeping Zone Time in this region have their clocks set to G.M.T., which is the correct Mean
Time for the central meridian, which is the Greenwich Meridian. The Time Zone
immediately to the east of Zone O extends from Longitude 7}4° E. to Longitude 22}4° E. In
this region, which is known as Zone — 1, vessels keeping Zone Time have their clocks set to
one hour ahead of G.M.T. Thus, to find G.M.T. one hour is deducted from the clock time:
hence the minus sign in front of the Zone number. Zone — 2 extends from Longitude 2214°
E. to Longitude 37 E., and so on. Time Zones which lie to the west of Zone O, have positive
numbers: the zone extending from 7%4° W. to 2214° W. is zone+ 1; that extending from 2215°
W. to 3714° W.is Zone+ 2, and so on.

Time Zone 12 lies diametrically opposite to Zone O. It is divided into two parts by a line
known as the Date Line. Ideally, the Date Line should coincide with the meridian of 180°,
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but its position is modified so as to avoid differences in time and date in certain island groups
which straddle the 180th meridian. The part of Zone 12 which lies to the west of Date Line is
known as Zone — 12, and that part which lies to the east is known as Zone+ 12.

Consider a vessel travelling westwards in the course of circumnavigating the Earth. For
each 15° of Longitude made good to the West the clock will be retarded 1 hour. It is obvious
that when the vessel arrives on her initial meridian, she will have changed her Longitude by
360° and her clock time will have been retarded by 24 hours. A whole day, therefore, would
have been “lost” when the vessel’s time is compared with the local calendar. To overcome this
the date is altered by one day when crossing the Date Line, and this is the reason why this line
is so named. When crossing the Date Line from West to East the date is advanced one day,
and when crossing it from East to West the date is retarded one day.

7. Standard Time

When a vessel arrives in port it is often necessary for the clock to be re-set so that it
corresponds to the time used by the people on shore. The times used by civil authorities are
known as Standard time, a list of which is given in the Nautical Almanac.

8. The Years

The time taken by the Earth to make exactly one revolution around the Sun relative to
the fixed stars is known as a Sidereal Year. The sidereal year in the Mean Solar units of time
is 365 days 06 hours 09 minutes 09 seconds. The sidereal year is defined as the interval
between successive instants when the Sun occupies the same position in the celestial sphere
relative to a fixed point in space.

The time taken by the Earth to make one revolution with reference to the First Point of
Aries is slighly shorter than a sidereal year. This is due to the precession of the Earth’s axis
which causes the equinoctial points to move westwards across the celestial sphere at an
average rate of about 50” of arc per year. This retrograde motion of the equinoxes gives rise
to another unit of time known as the Tropical Year. The tropical year is defined as the
interval between two successive Spring equinoxes. In Mean Solar units of time it is 365 days
05 hours 48 minutes 46 seconds.

The apse line of the Earth’s orbit moves eastwards around the orbit at an average rate of
about 11%” of arc per year. The interval between two successive perihelions, therefore, is
slightly longer than a sidereal year. In Mean Solar units of time it is 365 days 06 hours 13
minutes 48 seconds. This period is known as an Anomalistic year.

9. Co-ordinated Universal Time

The bases of time-keeping described above is the rotation of the Earth. Solar and Sidereal
Times are therefore, described as Rotational Times. Now the speed of rotation of the Earth is
not perfectly uniform: it is affected by atmospheric and oceanic phenomena, as well as by
movements of material within the body of the solid Earth. So that for highly accurate time
measuring the rotation of the Earth is not satisfactory.
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The determination of the units of rotational times is a highly specialized branch of
astronomy. Astonomical observations at a given observatory led to the determination of
what astronomers call Universal Time (U.T.). Because of a short-term irregularity in the
Earth’s rotation, known as Polar Variation, U.T. varies slightly as between observatories, so
that a correction is applied to U.T. to give a standard form of time known as U.T. 1. An
empirical correction to allow for annual changes in the speed of the Earth’s rotation is
applied to U.T. I to give U.T. 2. This system of time-keeping was adopted internationally in
1956.

But even U.T. 2 is not sufficiently accurate for certain scientific purposes, so that an
alternative system of time-measuring was sought.

Now the unit of time is a fundamental physical quantity, so that in 1956, the International
Committee of Weights and Measures adopted as the unit of time the “Second of Ephemeris
Time”. Up to 1956 the unit was a second of time determined by the irregular rotation of the
Earth—the unit being 1/86,400 of the Mean Solar Day. Ephemeris Time (E.T.) obtained
from the orbital motion of the Earth, corresponds to U.T. 2 over a long period of time. The
problem of making E.T. available led to the use of an Atomic Clock, the principle of which in
no way depends on the rotation speed of the Earth.

An Atomic Clock employs energy changes within atoms to produce extremely uniform
waves of electro-magnetic radiation which can be counted. In 1967 the unit of time adopted
was the second of the International System of Units (S.1.) This is defined as the duration of a
stated number of periods of radiation of a “caesium atom-133”.

A stystem of time-keeping, known as Co-ordinated Universal Time (U.T.C.), has been in
use since 1972. This system developed from the relating of Ephemeris Time (E.T.) to Atomic
Time (A.T.), and by adjusting the atomic clock so as to remain close to U.T. 2.

In 1972 the practice was adopted of keeping U.T.C. to within about 0-5 sec. of U.T. 2 by
resetting a clock on U.T.C. by precisely one second when necessary. These one-second jumps,
known as Leap Seconds, are inserted at the ends of solar days; and, of course, notice well in
advance is given whenever a leap second is to be introduced. Time Signals are broadcast on
this system so that U.T.C. is now the reference time for common, as well as for nautical
astronomical, use.

10. The Calendar

The systematic arrangement of units of time constitutes an Almanac or Calendar. The
prime function of a calendar is to provide the means of recording dates of important events
for the benefit of posterity. The earliest calendars were devised mainly for the purpose of
determining the dates of religious feasts, a fact which resulted in a profusion of styles. The
present system in general use was prescribed by Pope Gregory XIII in 1582. The Old-Style
calendar in use in Britain prior to the introduction of the Gregorian Calendar in 1752, was
the Julian Calendar which was invented by an Alexandrian astronomer named Sosigenes and
introduced by Julius Caesar after whom it is named.

The Julian year contains 365 days. The 365 days were divided into 12 months each
having an integral number of days. The extra quarter-days were allowed to accumulate to
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form a whole day which was intercalated into the month of February at four-year intervals.
Thus, every fourth year contained 366 days compared with 365 days which formed the
so-called Common years. Years containing 366 days were called Leap Years or Bissextile
Years, and the intercalated day was called the Bissextus. Leap years were so called because,
in such a year, any given date does not advance one day on the date of the corresponding day
of the preceding year, as in Common Years, but “leaps” over the additional day. Leap Years
are those whose numbers are exactly divisible by four.

It is important that a calendar should be such that the seasons recur on the same dates of
successive years. That this was not the case with ancient calendars resulted in them falling
into disuse.

The ideal calendar year is the time taken by the Earth to revolve once in its orbit with
respect to the equinoxes. This interval is the Tropical Year. The Julian Calendar was devised
on the assumption that the year contained exactly 365 days 06 hours. It was, therefore, in
error to the extent of about 11 minutes per year. The accumulation of this error over a period
of 400 years amounts to about 72 hours or 3 days. The Gregorian Calendar took into account
this error; and, accordingly, dropped 3 days every 400 years. Thus, leap years in our present
calendar are those whose numbers are divisible by 4, except certain initial years of centuries.
The initial years of centuries are not leap years unless the first two numbers of the year
number are exactly divisible by 4. Thus, the years 1800 and 1900 were neot leap years, but the
year 2000 will be a leap year. The Gregorian Calendar is not perfect, although its error
amounts to only about 2 days in 6000 years.

The first year of the Julian Calendar was made unduly long and it was known as the Year
of Confusion. But the Roman writer Macrobius referred to it as the Last Year of Confusion.
The first Julian Year commenced on the day of the first New Moon following the Winter
Solstice of the Year.

The year 1752, when the Gregorian Calendar was adopted in Britain, was made several
days short—the date jumping from the 3rd to the 14th of September. This brought the next
Spring Equinox to the 21st of March. It is interesting to reflect that at so recent a date—only
about 8 generations ago—there were folk who genuinely thought that by altering the
calendar at the time, they were being deprived of 11 days of their lives.

The ancient Roman calendar was essentially a Lunar Calendar. The months commenced
on the days of the New Moon. These days were known as the Calends, and the days of Full
Moon, which occurred on the 14th or 15th day of each month, were known as the Ides.

The Moon is still used in the Ecclesiastical Calendar. The phase of the Moon is used in
connection with the calculation of the date of Easter, which is the most important date in the
Christian Calendar. It is from the date of Easter that the other important Christian feast days
are calculated. Easter Day, in general, falls on the first Sunday after the Full Moon which
follows the.Spring Equinox. Easter therefore, must fall between March 21st and April the
27th. The date of the appropriate Full Moon is calculated from the Metonic Cycle, and it is
sometimes different from the date of the astronomical Full Moon.

The Metonic Cycle is named after the Athenian astronomer Meton who first discovered
it. It is a period of about 19 years after which the Moon’s phases recur on the same day of the
Solar Year. The number of the year in the Metonic Cycle is known as the Golden Number.
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The Golden Number may be found by adding 1 to the year number and dividing the result by
19: the remainder is the Golden Number. This is used in conjunction with the Sunday or
Dominical Letter, for determining the date of Easter. If the days of the week are lettered from
A to G starting with 4 on the first of January, the letter for Sunday will change each year.
The letter is called the Sunday or Dominical Letter. Leap Years have two Sunday Letters:
one for the period up to the Leap Year Day, and the other for the remainder of the year.

Exercises on Chapter 29

1. Describe how the common units of time, namely the Day and the Year, are established.

2. What angles on the celestial sphere correspond to Solar Time and Sidereal Time at a
given instant?

3. When do (a) the Solar Day, and () the Sidereal Day, commence.

4. Why is the length of the Apparent Solar Day not constant?

5. Explain why a Solar Day is longer than a Sidereal Day. Prove that the number of
Sidereal Days in a year is exactly one more than the number of Solar Days in the year.

6. Explain clearly the derivation of a Mean Solar Day.

7. Explain the effect on daily life were Sidereal instead of Solar Time used as the basis of
everyday time-keeping.

8. What is the Equation of Time? Prove that the Equation of time (e) is given by:

e = HAM.S. — HA.T.S.

9. Explain why it is necessary to know the G.M.T. and the L.M.T. for a given instant in

order to find Longitude.

10. Explain each of the two components which combine to form the Equation of Time.

11. Compare the lengths of the Mean Solar Day and the Sidereal Day.

12. Explain how time is kept on board ship. ,

13. Explain Zone Time. If a ship is in Longitude 132° E. and her Zone Time is 1300 hr.
show that the G.M.T. at the same instant is 0400 hr.

14. What is meant by Standard Time?

15. Explain the Calendar in current use.

16. Which of the following are not Leap Years: 1600, 1800, 1904, 1944, 19727
(Answer—1800).

17. Prove that: G.H.A* — L.H.A.* = Longitude of observer, where * denotes any
heavenly body.

18. Compare the lengths of the Sidereal Year, the Tropical Year and the Anomalistic Year,
in units of Mean Solar Time.

19. Show that when a Sidereal Clock and a Mean Solar Clock, both set and keeping perfect
time, register 00 h. 00 m. 00 s., that the date is September the 23rd.

20. Show that when a Mean Solar Clock registers 12 h. 00 m. 00 s. at the same instant as a
Sidereal Clock registers 13 h. 00 m. 00 s., the date is October 23rd, approximately.

21. Describe the motions of the Dynamical Mean Sun and the Astronomical Mean Sun.

22. Show that the Equation of Time is zero on four days each year.

23.  What effect has the equation of time on the lengths of the forenoon and afternoon?

24. Write a brief account of U.T.C.




CHAPTER 30
THE MOON

1. The Moon and its Motions

The Earth’s satellite, the Moon, is the closest celestial body to the Earth. Its diameter is
about 2000 miles, this being about a quarter of the Earth’s diameter. The Moon has the
distinction among the satellites of the Solar System of being one of the nearest in size to its
parent planet.

The Moon is often said to revolve around the Earth. More strictly the Earth and the
Moon revolve around their common centre of gravity. This point, known as the Barycentre,
lies on the straight line joining the centres of the Earth and Moon, and is located at a point
about 1000 miles within the Earth.

The Moon’s orbit is elliptical: its nearest approach to the Earth is about 222,000 miles,
and its most remote point from the Earth lies at about 253,000 miles from the Earth. The
names given to the points of nearest approach and greatest distance are Perigee and Apogee
respectively.

Fig. 30-1 illustrates the relative dimensions of the Earth, Moon’s
Orbit, and the Sun. It is interesting to note that the diameter of the
Sun is considerably greater than the diameter of the Moon’s orbit.

As the Moon moves in its orbit it describes a great circle on the
celestial sphere against the background of the fixed stars. It moves
about 13° per day to the eastwards. This comparatively rapid
motion may easily be observed in a relatively short space of time. In
an hour, for exmple, the Moon moves through an arc of the sky,
relative to the stars, approximately equal to its angular diameter.

To complete a circuit around the celestial sphere with respect to the stars, the Moon takes
about 360°/13 days. The actual time is 27!/; days, and this period is known as a Sidereal
Period.

The easterly motion of the Moon relative to the stars causes the Moon to rise, culminate
and set, later each day to the extent of an average interval of
50 minutes of time. This interval is known as the Retardation
of the Moon’s Rising and Setting.

The plane of the Moon’s orbit is inclined at an angle of
about 5%° to the plane of the eliptic. The points on the
celestial sphere where the two planes intersect are referred to
as the Nodes of the Moon’s Orbit. The node at which the
Moon is located when it crosses from south to north of the
ecliptic, in so doing changing her Celestial Latitude from
South to North, is known as the Ascending Node. The other
node is called the Descending Node.
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The straight line, known as the Nodal Line, which joins
the nodes of the Moon’s orbit, has a retrograde motion along
the ecliptic similar to the precession of the equinoxes. The
nodes perform a complete revolution around the celestial
sphere in 18:6 years. This is an important eclipse period
known as the Saros. The effect of the nodal motion is that the
limits of the Moon’s declination in any given sidereal period
change periodically with a period of 18-6 years. The limits of
the Moon’s declination during a given sidereal period are
dependent upon the relative positions of the Nodes and the
Equinoxes.

Figs. 30-2, 30-3 and 30-4, illustrate the varying maximum
values of the declination of the Moon during particular
sidereal periods.

When the Ascending Node is at the Spring Equinox, as
illustrated in fig. 30-2, the Moon’s declination varies between
(2314+ 5Y)°, that is 28%° N. and S. during the sidereal
period.

When the Ascending Node coincides with the Autumnal
Fig. 30-4 Equinox, as illustrated in fig. 30-3, the Moon’s declination
varies between (2314 — 51)°, that is, 18%4° N. and S.

Whe.n the nodes coincide with the Solstitial Points, as illustrated in fig. 30-4, the Moon’s
declinational limits are the same as those of the Sun, that is to say they are 23%4° N. and S.

I't is to be noted that, whatever may be the relative positions of the Moon’s Nodes and the
Equinoxes, the average rate of change of the Moon’s declination is very rapid.

2. The Phases of the Moon

The Moon is rendered visible by reflected sunlight. The proportion of the Moon’s
illuminated hemisphere, visible at the Earth at any time, depends upon the relative positions
of the Earth, Moon and Sun. The changing shapes of the part of the Moon’s surface visible at
the Earth are known as the Phases of the Moon.

When the. Moon is in conjunction with the Sun, its illuminated hemisphere is directed
away from the Earth. In this circumstance no part of the Moon’s illuminated hemisphere is
visible at the Earth. At this time the Moon and the Sun cross an observer’s celestial meridian
at the same instant of time. It follows that the time at which the Moon is in conjunction with
the Sun must be 12 o’clock L.A.T. When this occurs the Moon is said to be New or at the
Change, and its Age is said to be 00 d. 00 h. 00 m. 00 s.

When the Moon is in opposition with the Sun, its illuminated surface is facing the Earth.
The whole of the Moon’s illuminated hemisphere is, therefore, visible at the Earth. At this
time the Moon appears as a disc of light and its phase is said to be Full. The Full Moon
occurs when the Sun is on an observer’s lower celestial meridian, the Moon being on the
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observer’s upper meridian at the time. Full Moon, therefore, occurs at Midnight L.A.T. The
angle between the Moon and the Sun, measured in the plane of the ecliptic, at the time of
Full Moon, is 180°, so that the Moon rises at the time the Sun sets, and sets at the time the
Sun rises.

From the time of New Moon to that of Full Moon the Moon completes half the cycle of
her phases. During this time the Moon is said to Wax, meaning that the proportion of the
Moon’s illuminated surface visible at the Earth increases from nothing at the New Moon, to
a full disc at Full Moon. From the time of Full Moon to that of the following New Moon, the
Moon is said to Wane, for the reason that the proportion of its illuminated hemisphere
visible on the Earth diminishes from maximum to zero.

It will be remembered that because of the Earth’s orbital motion the Sun moves eastwards
across the celestial sphere at the rate of about 1° per day. Thus, the daily separation of the
Sun and Moon amounts to about 12° per day. It follows that the Moon takes about 360/ 12
days, approximately, to complete a circuit of the celestial sphere relative to the sun. The
actual time is about 29% days—an interval known as Lunation or Synodic Period. The
Lunation is the time taken for the Moon to complete a cycle of its phases, so that it may be
defined as the interval of time between two successive New Moons.

As the angle between the Moon and Sun increases after New Moon, from 0° to 180°, the
Moon’s visible shape appears successively as a crescentic, half Moon, gibbous and full Moon.
During this half lunation the Moon rises after Sunrise and sets after Sunset. When the angle
between the Moon and Sun is 90°, during the first half of a lunation, the Moon is said to be
at the First Quarter. At this time the Moon rises at about 6 hours after the time of sunrise. It,
therefore, crosses the upper celestial meridian of an observer at about 6 o’clock in the
evening.

During the second half of a lunation the Moon rises before sunrise and sets after sunset.
When the Moon is midway between Full and New, that is to say when it is at quadrature
during the second half of the lunation, it is said to be at the Third Quarter. At this time the
Moon rises at about six hours before sunrise, so that it crosses an observer’s upper celestial
meridian at about 6 o’clock in the morning.

-—TOm

4,

00~IS 3rdAuarter o

The phases of the Moon are illustrated in fig. 30-5.

Fig. 30-5
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3. The Age of the Moon

The Age of the Moon is the interval of time that has elapsed since the last New Moon.

Age at New Moon = 0 days exactly
Age at Ist Qr. = 7 days approximately
Age at Full Moon = 15 days approximately
Age at 3rd Qr. = 22 days approximately

The Age of the Moon on the Ist of January is known as the Epact for the year. The Epact
is used in the computation of the date of Easter. Because 12 lunations amount to 354 days,
which is about 11 days short of the year, the Epact increases by 11 on successive years.

4. Winter and Summer Full Moons

Because the Sun moves in ecliptic, successive Full Moons take place in different parts of
the celestial sphere. This has an effect on the duration of Moonlight.

In Summer, when the Sun has northerly declination, the Full Moon has southerly
declination. In the northern hemisphere celestial bodies which have south declination are
above the horizon for less than half a day. Therefore the Summer Full Moons are below the
horizon for more than half the day.

In Winter, when the Sun has southerly declination, the Full Moons have northerly
declination. They are, therefore, above the horizon for more than half the day. During the
long Winter nights of the northern hemisphere the Full Moon is said to “ride high in the sky”.

5. Spring and Autumn Full Moons

In Spring in the Northern Hemisphere, when the Sun is near the First Point of Aries, the
Full Moons are near the First Point of Libra. In Autumn, when the Sun is near Libra, the
Full Moons are near Aries. In September, the Moon’s declination changes most rapidly
during the lunation because it crosses the ecliptic.

In Spring, when the Sun’s declination changes from South to North, the Full Moon’s
declination changes from North to South. This has the effect of speeding up the time of
Moonset. It will be remembered that celestial bodies which have south declination are above
the horizon of an observer in the northern hemisphere for less than half the day, and that the
greater is the South declination the shorter is the period the body is above the horizon.

In Autumn the Full Moon’s declination changes from South to North as the Sun’s
declination changes from North to South. The time of the setting of the Full Moon is,
therefore, advanced. The retardation of the Moon’s rising and setting, therefore, is offset by
the northerly change in its declination. Therefore, in the Autumn, the Moon when near Full
rises only slightly later on successive days. The interval between the times of sunset and
moonrise is relatively small for several days near the time of Full Moon. Hence, before
darkness sets in, the large Moon rises, and the reflected sunlight assists the northern farmers
in the labour of the harvest. For this reason the Full Moon occurring nearest to the time of
the Autumnal Equinox is called the Harvest Moon.
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A similar phenomenon occurs during the few days on each side of the day of Full Moon
following the Harvest Moon.- At this time of the year, the harvest having been gathered, the
sporting activities of the farmers are assisted by moonlight, and the Full Moon following the
Harvest Moon is called the Hunter’s Moon.

6. Earth-Shine

The Earth as observed from the Moon passes through phases which recur every 291 days
exactly as the Moon’s phases. When the Moon is New at the Earth, the Earth is “New” at the
Moon. At the time of Full Moon an observer on the Moon would observe “Full Earth”. The
Earth being a better reflector, area for area, than the Moon, and because of the Earth’s
atmosphere, the Earth is a magnificent spectacle to the intrepid space travellers who orbit the
Earth or who land on the Moon.

When the Moon is crescent-shaped the portion of its surface which is not illuminated is
facing the Earth. This dark hemisphere of the Moon, on those occasions when the sky is
cloud-free and clear, may be observed to be slightly illuminated by sunlight which has been
reflected from the Earth, and re-reflected from the Moon’s surface. This illumination is called
Earth-Shine, and the spectacle gives rise to the phenomenon, due to irradation, known as
“The Old Moon lying in the New Moon’s arms”.

7. Moon’s Librations

The Moon rotates on its axis once in a sidereal period, and the speed of this rotation is
virtually uniform. Because of this, the same face of the Moon is always presented to the
Earth.

Now although the rotation of the Moon takes place at a uniform rate, that of the Moon’s

‘orbital motion is not uniform. In obedience to Kepler’s Second Law the Moon travels fastest

when it is at perigee and slowest when it is at apogee. The average orbital speed is exactly
equal to the uniform rotation speed. Thus, at perigee when the orbital speed is greater than
the axial speed, a narrow strip of the Moon’s surface beyond its normal western edge heaves
into view. At apogee the reverse in the case and, in consequence, a part of the Moon’s surface
beyond its normal eastern edge becomes visible to terrestrial observers.

The Moon’s axis of rotation is inclined to the plane of its orbit at an angle of about 84°.
As the Moon revolves in its orbit, therefore, a continually changing aspect is presented to
terrestrial observers. The Moon seems to “nod” to and fro once in a sidereal period. This
allows observers on the Earth to observe parts of the lunar surface extending to as much as
6°—the complement of the angle of inclination of the Moon’s spin axis to the plane of the
Moon’s orbit—over the Moon’s poles.

These apparent irregularities in the Moon’s motions are known as Librations. They result
in about 59% of the Moon’s surface being observable from the Earth.

8. Eclipses

An eclipse of the Sun occurs when the Moon lies on the straight line joining the Earth and
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Sun. Because the Moon and the Earth are opaque bodies they cast shadows away from the
direction of the Sun. At a Solar Eclipse the shadow of the Moon falls on the Earth.

An eclipse of the Moon occurs when the Moon passes through the shadow of the Earth.

Were the Earth’s and Moon’s orbits co-planar there would be an eclipse of the Sun at
every New Moon and an eclipse of the Moon at every Full Moon. But the plane of the
Moon’s orbit is inclined at an angle of about 5%4° to the plane of the Earth’s orbit. The
declinations of the New and Full Moons are not, therefore, usually the same in magnitude as
that of the Sun, so that eclipses of the Sun do not take place at every New Moon, and eclipses
of the Moon do not take place at every Full Moon.

For an eclipse to occur the Moon must lie on the ecliptic: hence the name given to the
great circle on the celestial sphere which is co-planar with the Earth’s orbit. When the Moon
is on the ecliptic it is at one of its nodes. So that for an eclipse to occur the Moon must be at
or near a node and it must lie on the straight line joining the Earth to the Sun.

In fig. 30-6 the two tangents A4, and BB,
meet at the point O, and the cone of section
A,0B, is a region within which no sunlight
enters. This dark shadow cone is known as the
Umbra.

Fig. 30-6

The tangents BA, and 4B, mark out the plane section of the cone within which partial
sunlight enters. This region is known as the Penumbra.

If the Moon enters the penumbra it is so slightly obscured that it is hardly noticeable. But
if the Moon enters the umbra it is eclipsed. Sometimes the Moon does not pass entirely into
the umbra, in which case a Partial Eclipse occurs. Should the Moon pass completely into the
umbra a total Eclipse occurs.

During a total lunar eclipse the Moon is sometimes visible as a dull red disc—like a
blood-drop hanging in the night sky. This is due to sunlight being refracted on passing
through the Earth’s atmosphere, and the red constituents of which, being refracted to a
smaller degree than the higher frequency constituents, impinge upon and illuminate the
eclipsed Moon.

A lunar eclipse is visible at all places which have the Moon above the horizon during the
time it is in the Earth’s shadow.

Because the Moon and the Sun have approximately the same angular diameters, the
length of the Moon’s shadow cone is roughly equal to the radius of the Moon’s orbit. Thus,
during a solar eclipse, the apex of the Moon’s shadow cone sweeps out a narrow belt on the
Earth’s surface within which the eclipse is visible. Because of the eccentricities of the Earth’s
and Moon’s orbits, it sometimes happens that the apparent diameter of the Moon is greater
than that of the Sun. This is a case of the Earth being near aphelion at the same time as the
Moon is near its perigee. A solar eclipse occurring in these circumstances is known as a Total
Solar Eclipse, in which the whole of the Sun’s disc is obscured during the period of totality.
An eclipse of the Sun which occurs when the Moon’s apparent diameter is smaller than that
of the Sun’s, is known as Annular Eclipse. During an annular eclipse a narrow ring, or
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annulus, of the Sun’s surface is visible during the eclipse. Such an eclipse occurs when the
Moon is near apogee at the same time the Earth is near perihelion.

An eclipse of the Sun is visible only within a narrow strip of the Earth’s surface, the width
of the strip depending upon the relative distances of the Moon and Sun. The strip is never
more than about 170 miles in width. Within the penumbra, which may extend over a circular
area of the Earth of radius 2000 miles, a Partial Eclipse of the Sun occurs.

Fig 30-7 illustrates a Total Solar Eclipse.

AT
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Fig. 30-7 Fig. 30-8

Fig. 30-9

Fig. 30-9 illustrates the track on the Earth of a Solar Eclipse.

9. Occultations

During the Moon’s monthly circuit of the heavens it frequently passes over stars, and
sometimes over planets. When this happens an Occultation takes place. For an occultation to
occur the Moon and the occulted body must have the same celestial position.

It is interesting to observe an occultation of a star using the long glass or a good pair of
binoculars. It will be seen that the star vanishes abruptly behind the edge of the Moon and
reappears on the western edge, just as abruptly as it disappeared at the eastern edge some
minutes before. The fact that a star disappears abruptly when being occulted by the Moon
serves to show that the Moon is devoid of an atmosphere.

An occultation of a planet by the Moon is not nearly so dramatic as a star occultation:
because of the planet’s appreciable angular diameter it fades out gradually on being occulted.

Very occasionally a planet and a star occupy the same position in the celestial sophere.
When this happens the star is said to be occulted by the planet.

Exercises on Chapter 30

1. Distinguish between a Sidereal Period and a Synodic period of the Moon.

SN

11.
12.
13.
14.
15.
16.
17.

18.
19.

20.
21.
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. Explain a Lunation.

Describe the phases of the Moon and explain their cause.

Explain why the maximum declination of the Moon varies from one Junation to another.

Define Ascending Node and Descending node.

In what circumstances would the Moon have a maximum declination during the

lunation of 283%° N. and S.?

At what latitude would an observer be able to see the Moon on the horizon at lower

meridian passage at a time when the nodes coincide wth the Solstices?

. Explain clearly why it is that the time of Moonrise occurs later each day by an amount
known as the Retardation of the Moon.

. What is meant by the Age of the Moon?

. What is meant by the term Epact? If the epact is 4 on a certain year what is it on the

following year?

Explain the expression: “The Full Moon rides high in Winter”.

Explain the expression: “The Old Moon lies in the New Moon’s arms”.

Explain the Harvest Moon.

Explain Moon’s Librations and indicate their effects.

Explain the causes of eclipses.

What conditions are necessary for a Solar Eclipse to occur?

What conditions are necessary for a Total Solar Eclipse, and for an Annular Eclipse of

the Sun to occur?

What conditions are necessary for the period of totality of a Solar eclipse to be

maximum?

What type of eclipse occurs if the Sun’s S.H.A. and declination are equal to those of the

Moon, and angular diameters of the Moon and Sun are 159’ and 16-2’ respectively.

Explain the appearance of the Moon during some total lunar eclipses.

Define Occultation. Describe the occultation of a planet by the Moon.




PART 5

NAUTICAL ASTRONOMY

Nautical Astronomy deals with the problems of finding a vessel’s position when out of sight
of land using astronomical principles.

The astronomical data required for solving the problems of Nautical Astronomy are
contained in the Nautical Almanac, a very important instrument of nautical astronomy and
one with which the navigator should be thoroughly familiar.

The basis of Nautical Astronomy is the relationship between a celestial body’s position
using co-ordinates of the horizon system with the body’s position at the same instant of time
using the co-ordinates of the celestial equatorial system.

The altitude of a celestial body, which is a co-ordinate of the horizon system, is measured
by means of a sextant. The declination of an observed body, which is a celestial equatorial
co-ordinate, may be lifted from the Nautical Almanac. Altitude, declination and latitude, are
functions, respectively, of each of the three sides of a celestial triangle known as the
Astronomical- or PZX-Triangle. In the general nautical astronomical problem a PZX-trian-
gle has to be solved. The chapters in Part 5 of this book deal with the several aspects of this
important branch of the practical work of a navigator.

The fundamental feature of modern Nautical Astronomy is the Astronomical Position
Line. An astronomical position line is found from an astronomical observation or Sight, as
such an observation is familiarly called. In by-gone days astronomical observations were
made specifically for finding Latitude or Longitude. Nowadays, they are made essentially to
determine astronomical position lines.

The astronomical methods of finding Latitude at sea have been used since the time when
the Portuguese navigators of the Great Age of Discovery first applied astronomical methods
for position-finding when out of sight of land.

Compared with the problem of finding Latitude at sea that of finding Longitude in early
times was one of considerable complexity and difficulty. It was not until the mid-eighteenth
century that a satisfactory solution of the longitude problem was discovered. Two methods
for finding Longitude at sea became available at about the same time. The method most
familiar to modern navigators requires the use of an accurate mechanical timekeeper. The
first successful Chronometer, which is the name given to an accurate watch used for finding
Longitude at sea, was the invention of an eighteenth-century horologist named John
Harrison. Although Harrison’s chronometer made its appearance during the early part of the
eighteenth century, almost a century was to pass before these instruments were readily
available on the score of expense. During this long period the second of the two general
methods for finding Longitude at sea, known as the Lunar Method, was the more commonly
used method.
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The obsolete lunar method required the comparison of a measured Lunar Distance with
predicted Lunar Distances given in the Nautical Almanac. The term Lunar Distance applies
to the angle contained betwen the Moon and the Sun or some other celestial body lying in or
near to the plane of the ecliptic. The early Nautical Almanacs were designed essentially for
the lunar method of finding Longitude at sea. Since the early part of the present century,
when predicted lunar distances ceased to be given, the Nautical Almanac has served
essentially for the purpose of solving PZX-triangles.

G.M.T. is available to a navigator from his chronometer, the error of which may be
obtained from Radio Time Signals transmitted at specified times throughout the day. The
principle tables in the Nautical Almanac enable a navigator to find the declination and
G.H.A. of any navigational celestial body for any given instant of G.M.T. We shall see in the
following chapters how position lines are obtained from the remarkable and unfailing
methods of Nautical Astronomy.

CHAPTER 31
FINDING THE TRUE ALTITUDE

1. The Altitude

The True Altitude of a celestial body is the angle at the centre of the Earth or an arc of a
vertical circle contained between the body and the celestial horizon. A true altitude is found
by applying certain Altitude Corrections to a measured altitude obtained by means of a
sextant. The Sextant is the nautical astronomer’s instrument for measuring arcs or angles. In
Nautical Astronomy the principal arcs measured by means of a sextant are arcs of vertical
circles. o

The measured altitude is referred to as the Sextant Altitude. If the sextant possesses
Index error (see Chapter 43), the sextant altitude must be corrected by applying a correction
for the index error to give an angle known as the Observed Altitude. This is illustrated in fig.
31-1.

To Observer's
Zenith

2 star The Observed Altitude of a celestial body is
defined as the angle at the eye of the observer
contained between the apparent directions,
respectively, of the body and the visible horizon
measured in the plane of the vertical circle on which
Direction of horizen, the body lies. The distance of the visible horizon
slar depends upon the height of the observer’s eye above
the level of the sea.
Fig. 31-1 o . : .
The Visible Horizon is a small circle on the
Earth’s surface which bounds an observer’s view in the open sea. It may be defined as a circle
every point on which the sea meets the sky. The radius of the visible horizon, as seen in fig.
31-2, increases as the height of the observer’s eye increases.

In fig. 31-2, B’s visible horizon is a larger circle than A’ visible horizon. This follows
because B’s eye is elevated to a greater extent than A4’s.
B

. 1200 N
As_yisiple hoft?

8’ . 1208
S _visible hof

An observer whose eye is at sea level has no
visible horizon. The part of the celestial sphere which
is visible to such an observer is bounded by a small
circle on the celestial sphere which is parallel to the
observer’s celestial horizon, and on whose plane the
Fig.31-2 observer’s eye lies. This is called the observer’s
Sensible Horizon. It will be remembered that the celestial horizon is a great circle on the
celestial sphere every point on which is 90° from the observer’s zenith. The Earth’s centre lies
on the observer’s celestial horizon.

237
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2. Dip

The direction in any given vertical plane of the visible horizon is depressed below the
direction of the sensible horizon in the same vertical plane by an angle which increases as the
observer’s height of eye increases. This angle of depression is known as Dip.

Plane of B's
Sensible Horizon

In fig. 31-3 it will be seen that the dip of B’s visible
Jane of A+ horizon is greater than that of A’s. This follows
because B’s height of eye is greater than A’s.
Ignoring the effect of atmospheric refraction the
dip of the visible horizon in minutes of arc is equal to
the distance of the visible horizon in nautical miles.
This is proved with reference to fig. 31-4.

Fig. 31-3

In fig. 31-4:

AB is the vertical height of the observer’s eye above sea level.
AV is the distance of the observer’s visible horizon in nautical miles.

arc AV. = 0 = Distance of visible horizon in miles
SBV = Dip in minutes

Plane of B's ] TS
Sensible Horizon

In triangle BOV:

BVO = 90°
BOV = ¢
OBV = (90° — @)
. But: ,
SBO = 90°
Fig. 31-4 Thegeéc{,re:: ’
Thus: .
Dip of visible horizon in mins. = Distance of visible horizon in mls.

In Part 3, Chapter 19, we proved that the distance of the theoretical horizon is equal to
106 \/k miles, where A is the height of the observer’s eye above sea level. Therefore:

Dip of Theoretical Horizon = 106 \/A’ of arc (in feet).
Dip of Theoretical Horizon = 193 \/A’ (in metres).

3. Refraction

The path of a ray of light, in passing from one medium to another of different optical
density, changes its direction by an angle known as refraction. Refraction depends upon the
relative optical densities of the two media and also upon the angle which the path of the ray
of light makes with the common surface of the two media. When the ray strikes the surface
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normally; that is to say, when the angle of incidence is 90°, refraction is zero. Refraction
increases as the angle of incidence decreases.

A ray of light from a celestial body, in passing through the Earth’s atmosphere, is
refracted so that the path of the ray of light is a slight curve. The direction of this curved path
at the surface of the Earth is such that the altitude of a celestial body is apparently greater
than it would be if refraction did not exist.

Fig. 315 serves to illustrate that Atmosphere
To O's Zeith Refraction is equal to the angle between the true
Aop-Dirnot 3 direction of a celestial body and its apparent direction.

T;'eglr'n The value of refraction depends upon the altitude of
the celestial body. It is greatest for a body whose altitude
is zero; that is to say, for a body on the horizon. Its

\ maximum value is about 33" of arc. Refraction of light

\ from a body at the zenith; that is to say, a body whose
altitude is 90°, is zero. This follows because the ray of
light which enters the observer’s eye from such a body,

Fig. 315 strikes the atmosphere normally.

Refraction is affected by changes in temperature and pressure of the atmosphere. In most
collections of Nautical Tables, a table giving Mean Refraction is given for a so-called
Standard Atmosphere in which the sea level temperature and pressure are assumed to have
specified values. In addition to this table another is given in which are tabulated corrections
to be applied to the Mean Refraction for temperatures and pressures different from those for
which the Mean Refractions are computed.

Certain atmospheric and sea conditions may give rise to Abnormal Refraction. If this is
suspected, results of observations of celestial bodies should be treated with caution.

4. Effect of Refraction on Dip

A ray of light from the sea surface at the visible horizon is refracted such that the distance
of the visible horizon is slightly greater than that of the theoretical horizon. The distance of
the visible horizon, when atmospheric refraction is normal, is about one-thirteenth of the
theoretical distance greater than the theoretical distance. This gives 1-15 \/% for the distance
of the visible horizon. The actual dip of the visible horizon is less than the theoretical dip.
When refraction is normal the dip of the visible horizon is 0-98 \/A’s of arc. The effect of
refraction on dip and on distance of the horizon is illustrated in fig. 316.

X ¢ Apparent

Direction of X Tables of Distance and Dip of the visible
horizon are calculated from the formulae stated
above and are inserted in most collections of
Nautical Tables. A Dip table is also to be found in
the Nautical Almanac’ ‘

pparent
Altitude

The Observed Altitude of a celestial body,
reduced by the dip of the visible horizon, gives the
Apparent Altitude of the body. The Apparent
b Altitude of a celestial body is defined as the angle
at the observer’s eye contained between the
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apparent direction of the body and the plane of the observer’s sensible horizon measured in
the plane of the vertical circle on which the body lies.

In fig. 31-6 XOV is the observed altitude of the celestial body which lies in the direction
indicated. SOV is the actual dip of the visible horizon, and XOS is the apparent altitude of
the body.

5. Semi-Diameter

When the altitude of the Sun or the Moon is observed, the measured angle is the arc of a
vertical circle between the top or bottom edge, known as the Upper and Lower Limbs,
respectively, of the body and the vertical horizon vertically below it. To find the altitude of
the centre of the Sun or the Moon, a correction known as Semi-Diameter (S.D.) must be
applied to the altitude of the limb.

Upper limb Semi-diameter is equivalent to the angle at the
observer subtended by the radius of the observed body,
as illustrated in fig. 31-7.

Lower limb

It is to be noted that when the lower limb is
observed, the S.D. correction is to be added to the
altitude of the limb; and that when the upper limb is
° observed the S.D. correction is to be subtracted from
Fig. 31-7 the altitude of the limb.

Plane of O's Sensible Horizon

The S.D. of both the Sun and Moon may be found from the daily pages of the Nautical
Almanac. The Sun’s S.D. varies between 158 and 16”3 during the course of the year: it is
least when the Earth is at aphelion and greatest when the Earth is at perihelion, the dates of
these events being, respectively, early July and early January. The Moon’s S.D. varies
between about 14”7, when the Moon is at apogee, and about 167 when the Moon is at
perigee.

6. Augmentation of the Moon’s Semi-Diameter

Because of the Moon’s comparative nearness to the Earth, the distance of the Moon from
an observer decreases appreciably as the Moon’s altitude increases. This is illustrated in fig.
31-8.

Because OA in fig. 31-8 is greater than OB, the
Moon’s S.D. is greater when the Moon is at B than it is
when the Moon is at A. The value of the Moon’s S.D.
tabulated in the Nautical Almanac, is the angle at the
Earth’s centre subtended by the radius of the Moon.
This is always less than the actual S.D. at the observer’s

»  eye. The tabulated S.D. must, therefore, be increased by

an amount known as the Augmentation of the Moon’s

semi-diameter. The maximum value of the Moon’s
augmentation is about 18”. This applies when the
altitude of the Moon is 90° at the time it has maximum

Fig. 31-8 S.D. .

Plane of O
Sensible Worizon
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Th<_3 greatest S.D. for the day occurs when the Moon is at meridian passage; that is to say,
at the instant when the Moon reaches its greatest altitude.

7. Parallax

Stars are 50 far distant from the earth that their directions measured from the earth’s
centre are sensibly the same as they are from any point on the Earth’s surface.
+
o

~ In fig. 31-9:

' Altitude of X above the sensible horizon = XOS

True Altitude of X = XCH
Sl /% 2
::;::..‘:‘u:w :

Because OX and CX are parallel: XOS = XCH
Fig. 31-9

Members of the ‘Sola‘r System, especially the Moon, are comparatively near to the Earth;
and the respective directions of these bodies from the Earth’s centre and the surface are not
parallel as is the case with the fixed stars.

Therefore:
Altitude of X above sensible horizon = Altitude
of X above celestial horizon.

_The true altitude of any body of the Solar System is always slightly greater than the
altitude of the body above the sensible horizon by an angle which depends on:

(i) the distance of the body from the Earth
(ii) the apparent altitude of the body.

The angle by which the true altitude exceeds the altitude of the celestial body above the
sensible horizon is known as Celestial Parallax. Parallax may be defined as the angle at the
centre of the observed body contained between the respective directions of the observer and
the centre of the Earth.

3 Let M, in fig. 31-10, represent the Moon; O an
observer; and C the centre of the Earth.

Altitude of M above sensible horizon = MOS

True Altitude = MCH
= MTS
. Now: MTS — MOS = OMT
i€ H
\_/ ' Therefore:

Fig. 31-10
Alt. above Celestial Horizon — Alt. above Sensi-
ble Horizon = Parallax.

Parallax for a given celestial body is greatest when the body is on the sensible horizon of
an observer. The value at this instant is known as the Horizontal Parallax (H.P.). The H.P.
of any body may readily be deduced from the Earth’s radius and the distance of the body
from the Earth.
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In fig. 31-11:
Radius of the Earth
Distance of Moon
sin OMC

OC = 4000 ml. approx.
CM = 240,000 ml. approx.
4000/240,000

1/60 = OMC

Fig. 31-11
Therefore:

Moon’s H.P. = 1/60¢ or 57"3.

When the Moon is at any position between an observer’s horizon and zenith, as at
position B in fig. 31-12, the parallax is less than the H.P. Its value, when the Moon has
altitude, is known as Parallax-in-Altitude.

To Observers Zenith . . . .
Parallax-in-Altitude p, for any given apparent altitude

,yu”‘“‘— 2ath A, can be found from the formula:
2

p = H.P.cos 4

This formula is proved with reference to fig. 31-12.

Plane of observers ¢
Sensible Horizon

By the Plane Sine Formula:
sin OBC/OC = sin COB/CB

sin OBC = OC/CB . sin COB

= OC/CB . sin (90°+ A)

Fig. 31-12 = OC|AC . sin (90°+ A)
and: sin p = sin H.P. cos 4

Since p and H.P. are small angles, this formula reduces to:
p’ = H.P/cos A
in which 4 denotes the altitude above the plane of the sensible horizon.

Example 31-1—Find the parallax-in-altitude of the Moon if its apparent altitude is 60°
00, and its H.P. is 60"2.

p = H.P.cos 4
= 60”2 cos 60°
= 602X 1A
= 30”1

Answer—Moon’s parallax-in-latitude = 30"1.

8. Effect of Earth’s Shape on Horizontal Parallax

The H.P. of the Moon, as tabulated in the Nautical Almanac, is the angle at the Moon’s
centre subtended by the equatorial radius of the Earth. Because of the oblate shape of the
Earth, the Moon’s H.P. for any other Latitude is slightly less than the tabulated value.
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In fig. 3113, E denotes an observer on the equator.
M, denotes the Moon on the observer’s sensible
(TIRN___—=—™  horizon. The Moon’s H.P. is angle OM,E.

P denotes an observer at the Earth’s north pole, and
M, the Moon on his sensible horizon. The Moon’s H.P.,
in this case, is angle OM,P. ‘

Because the Earth’s equatorial radius is greater than
her polar radius, the Moon’s H.P. is greatest when the
Latitude of the observer is 0°, and it decreases as the
latitude increases.

My

Fig. 31-13

The Reduction of the Moon’s Horizontal Parallax for the Figure of the Earth, for all
navigable latitudes, is tabulated in most collections of Nautical Tables. An examination of
such a table will show that this reduction is never more than about 12”.

9. Irradiation

Irradiation is a physiological phenomenon in which a bright object viewed against a
darker background appears larger than it is; and a dark object viewed against a lighter
background appears smaller. The celestial bodies viewed against a relatively dark sky appear
slightly larger than they really are because of irradiation. The visible horizon, on the other
hand, because it is viewed against the relatively light sky, apppears to be depressed by this
optical phenomenon.

When the Sun’s lower limb is observed the two effects of irradiation of the Sun and the
horizon, respectively, tend to neutralize each other, so that no resultant irradiation
correction is neccessary. When, however, the Sun’s upper limb is observed the two effects
combine, and the irradation effect may be as much as a minute of arc or even more. In
practice, therefore, the Sun’s lower limb is to be preferred when observing the altitude of the

- Sun.

10. The Correction of Observed Altitudes

In the following examples altitudes are corrected using the Altitude Correction Tables
given in Norie’s or Burton’s Nautical Tables. Many practical navigators use the tables given
in the Nautical Almanac: readers are advised to familiarize themselves with these excellent
tables.

11. Correcting Star Altitudes

Stars are so far distant from the Earth that they appéar as mere pinpoints of light with no
apparent size. Parallax is nil and so also is semi-diameter. The true altitude of a star is found
by applying individual corrections for dip and refraction to the observed altitude.

All collections of Nautical Tables include a Star Total Correction Table which gives the
combined values of dip and refraction against arguments Height of Eye and Observed
Altitude. This table is invariably used in practice in preference to the individual correction
tables.
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Example 31:2—Find the true altitude of Aldebaran if its sextant altitude was 30° 21”5, index
error = — 1’307, height of eye = 14 m. Use the individual correction tables.

Sextant Altitude = 30° 21”5
Index Error = — 1”5
Observed Altitude = 30° 200
Dip = — 66
Apparent Altitude = 30° 13”4
Refraction = — 1”6

True Altitude =

30° 11”8
Answer—True Altitude = 30° 11"-8.

Example 31-:2—Find the true altitude of Sirius if the sextant altitude is 45° 380, index

error = nil, height of eye = 20-9 m. Use the total correction table.

Sextant Altitude = 45° 38”0
Index Error = — 00
Observed Altitude = 45° 38”0
Total Correction = — 90
True Altitude = 45° 29”0

Answer—True Altitude = 45° 29”-0.

12. Correcting Planet Altitudes

The navigational planets are comparatively close to the Earth; but, because of their
relatively small size, they are often assumed to be very small discs of light with no appreciable
diameters. In practice, therefore, the true altitude of a planet is often found in exactly the
same way as that of a star. If, however, great accuracy is required, parallax-in-altitude and a
phase correction should be applied, in addition to corrections for dip and refraction. It will

not, in general, be possible to apply these additional corrections without the aid of the
Nautical Almanac.

The phase correction for a planet arises from the centre of the illuminated portion of the
planet not coinciding with the centre of the planet’s disc. The correction, which normally
applies only to Mars and Venus, is a function of the relative positions of the Sun and the
planet, and it varies as the cosine of the angle between the vertical circle through the planet
and the great circle connecting the celestial positions of the Sun and the planet.
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Example 31-4—Find the true altitude of Jupiter if its sextant altitude is 24° 50’-5, index
error = + 1”5, height of eye = 9-5 m.

Sextant Altitude = 24° 50”5
Index Error = + 15
Observed Altitude = 24° 520
Dip= — 54

Apparent Altitude = 24° 46”6
Refraction = — 2”1

True Altitude = 24° 44"-5

Answer—True Altitude = 24° 44’-5.

13. Correcting Sun Altitudes

The true altitude of the Sun is found by applying corrections for dip, refraction,
semi-diameter; and, for upper limb observations, irradation (which should be assumed to be
1-0) as well. If great accuracy is required a correction for parallax-in-altitude is also applied;
but this correction, being negligibly small is usually ignored in practice.

Example 31-5—The sextant altitude of the Sun’s lower limb was 30° 40”-5. Find the true
altitude if the index error is nil, the height of eye is 12-:3 metres and the date is 20th June.

Sextant Altitude = 30° 40”5

Index Error = — 00

Observed Altitude = 30° 40-5

Dip = — 6"2

Apparent Altitude of L.L. = 30° 34”3
Refraction = — 1”6

True Altitude of L.L. = 30° 32”7
Semi-Diameter = + 158

True Altitude = 30° 48”5

N.B.—Parallax-in-altitude for 20th June amounts to 01.
If this is applied the true altitude is 30° 48"6.

Answer—True Altitude = 30° 48”-6.

A Sun’s Total Correction Table is provided in Norie’s and Burton’s Tables. This gives a
combined correction for dip, refraction and a constant semi-diameter of 15-8’ and parallax in
altitude. The table is entered with arguments Observed Altitude and Height of Eye. To allow
for the variation in the Semi-diameter throughout the year an auxiliary table, known as the
Monthly Correction Table, is provided.
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For upper limb observations the Sun’s diameter is first subtracted from the observed
altitude, and this is used as an argument, with Height of Eye, in the Sun’s Total Correction
Table.

Example 31-6—The sextant altitude of the Sun’s lower limb on 21st January was 35° 50”5,
index error = — 1”5, height of eye = 16 metres. Find the Sun’s true altitude using the total
correction table from Norie’s or Burton’s Tables.

Sextant Altitude = 30° 50”5
Index Error = — 1”5
Observed Altitude = 35° 490
Total Correction = + 76
Monthly Correction = + 04
True Altitude = 35° 570

Answer—True Altitude = 35° 57”-0.

Example 317—On 4th October the sextant altitude of the Sun’s upper limb was 22° 03”0,
index error = 1”0 off the arc, height of eye = 7-3 metres. Find the Sun’s true altitude using
the total correction table.

Sextant Altitude = 22° 03’0
Index Error = + 1”0

Observed Altitude = 22° 040
Dip = — 48

Observed Altitude = 21° 59”2
Total Correction (UL) = — 184
True Altitude = 21° 40”8

Answer—True Altitude = 21° 40"-8.

14. Correcting Moon Altitudes

The true altitude of the Moon is found by applying to the observed altitude, corrections
for dip, refraction, semi-diameter and parallax-in-altitude. In practice it is not usual to apply
correction for the reduction of the Moon’s Horizontal Parallax and Augmentation of the
Moon’s Semi-diameter: these two minor corrections tend to neutralize each other—one being
positive and the other negative.
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Example 31-8—Find the true altitude of the Moon if the sextant altitude of the lower limb is
30° 400, index error = 0”5 on the arc, height of eye = 12-3 metres, Moon’s H.P. and S.D.
(from the Nautical Almanac) are, respectively, 565 and 154.

Sextant Altitude
Index Error
Observed Altitude

Apparent Altitude
Refraction

Semi-diameter

Par-in-altitude =

30° 400
et 0’.5
30° 395
= 6%2

Dip
30° 33”3
_ l’.6
30° 317
+ 15”4

30° 47-1 Par-in-alt
+ 489

True Altitude = 31° 36”0

Answer—True Altitude = 31° 36”0.

H.P. cos 4
565X cos 304°
48”9 :

The above method of correcting the Moon’s observed altitude is rarely used at sea. A

Total Correction Table, such as that given in the Nautical Almanac, is normally used by

practical navigators.

The Total Correction Table for Moon Altitudes given in Norie’s and Burton’s Tables is in
two parts: one for Lower Limb, and the other for Upper Limb observations. It is constructed
using a constant value 9”8 of dip for the height of eye. Adjustments for heights different from

that used in the construction of the table are given in an auxiliary table.

Although the Moon’s H.P. and S.D. are constantly changing in magnitude, their values
at all times are directly proportional to each other. The ratio between the Moon’s S.D. and
its H.P. is about 1: 4 or, more accurately, 3 : 11. This is proved with reference to fig. 31-14.

In fig. 31-14:

Earth’s radius
Moon’s radius

AO =
MX = 1000 ml. approx.

4000 ml. approx.

Because angles AMO and MOX are small, we have:

AO/R
MX/R
Thus: R

Moon’s H.P. in radians
Moon’s S.D. in radians
AO/H.P. = MX/S.D.
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MoonsS.D. _ MX__ 1000 _ 1

Hence: Moon’s HP. A0 4000 4

This simple relationship facilitates the construction of the Moon’s Total Correction

Table.

Example 31°9—The sextant altitude of the Moon’s upper limb was 30° 40”0, index
error = + 0”5, height of eye = 9-3 metres, H.P. = 60”0, S.D. = 15"4. Find the Moon’s
true altitude.

(i) Using individual corrections.
(i) Using Total Correction Table.

(i) Using Individual Corrections.

Sextant Altitude = 30° 40”0
Index Error = +0"5
Observed Altitude = 30° 40”5
Dip = — 54

Apparent Altitude = 30° 35”1
Refraction = — 1”6

30° 335

I

— 154 Par-in-alt = H.P.X cos 4
— = 60X cos 301°
30° 181 = 517
Parallax-in-Alt. = + 51”7 —_—

True Altitude = 30° 09’-8

Semi-diameter

Answer—True Altitude = 31° 09”8.

(ii) Using Total Correction Table from Norie’s or Burton’s Tables:

Sextant Altitude = 30° 40”0
Index Error = + 05
Observed Altitude = 30° 40”5
Total Correction = + 24-8
Height Correction = + 44
True Altitude = 31° 09”7

Answer—True Altitude = 31° 09”-7.

Note—When using tables such as Altitude Correction Tables, it is very important to take
care over the interpolation which is sometimes necessary if accurate results are required.
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15. Back Angles

When a celestial body has an altitude of more than about 60° it is possible to measure
with a sextant the obtuse angle in the vertical plane between the direction of the body and
that of a point on the horizon which lies in a direction opposite to that of the body. This
angle is called a Back Angle. Certain conditions may render it necessary or convenient to
measure the back angle instead of the normally-measured “front” angle.

If the part of the horizon vertically below a body is indistinct, or if land lies in the same
direction as that of the body, it may be necessary to observe the back angle instead of the
altitude.

The following example illustrates how the true altitude of a celestial body is found from a
back angle observation.

Example 31-10—The back angle of the Sun’s upper limb was 118° 20”0 by a sextant with no
index error. Height of eye = 18-8 metres, Sun’s S.D. = 15”-8. Find the Sun’s true altitude.

Note—In a back angle observation of the Sun’s upper limb the combined effect of Sun
and Horizon-irradation may be taken as being nil.

In fig. 31-15:

Observed Altitude of the Sun’s U.L. = A0V
. o z Dip = SOV
o Apparent Back Angle of the Sun’s U.L. = A0S
Apparent Altitude of the Sun’s U.L. = A0OZ
Qs visipte horiz® Refraction = AOU
Y Altitude of Sun’s U.L. above Sensible Horizon = UOZ
Semi-diameter = UOC
Fig. 3115 Altitude of the Sun’s centre above the S.H. = COZ

Sextant Back Angle = 118° 200

Index Error = - 0-0

Observed Back Angle = 118° 20”0

Dip = — 76

Apparent Back Angle = 118° 12”4

= 180° 0O’

Apparent Alt. of L.LL. = 61°47"6

Refraction = — 0-5

= 61°47"-1

Semi-diameter = — 15”8

= 61°31"3

Parallax = + 01

True Altitude = 61° 314

Answer—True Altitude = 61° 31”4.
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16. The Artificial Horizon

If the visible horizon is not available because of fog or darkness, the true altitude of a
celestial body may be found by employing an artificial horizon. The usual type of artificial
horizon used ashore is a trough of opaque fluid, such as mercury or oil, which reflects the
image of the observed body to the observer’s eye. The observer measures with his sextant the
angle between the true and reflected images of the body. The index error of the sextant, after
being applied to the measured angle, gives an angle which is twice the apparent altitude of the
observed body.

In fig. 3116 the ray of light from the celestial
body X, which strikes the reflecting surface of the
artificial horizon at A, is reflected to the observer’s
eye at O. The incident and reflected rays make the
same angle with the normal AN, and the reflected
image appears to lie in the direction OY. The angle
XAY is the measured angle.

The artificial horizon lies in the plane of the
observer’s sensible horizon. Therefore, to find the
true altitude, corrections for refraction, semi-
diameter and parallax, are all that are required. Dip
does not enter into the problem.

Fig. 31-16 ¥

The mercury type of artificial horizon is practically useless on board a vessel at sea, on
account of the inevitable vibration to which the mercury would be subjected. In by-gone days
navigators often made observations ashore at places of accurately known Longitude in order
to find the G.M.T., so as to provide a means of rating their chronometers. These
observations were facilitated by the mercury horizon.

17. The Bubble Attachment

Some marine sextants are fitted with an Artificial Vertical in the form of a bubble. The
Bubble Attachment enables a navigator to observe visible celestial bodies at night or in thick
weather when the visible horizon is not available. Results obtained from using a bubble
attachment are not as accurate as those obtained from good visual observations.
Nevertheless, in some circumstances, such observations may provide the navigator with
worthwhile fixes so alleviating possible anxiety. A Total Correction Table for use with
Bubble Sextant Observations is included in Norie’s or Burton’s Nautical Tables. Instructions
are also given in the Nautical Almanac for using the Altitude Correction Tables given therein
for use with bubble sextant observations. ‘

Exercises on Chapter 31

—

. Define: Visible Horizon; Sensible Horizon; Celestial Horizon. Illustrate your definitions.
2. Define: True Altitude; Apparent Altitude; Observed Altitude.

3. What is Dip? Prove that dip of the horizon in minutes of arc is equal to the distance of
the horizon in nautical miles, when atmospheric refraction is ignored.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31

32.

33.
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Prove that: Theoretical Dip = 193 \/A where 4 is the observer’s height of eye in metres.
What effect has atmospheric refraction on (i) dip of the visible horizon, (ii) distance of
the visible horizon?

Compute the dip of the visible horizon for an observer whose height of eye is 127 metres.
Compute the distance of the visible horizon of an airman flying at 324 metres above the
sea surface.

Define Mean Refraction. Using the “Correction to Mean Refraction Table” in Norie’s or
Burton’s Tables, explain how atmospheric temperature and pressure affect refraction.
What is the maximum value of the atmospheric refraction for a standard atmosphere?
What is refraction of light from a celestial body in the zenith?

What is Celestial Parallax? Why is Parallax-in-Altitude less than Horizontal Parallax?
Prove that: p = H.P. . cos 4, where p is parallax-in-altitude, and A is altitude.
Explain the effect of the Earth’s shape on parallax. Define Equatorial Parallax.

Define Reduction to the Moon’s Horizontal Parallax.

Define Augmentation of the Moon’s Semi-diameter.

Why do the Sun’s and Moon’s S.D.s vary with time?

State the dates on which the Sun’s S.D. is greatest and least during the year.

When correcting a sextant altitude, using individual corrections, what should be the
order of applying the corrections in the case of (i) a star, (ii) the Sun, (iii) the Moon?
What is the relationship between the Moon’s H.P. and S.D.? Explain how this facilitates
the construction of the Total Correction Table for the Moon.

Explain why the Sun’s diameter must be subtracted from an altitude of the Sun’s Upper
Limb before using the Total Correction Table for the Sun.

Explain irradation as it affects Sun observations of (i) the Lower Limb, (ii) the Upper
Limb.

What is a “back angle”? State the circumstances when a back angle may be necessary.
Explain the artificial horizon.

No correction for dip is necessary when using an artificial horizon observation. Explain.
The sextant altitude of Antares was 35° 06”0, index error = — 1"0. Height of
eye = 13-7 metres. Find the true altitude.

The sextant altitude of Fomalhaut was 36° 46”5, index error = + 1"5. Height of
eye = 15'1 metres. Find the true altitude.

The sextant altitude of Sirius was 43° 43”5, index error = 1”5. off the arc. Height of
eye = 154 metres. Find the true altitude.

The sextant altitude of Aldebaran was 50° 06”5, index error = 2”0 on the arc. Height of
eye = 13-8 metres. Find the true altitude.

The sextant altitude of Polaris was 52° 41”5, index error + 2-0. Height of eye = 184
metres. Find the true altitude.

On 16th February, the sextant altitude of the Sun’s lower limb was 32° 20”5, index error
nil, height of eye = 12-8 metres. Find the true altitude.

The sextant altitude of Mars was 25° 00”5, index error 20 off the arc. Find the true
altitude given the height of the observer’s eye = 12:2 metres.

Find the true altitude of the Sun on 21st July if the sextant altitude of the upper limb was
54° 54-0, index error — 0”5, height of eye = 184 metres.

The true altitude of a star was computed to be 36° 40"0. Find the angle to set on a
sextant if the index error is 1”5 on the arc and the height of the observer’s eye is 13-3
metres.

The true altitude of Canopus was computed to be 56° 40™0. Find the angle to set on the
sextant if the index error is 2”0 off the arc and the observer’s height of eye is 18-4 metres.
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34. On 22nd March in cloudy weather, it is desired to set the sextant to the altitude of the
Sun’s lower limb for noon. The index error was 2”0 off the arc; height of eye was 10-4
metres; and the computed true altitude was 34° 340. Find the sextant altitude.

35. The sextant altitude of the Moon’s lower limb was 42° 055, index error nil, height of
eye 17 metres and the Moon’s H.P. was 565. Find the true altitude.

36. The sextant altitude of the Moon’s upper limb was 35° 53”5, index error + 15, height of
eye 13-8 metres. Moon’s H.P. = 60"-5, Moon’s S.D. 15”-2. Find the true altitude.

37. The sextant altitude of the Moon’s lower limb was 46° 54”5, index error = — 2”0,
Moon’s H.P. = 598, Moon’s S.D. = 15"0. Height of eye = 214 metres. Find the
true altitude.

38. On 5th October at 20 h. 00 m. G.M.T. the Moon’s upper limb was 62° 08”5 above the sea
horizon as measured with a sextant the index error of which was 15 off the arc. Find the
Moon’s true altitude if the height of the observer’s eye was 6 metres. Moon’s
H.P. = 58"4.

39. A back angle of Vega was 100° 420, index error 0”5 on the arc. Find the true altitude of
the star if the observer’s height of eye was 19:8 metres.

40. A back angle of the Sun’s upper limb on 16th July was 115° 40”0. Find the true altitude
if the observer’s height of eye was 9 metres.

41. Using an artificial horizon to observe Canopus the measured angle was 82° 45”5, index
error = — 0”5, height of eye = 30-5 metres. Find the true altitude.

42. On 18th February the vertical angle between the Sun’s lower limb and its reflection in an
artificial horizon on shore was 96° 005, index error 20 on the arc, height of eye = 19-7
metres. Find the true altitude.

CHAPTER 32
THE ASTRONOMICAL POSITION LINE
1. The Geographical Position of a Heavenly Body

Imagine a straight line extending from a celestial body to the centre of the Earth. The
point on the Earth’s surface located on this imaginary line is known as the Geographical
Position (G.P.) of the celestial body. If an observer is situated at the place at which the body
is in his zenith, his terrestrial position coincides with the geographical position of the
observed body.

Fig. 32-1 illustrates the celestial sphere with the Earth at its centre. P denotes the celestial
pole and p the Earth’s North Pole. Notice that p is at the G.P. of P.
pg represents the Greenwich Meridian
PG represents the Greenwich Celestial Meridian
po represents the Meridian of any Observer
PO represents the Observer’s Celestial Meridian
represents any celestial body

x represents the G.P. of X

px represents the Meridian of the G.P. of X.

Because the celestial meridian of X is in the same plane as the terrestrial meridian of the

G.P. of X:
arc BX = arc bx

But: arc BX is the declination of X
and: arc bx is the Latitude of x
Therefore: Latitude of G.P. of X = Declination of X

From fig. 32-1 it will be seen that the angles gpb and GPB are equal.

Now: gpb is the West Longitude of the G.P. of X
and: GPB is the Greenwich Hour Angle of X
Therefore: West Longitude of G.P. of X = G.H.A. of X
= L.H.A. of X+ W. Longitude of observer

The G.P. of any celestial body is, therefore, determined if the body’s declination and
G.H.A. are known. Provided that G.M.T. is known, the declination and G.H.A. of any
navigational celestial body may be obtained from the Nautical Almanac.

Example 32-1—Find the G.P. of the Sun at 16 h. 00 m. G.M.T. on 30th December.
253
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I From Nautical Almanac Extracts: Example 32-4—Find the G.P. of Mars at 1800 hr. G.M.T. on 23rd September.
!

‘ Sun’s declination = 23° 10”3 S. From the Nautical Almanac Extracts:

1 Sun’s G.H.A. = 59° 22”5

H Therefore: Latitude of G.P. = 23° 10”3 S. At 1800 hr. G.M.T. on 23rd September:

Longitude of G.P. = 59° 225 West of Greenwich

Declination of Mars = 18° 266 N.
| Answer—Lat. G.P. = 23° 10”3 S. G.H.A. of Mars = 213° 13”3
i Long. G.P. = 59° 22”5 W. Therefore: Lat. G.P. Mars = 18° 26"6 N
I‘ Long. G.P. Mars = 213° 133 W.
i Example 32-:2—Find the G.P. of the Sun at 0430 L.M.T. on 22nd September. Observer’s = 146° 46”7 E.
Longitude is 82° 300 W.
| Answer—Lat. G.P. = 18° 26”6 N.
L L.M.T. = (22) 04 h. 30 m. Long. G.P. = 146° 46”7 E.
I Long = 05 h. 30 m.
f il G.M.T. = (22) 10 h. 00 m. To facilitate the problem of finding the G.P. of a navigational star, the G.H.A. of the
I First Point of Aries (G.H.A. T) is used. It is demonstrated in fig. 32-2 that the G.H.A. of a
‘ From Nautical Almanac Extracts: given star is equivalent to the sum of the G.H.A. T and the Sidereal Hour Angle of Aries
|| - (S.H.A. 7).
i At 1000 hr. G.M.T. Sun’s declination = - 0° 26”4 N. ‘ :
\ Sun’s G.H.A. = 331° 46”7 In fig. 32-2: .., . .
' Therefore: Lat. G.P. Sun = 0° 264 N. P represents the Celestial Pole
Long. G.P. Sun = 331° 46”7 W, i.e. 28° 133 E. represents the Celestial Meridian of Greenwich
5 represents the Celestial Meridian of T
Answer—Lat. G.P. = 0° 264 N. PX represents the Celestial Meridian of a star %
= o ’e
Long. G.P. = 28° 13”3 E. arc GT = G.HA. T
In addition to tabulations of the declination and G.H.A. of the Sun, the Daily Pages of S £§ i ?}%AA :
the Nautical Amanac give the declinations and G.H.A.s of the Moon; the Navigational But: ars GX _ GT + ’fX
Planets; and of the First Point of Aries (T) | Thus: GHA. % = GHA T+S.HA *
. Fig. 32:2
3— P; .M.T. on 2 : ! .
fgﬁgﬁig 3 ?535201:;%(,1_8}11; G of the bosn at 1950 LM.T. on. 22nd September. Obsarver's Example 32-5—Find the G.P. of Aldebaran at 1600 hr. G.M.T. on 24th September.
Lll\f)gg i @2 (l)g ;1 ;8 $ E From the Nautical Almanac Extracts:
GM.T. = (22) 16 h. 00 m At 1600 hr. G.M.T. on 24th September:
' Declination of Aldebaran = 16° 25”6 N.
. ] G.H.A. T = 242° 587
From the Nautical Almanac Extracts: S.H.A. Aldebaran = 291° 36”6
At 1600 hr. G.M.T. on 22nd September: Sum = 534° 353
Moon’s declination = 15° 04”1 S. ik
Moon’s G.H.A. = 299° 59"6 G.H.A. Aldebaran = 174° 353
Therefore: Lat. G.P. = 15° 041 S R T
‘ Long. G.P. = 299° 596 W. : Therefore: Lat. G.P. Aldebaran = 16° 25”6 N.
} = 60° 00”4 E. Long. G.P. Aldebaran = 174° 353 W.
| Answer—Lat. G.P. = 16° 256 N.
Answer—Lat. G.P. 15° 041 S. Long. G.P. = 174° 353 W.

I

Long. G.P. = 60° 004 E.
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In the above examples 32:1 to 32-5 inclusive, G.H.A.s and declinations were lifted direct
from the appropriate Daily Page of the Nautical Almanac these quantities being tabulated
for each integral hour of G.M.T.

When the G.M.T. is not an integral number of hours, recourse must be made to the
Increment and Interpolation Table provided in the Nautical Almanac. Increments to the
G.H.A.s of the Sun, Aries and the Moon, for each minute and second from 00 m. 00 s. to 60
m. 00 s. are tabulated in these tables.

The Hour Angle of the Mean Sun increases uniformly at the rate of 15° 00™0 or 900”0 per
hour of Mean Solar Time. The Hour Angle of the True Sun increases at a variable rate, but
the variation of this rate from its average rate of increase (which is equal to the rate of
increase of the Mean Sun’s Hour Angle), is very small. Allowance is made for this variation
in the tabulated values of the Sun’s G.H.A. The increment for the Sun’s G.H.A. is, therefore,
computed on the assumption that the True Sun’s rate of change of Hour Angle is exactly
900”0 per hour.

The Hour Angle of the First Point of Aries increases at the uniform rate of 15° 02"5 per
Mean Solar Hour, and the Increment Table for T is computed for this rate.

The Hour Angle of the Moon, as well as that of any of the planets, increases at a variable
rate, and it is necessary to allow for these variations in the interpolation for the Moon’s Hour
Angle. The Increment Table for the Moon is computed for a uniform rate of change of Hour
Angle of 14° 19”0 per hour. This is the minimum rate of increase of the Moon’s Hour Angle.
The excess of the Moon’s hourly increase in hour angle over 14° 19”0 is tabulated on the
Daily Pages of the Nautical Almanac as “v”. An additional correction to the increment
obtained from the Moon’s Increment Table is, therefore, to be applied to the G.H.A. of the
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From the Daily Page of the Nautical Almanac Extracts:
G.H.A. at 1400 G.M.T. 0° 556 v = 12”7 Dec. = 11° 378 S.d = 8.

I

Increment for 41 m 45 s. +9° 577 Incr. — 55
“v” corréction = + 88 Dec. = 11° 323 S.
001° 021
360° 00”0

G.H.A. at 21 h. 41 m. 45s. = 001° 021

Answer—Lat. G.P. = 11° 323 S.
Long. G.P. = 01° 021 W.

Example 32:7—Find the G.P. of Jupiter at 07 h. 42 m. 51 s. G.M.T. on 24th September.

From the Daily Page of the Nautical Almanac Extracts:

G.H.A. at 0700 G M.T. = 256° 152 v = 20 Dec. = 11°39-5S.d = 0"2.
Increment for 42 m 51 s. = 10° 428 Incr. = +0"1
“v” correction = + 15 Dec. = 11° 396 S.
266° 59’5
360° 00”0
93° 005
Therefore: Lat. of G.P. of Jupiter = 11° 396 S.

” Moon lifted from the Daily Page. This correction is known as the “v correction”, and it is to Long. of G.P. of Jupiter = 93° 00”5 E.
‘ be found from the Interpolation Tables. Answer—Lat. G.P. = 11° 39”6 S.
il I Long. G.P. = 93° 00”5 E.
The increment for the G.H.A. of a planet is found by using the Sun’s Increment Table, |

I ||J{
l} “' ‘ and applying a “v correction” as in the case of the Moon. “v” for a planet, which is tabulated 2. Circles of Equal Altitude

on the Daily Pages of the Nautical Almanac, is the excess, positive or negative, of the planet’s
hourly motion over 15° 00”0.

When the G.M.T. is not an integral number of hours, and it is required to find the
declination of the Sun, Moon, or a navigational Planet, it is necessary to apply a correction
to the declination lifted from the Daily Page. To facilitate interpolating between tabulated
values of the declination corresponding to G.M.T.s which embrace the given G.M.T., the
differences between adjacent tabulated values of the declination are given. These differences
are designated “d”. The correction to apply to a tabulated value of declination found from
the Daily Page is easily found from the Interpolation Tables, using as arguments “d” and the
difference between the given G.M.T. and the lower tabulated G.M.T. The correction is
known as the “d correction”.

The quantity ”d” is the mean hourly change in the declination of Moon, Sun or Planet. It
is tabulated at one-hourly intervals for the Moon and at daily intervals for the Sun and
Planets.

Example 32-6—Find the G.P. of the Moon at 21 h. 41 m. 45 s. on September 23rd.

Imagine an observer to be at the G.P. of a star at a certain instant of time. The true
Altitude of the star at the instant would be 90° 00"0. Now suppose a second observer, to
observe the same star at the same instant of time, and to find the true altitude to be 80° 00”-0.
It follows that the second observer’s zenith is 10° 00"-0 distant from that of the first observer,
and that the second observer must be located on a
small circle of radius 10° 000 and centred at the
first observer’s position. Such a circle on the
Earth’s surface, at which at a given instant the
altitude of a given celestial body is the same at all
points on it, is called a Circle of Equal Altitude.

The radius of a circle of equal altitude in
nautical miles is equal to the number of minutes of
arc in the angular distance of the observed celestial
body from the observer’s zenith. That is to say, it is
equal to the complement of the altitude of the
body, an angle known as the body’s Zenith
Distance.

Fig. 32-3 illustrates a circle of equal altitude  of radius 10° or 600 miles.

Earth's centre
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‘ Fig. 32-4 represents the celestial sphere projected onto the drawn on the chart. The vessel’s position is then fixed at the intersection of the two positions
| plane of the celestial meridian of an observer whose zenith is at circles appropriate to the vessel’s D.R. position, thus removing the ambiguity arising for the
il Z. Fig. 32'5 represents the celestial sphere illustrating the same circles intersecting at two positions.
' | conditions as in fig. 32-4, but projected, in this case, onto the
i | plane of the observer’s celestial horizon. The timing of the observations must be such that the two position circles intersect at a
B good angle of cut. Three observations produce three position circles which intersect at a
! In figs. 32-4 and 32-5: common point so revolving any ambiguity. If the interval between observations is more than
‘ AX a few minutes it may be necessary to transfer the first position circle for the run between the

Altitude of X; ZX = Zenith distance of X

Altitude of ¥;  ZY = Zenith Distance of Y; sights.

BY

; . i ; ; This method of finding a vessel’s position has severe limitations. It fails at times when

If the zenith distance of a celestial body is small, and its considerable error would result from the distortion of the plotted circles of equal altitude,

declination also is small, the corresponding circle of equal which should be assumed to be circles on a Mercator Chart only in cases in which the zenith

' altitude may be plotted on a Mercator Chart 45 4 circle centred distance of the observed body is small and the Latitude of the G.P. of the body is also small.

B . at the G.P. of the observed body. The observer’s position may be The method does not, therefore, solve the general problem in Nautical Astronomy, in which

g fixed on such a circle, for which the reason it is known as a the zenith distance of the observed body is generally many tens of degrees, and the radius of
“ Y { position Circle. the corresponding circle of equal altitude many hundreds, or even thousands of miles.

1ps
19 5-9A495d0

. 5 Fig. 32:6 represents a portion of a Mercator
Chart. Suppose the G.P. of the Sun at a given
instant to be at G in Latitude 08° 000 N.,
Longitude 84° 000 E. If the True Altitude of the
Sun at the instant is 89° 00”-0, the observer must

Any small arc of a circle of equal altitude when ploted on a Mercator Chart may be
assumed to be a straight line lying at right angles to the direction of the observed body from
the observer’s position. Such a line is known as an Astronomical Position Line.

lll X : . , R In fig. 32:7 an observer located at 4 observes the
|l o lie ona c1rcle. of egual altltufle centred at G and of ¢ body whose G.P. is at G to bear due South. The
1 ¢ spherical radius 1° or 60 miles e : ] ;
| % . : e 1o’ position line obtained from this observation lies
i " . d . 090°-270°. i ition i
i N The Laiude o the GP. of 3 celetil body - o o e TRl
I alguages 1, gt Geolivatian ol fhes Fody chemges. 45 > because the G.P. of the observed body bears 045°
il The G.P. of a star remains on the same parallel of
. i from the observer.
| Latitude because a star’s declination does not

W w0°  120° 0" 8w Fig 32-7

change over short periods of time.

‘| | . - e . Suppose that at a certain time an observer
‘ |l il Fig. 326 . ‘ ascertains the zenith distances of two celestial bodies 4 and B whose G.P.s are located at a
i 1: The Longitude of the G.P. of a Celestial body changes at the same rate as that of the and b respectively. Fig. 32-8 illustrates the two circles of equal altitude corresponding to the
i body’s Hour Angle. For the Mean Sun this is 360° per Mean Solar Day, or 15° per hour; 15 two observations. The observer’s position, which must

lie on both circles, must be-at X or Y. No difficulty is
experienced in deciding which of these two possible
positions is the position of the observer.

i I\ per minute or 15” per second of time. For a start it is slightly greater than this. The rate at
1l which a body is changing its Hour Angle may readily be found from the Nautical Almanac,
l

so that the rate of change of Longitude of a body’s G.P. is readily determined.

il |

l | . .

1" i It happens, when located in the tropics, that the Sun attains a large altitude at and near
1; the time of its meridian passage. If the Latitude of the observer and the declination of the Sun
| are equal in name and magnitude, the Sun is at the observer’s zenith at apparent noon. It is
‘ possible in a circumstance when the Sun has a very large altitude, to find a vessel’s position

The general problem in Nautical Astronomy involves:

(i) Finding the latitude and longitude of a point on
a circle of equal altitude and:
very easily and very speedily in the following manner.

(i) Finding the Direction of the circle at this point.

; The Sun’s altitude is measured with a sextant and the chronometer time of the
I | observation noted, and the G.M.T. found. With the G.M.T. the declination and the G.H.A.
}

of the Sun may be lifted from the Nautical Almanac and the Sun’s G.P., therefore, may be With this information a position line is determined, and the vessel’s position is located on
plotted on the chart. A position circle is then drawn centred at the plotted G.P. and with it.

!
I
J 3 ‘ radius in miles equal to the zenith distance of the sun in minutes of arc. The Sun’s altitude is The various methods of ascertaining astronomical position lines will be investigated in
| I again observed two or three minutes after the first observation, and a second position circle is the following chapters.

|

|
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Exercises on Chapter 32

Define Geographical Position of a Heavenly Body.
Prove that the Latitude of the G.P. of a heavenly body is equal to the declination of the
body; and that the Longitude of the G.P. of the body is equal to its G.H.A.
Using the Nautical Almanac Extracts, find the G.P. of the Sun:

(i) at 10 h. 00 m. 00 s. G.M.T. on September 24th.

(ii) at 09 h. 00 m. L.M.T. on September 22nd. Longitude 60° W.
(iii) at 21 h. 00 m. L.M.T. on September 23rd. Longitude 45° W.
Using the Nautical Almanac Extracts, find the G.P. of the Sun:

(i) at 23 h. 42 m. 25 s. G.M.T. on 12th June.
(ii) at 02 h. 43 m. 56 s. L.M.T. on 14th June. Longitude 30° 15" E.
At what position on the Earth will the Sun be at the zenith at 12 h. 00 m. 00 s. G.M.T.
on 16th June.
At what position on the Earth will the Sun be at the zenith at 16 h. 13 m. 40 s. L.M.T.
on 14th June, given that the Longitude of the observer is 37° 50’ E.?
Find the G.P. of Alioth at 16 h. 40 m. 36 s. on 15th June.
Find the G.P. of Hamal at 20 h. 41 m. 45 s. on 17th June.
Find the G.P. of Schedar at 07 h. 40 m. 45 s. L.M.T. on 16th June given that the
observer’s Longitude is 29° 58’ W.
Find the G.P. of the Moon at 06 h. 41 m. 37 s. G.M.T. on 22nd September.
At what position on the Earth will the Moon be at the zenith at 20 h. 36 m. 46s. G.M.T.
on 22nd September?
If the Sun’s G.P. is 23° 16-0 N., 165° 42”0 E. at a certain time, what was the Sun’s G.P.
01 h. 15 m. 20 s. before this time?
If the Sun’s G.P. is 23° 20”0 S., 19° 22"-0 W., at a certain time, what will it be 01 h. 43
m. 54 s. later.
Define: Circle of Equal Altitude. Explain why the spherical radius of a circle of equal
altitude is equal to the zenith distance of the observed body.
Define: Astronomical Position Circle. What is the relationship between a circle of equal
altitude and an astronomical position line?
Define: Astronomical Position Line. Explain why the direction of an astronomical
position line is at right angles to the bearing of the observed body.
Explain a simple method of fixing from observations of a celestial body at a large
altitude.
Two astronomical position circles intersect at two points X and Y. Explain how a
navigator may determine which of these positions is the actual position of his vessel.
A fifteenth-century method of finding a vessel’s position at sea required the use of a
terrestrial globe and two altitude observations of stars. Explain this method.
Devise a method of fixing a vessel at sea using a globe and two observations of the Sun,
given the date and the interval of time between the observations.

CHAPTER 33
MERIDIAN ALTITUDE OBSERVATIONS
1. Latitude by Meridian Altitude

A star, in performing its apparent diurnal motion, attains its greatest altitude at the
instant it bears due North or due South on the upper celestial meridian of a stationary
observer. This greatest daily altitude is called the Meridian Altitude. The meridian altitude is
named North or South according as the star bears, respectively, North or South from the
observer. By subtracting the meridian altitude from 90° 00’ the Meridian Zenith Distance
(M.Z.D.) is found. The M.Z.D. is named according to the direction of the zenith from the
observed body. Thus, if the meridian altitude is named North the meridian zenith distance is
named South, and vice versa.

A position line obtained from an observation of a celestial body at meridian passage lies
along a parallel of Latitude; its direction, therefore, is 090°-270°. A meridian altitude
observation enables an observer to ascertain the exact Latitude of his vessel from a single
observation.

In fig. 33-1, which represents the Earth, P is the North Pole
and QQ, is the equator. Imagine G to be the geographical
position of a star which bears due South of an observer at O. The
observer’s position lies on a circle of equal altitude of radius GO.
This radius, in angular units, is equal to the M.Z.D. of the star.

The latitude of G is equivalent to the declination of the star.
If the declination is known, the Latitude of the observer may
readily be found. The Latitude of the observer is equal to the arc
RO, and this is the sum of the arcs OG and GR. Arc OG is equal
to the M.Z.D. of the star, and the arc GR is equal to the
declination of the star. Thus:

Latitude of Observer = M.Z.D. % + Declination %
This relationship is illustrated in figs. 33-2 and 33-3.

Fig. 33-2 Fig. 33-3

Fig. 33:2 is a projection of the celestial sphere onto the plane of the celestial horizon of an
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observer whose zenith is projected at Z. Fig 33-3 is a projection of the celestial sphere on the
plane of the observer’s celestial meridian. From both figures it may readily be seen that:

Latitude of Observer = Altitude of Celestial Pole
= NP
ZQ
ZX + XQ
M.Z.D. % + Declination %

1

In the above example the Latitude of the observer is the SUM of the M.Z.D. and the
declination of the observed body. In some cases the latitude is found by taking the
DIFFERENCE between the M.Z.D. and declination of the observed body. In all cases the
Latitude is a combination of the M.Z.D. and the declination.

TN"Q T T""s) Fig. 33:4 in which NZS represents the observer’s celestial

I‘ B . bk L meridian on the plane of his celestial horizon, illustrates the
f . relationship between the Latitude of Observer, and M.Z.D.

N and Declination of an observed body.

1z, T’ Mf. ZL Referring to fig. 33-4:

eblxdy et Jm ot 1 In case (i): Latitude = M.Z.D. % + Declination %
Q-+ kla Lis In case (ii): Latitude = M.Z.D. % — Declination %

4 xl In case (iii): Latitude = Declination % — M.Z.D.

2w o er: In every case:
(@) (b) (c

Fig. 33-4 Latitude = M.Z.D. % * Declination %

When solving meridian altitude problems it is advisable to draw diagrams, such as those
in fig. 33-4, to assist in the solutions.

It should be noted that, essentially, a meridian altitude observation yields a position line
which lies 090°-270° along the parallel of the computed, or the “Observed”, Latitude, in the
vicinity of the meridian of the observer. This important matter will be developed in the
remaining pages of this chapter. The following examples serve to illustrate the relationship
between Latitude of Observer, M.Z.D. and Declination of an observed celestial body.

Example 33-1—The True Meridian Altitude (T.M.A.) of Alpheratz, whose declination is 28°
430 N., is 62° 070 S. Find the Latitude of the observer.

}Ee.!- In fig. 33-5:

’ (SX) = TM.A. = 62°070S.
90° 000
nE: 27° 530N,
Lot bk (ZX) = MZD. = 27°53"0N.
4% (QX) = Declination = 28° 43"0-N.
(ZQ) = Latitude = 56° 36"0 N.
Fig. 335 4‘

Answer—Latitude = 56° 36”-0 N.
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Example 33:2—The T.M.A. of Betelguese (declination 07° 24”0 N.) was 42° 10”0 N. Find

the latitude of the observer.
N

[ In fig. 33+6:
e (NX) = T.M.A. = 42° 10~0N.
*a it 90° 00"-0
1l (ZX) = M.ZD. = 47°50"0S.
(0X) = Declination = 7° 240 N.
i (ZQ) = Latitude = 40° 26-0S.
T e
Lat
lJ" Fig. 33-6

Answer—Latitude = 40° 26”0 S.

Example 33-3—Compute the T.M.A. of Antares whose declination is 26° 170 S., if the
observer’s Latitude is 30° 200 N.

T In fig. 33-7:

g (ZQ) = Latitude = 30° 200 N.
(QX) = Declination = 26° 170 S.

—le (ZX) = M.ZD. = 56° 370 N.

| T 90° 00”0

o —_—

b (5X) = TM.A. = 33°23-0S.

+ -+ Fig.33-7

Answer—True Meridian Altitude = 33° 230 S.

Example 33-4—The T.M.A. of a star, observed by an observer in Latitude 40° 550 N. was
54° 220 S. Find the declination of the star.

TF
In fig. 33-8:
pt (SX) = T.M.A. = 54°22"0S8S.
90° 00”0
wmt T (ZX) = M.Z.D. = 35° 38”0 N.
x Z(Q) = Latitud = 40° 550 N.
11 “E (ZQ) atitude
(QX) = Declination = 05° 170 N.
-,L Fig. 338

Answer—Declination = 05° 17-0 N.

2. Latitude by Meridian Altitude of a Body at Lower Meridian Passage

In the above examples, we considered cases in which the observed body is at Upper
Meridian Passage. We shall now discuss the meridian altitude observation of a celestial body
at Lower Meridian Passage.
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A circumpolar body is above the horizon at its lower transit, at which time its altitude is
least for the day and is less than the altitude of the celestial pole. A body at lower transit is
said to be “On the Meridian Below the Pole”. To find the Latitude from an observation of a
body on the meridian below the pole, the body’s true altitude is simply added to the body’s
polar distance, the polar distance being the arc of a great circle contained between the body
and the celestial pole. In the case of a circumpolar body, the polar distance is equal to the
complement of the declination of the body.

Fig. 33-9 and fig. 33-10 illustrate how Latitude is found from an
observation of a body at lower meridian passage.

Fig. 33:9 and 33-10 are projections of the celestial sphere onto

€ the planes of the observer’s celestial horizon and meridian,
respectively. In fig. 33-9, the small circle is the projection of the
diurnal circle of a circumpolar star. When this star is at lower
meridian passage, at X, its true altitude is NX. This arc added to
PX gives NP, the altitude of the celestial pole, which is equal to the

Fig.33-9 Latitude of the observer.
ey PX = PX,
; T = 90° — QX,
? = 90° — Declination of X

= Polar Distance of X

Observers Horizon

Therefore:

Latitude = NP
NX+ PX
Fig. 33-10 True Altitude of X+ Polar Distance of X

Example 33-5—The true altitude of Kochab (declination 74° 26”0 N.) on the meridian
below the pole, was 20° 40”0 N. Find the Latitude of the observer.

S

Answer—Latitude = 36° 140 N.

x In fig. 33-11:
b
NX = True Altitude = 20° 000 N.
= PX = Polar Distance = 15° 34”0
Fig. 33-11 NP = Latitude =

36° 140 N.

3. Effect of Observer’s Motion on Meridian Altitude Observations
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altitude. This practice may introduce appreciable and unnecessary error. When a celestial
body is near the meridian its rate of change of altitude is usually very small. An observer on a
fast moving vessel heading northerly or southerly, is increasing or decreasing his distance
from the G.P. of the observed body. Therefore, the body, when at meridian passage, is
changing its altitude at a rate which is equal to the rate at which the observer is changing his
Latitude.

If a vessel is travelling towards the G.P. of a celestial body the altitude of the body
continues to increase after it has culminated until the rate of change of the observer’s
Latitude is equal to the rate of change of the body’s altitude. At this instant the body is said
to “Dip”. If a vessel is travelling away from the G.P. of an observed body the body dips
before the time of its meridian passage.

Not only does a vessel’s northerly or southerly motion cause the maximum altitude to
occur at a time different from that of its meridian altitude; any change in the declination of
the observed body produces the same effect. To a stationary observer observing the meridian
altitude of a body which transits North of the observer’s zenith, northerly change in the
body’s declination results in the maximum altitude occurring AFTER meridian altitude.
Southerly change in the body’s declination results in the maximum altitude occurring
BEFORE meridian altitude. For an observer observing the meridian altitude of a body which
transits south of the observer’s zenith the reverse applies.

4. G.M.T. of Sun’s Meridian Passage

To ensure, when observing for Latitude, that the correct meridian altitude is measured,
the G.M.T. of the meridian passage of the body should be computed and the observation

.made precisely at that time. We shall now examine the method of finding the time of

meridian passage of a celestial body.

When the True Sun is on an observer’s upper celestial meridian its L.H.A. is 00 h. 00 m.
00 s. The observer’s Longitude applied to this gives the G.H.A. of the True Sun
corresponding to its meridian passage at the observer. Now the G.H.A. of the True Sun is
tabulated against G.M.T. in the Nautical Almanac so that if G.H.A. is known the G.M.T. is
determined.

Example 33-6—Find the G.M.T. of the Sun’s meridian passage across the meridian of 101°
24’ W. on June 16th.

L.H.A.T.S. at meridian passage = 00° 000
Longitude = 101° 24’ W.

G.H.A.T.S. at meridian passage = 101° 24”0

When a celestial body is at upper meridian passage it attains its greatest altitude for the
day. When a celestial body is at lower transit its altitude is least for the day. This applies
strictly to a stationary observer observing a celestial body whose declination is constant. We
shall now investigate the effect of the observer’s motion over the Earth’s surface.

It is not uncommon practice, when observing the meridian altitude of a body. for
Latitude, to measure the maximum altitude of the body and to take this as the meridian

G.M.T.
Increment

Required G.M.T.

18h. 00 m. — G.H.A.
46 m. — Increment

18 h. 46 m.

Answer—Required G.M.T. = 18 h. 46 m.

89° 52’
11° 32’
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An alternative, and more practical, method is to apply the longitude direct to the time of
the Sun’s meridian passage given at the foot of the right-hand Daily Page of the Nautical
Almanac. This time is strictly the G.M.T. of the True Sun’s meridian passage at Greenwich,
but it may be taken as the L.M.T. of the Sun’s meridian passage over any meridian without
introducing material error.

Example 33-7—Find the G.M.T. of the Sun’s meridian passage over the meridian of 120°
00”0 W. on 17th June.

From Nautical Almanac Extracts:

L.M.T. of Sun’s meridian passage = (17) 12h. 00 m.
Longitude = 08 h. 00 m. W.

G.M.T. of Sun’s meridian passage = (17) 20h. 00 m.

Answer—G.M.T. = 20 h. 00 m.

Example 33-8—Find the G.M.T. of the Sun’s meridian passage over the meridian of 90° 00”0
E. on 31st December.

From Nautical Almanac Extracts:

L.M.T. of Sun’s meridian passage
Longitude

(1) 12h. 03m.
06 h. 00 m. E.

(31) 06h. 03 m.

G.M.T. of Sun’s meridian passage

Answer—G.M.T. = 06 h. 03 m.

5. G.M.T. of Moon’s Meridian Passage

The G.M.T. of the upper and lower meridian passages of the Moon over the meridian of
Greenwich may be found from the right-hand Daily Pages of the Nautical Almanac. It will be
remembered that the interval between successive transits of the Moon over the meridian of a
stationary observer is always more than 24 hours of Mean Solar Time. For example, the
Moon was on the upper meridian of Greenwich on 16th June at 11 h. 18 m. G.M.T. On the
17th June the Moon was at upper meridian passage at Greenwich at 12 h. 10 m. G.M.T. The
interval between these times of transit is 24 h. 52 m. The excess of the Lunar Day over the
Mean Solar Day is, therefore, 52 m.

Suppose that an observer is located in Longitude 90° W., the Moon will cross his
meridian at a quarter of a lunar day after it has crossed the Greenwich meridian. It follows,
therefore, that on the 16th of June the Moon will cross the meridian of 90° W. (90/360 of 24
h. 52 m.), which is 06 h. 13 m., after it has crossed the, Greenwich meridian. In other words
the Moon will cross the meridian of 90° W. on 16th June at 17 h. 31 m. G.M.T. This time is
06 h. 13 m. later than 11 h. 18 m., which is the G.M.T. of the Moon’s upper meridian passage
at Greenwich on 16th June.

On 17th June the Moon will cross the meridian of 90° E. (270/360 of 24 h. 52 m.), that is,
18h. 47 m. after it has crossed the Greenwich meridian on 16th June; or (90/360 of 24 h. 52
m.) before it will cross the Greenwich meridian on 17th June.
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In practice, when it is necessary to find the G.M.T. of the Moon’s meridian passage, it is
usual first to find the L.M.T. of the Moon’s meridian passage at the observer and then, by
applying the Longitude in time, to find the G.M.T. of meridian passage.

The L.M.T. of the Moon’s meridian passage is found by applying a Correction for
Longitude to the tabulated G.M.T. of the Moon’s meridian passage at Greenwich. The
Correction for Longitude is a fraction of the excess of the Lunar Day over 24 hours, and it is
proportional to the observer’s Longitude.

In the interval between successive transits of the Moon, the Moon passes over 360° of
Longitude. The L.M.T. of the Moon’s meridian passage to an observer in any West
Longitude is later than the G.M.T. of its meridian passage at Greenwich by an amount which
is equal to:

W. Long./360 X Excess of Lunar Day over 24 hours.

Similarly for any East Longitude the L.M.T. of the Moon’s meridian passage occurs
earlier than its passage across the Greenwich meridian by an amount which is equal to:

E. Long./360 X Excess of Lunar Day over 24 hours.

Example 33-9—Find the G.M.T. of the Moon’s upper meridian passage over the meridian of
60° W. on 31st December.
From Nautical Almanac Extracts:

G.M.T. of mer. pass. at Greenwich = (31) 04 h. 04 m.

I

Corr. for Long. (60/360 X 48 m.) + 08 m.
L.M.T. of mer. pass at Observer = (31) 04 h. 12 m.
Longitude in time = 04h. 00 m. W.

G.M.T. of mer. pass at Observer = (31) 08 h. 12m.

Answer—G.M.T. = 08 h. 12m.

Example 33-10—Find the G.M.T. of the Moon’s upper meridian passage over the meridian
of 36° 00" E. on 23rd September.
From Nautical Almanac Extracts:

G.M.T. of mer. pass. at Greenwich = (23) 20h. 56 m.

(il

Corr. for Long. (36/360 X 46 m.) — 5m.
L.M.T. of mer. pass at Observer = (23) 20h. 51 m.
Longitude in time = 02h. 24 m. E.

G.M.T. of mer. pass at Observer = (23) 18h. 27 m.

Answer—G.M.T. = 18 h. 27 m.

Should the local time of the Moon’s meridian passage be near midnight on any day, the
next meridian passage will occur at a very early time during the morning of the next but one
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day. For example, the Moon is on the meridian of Greenwich at 23 h. 08 m. on 31st May. The
following meridian passage at Greenwich takes place at 00 h. 07 m. on 2nd June. In other
words there was no meridian passage at Greenwich on the 1st June. This does not mean that
there has not been a meridian passage over other meridians on that date. For instance, the
Moon will cross certain meridians East of the Greenwich meridian provided that the
Correction for Longitude is greater than 07 minutes. All meridians to the East of that of
Longitude (360/59X 7 m.), that is 42° E. approximately, will experience a meridian passage
of the Moon on 1st June.

Example 33-11—Find the G.M.T. of the Moon’s upper meridian passage over the meridian
of 120° 00" W. on Ist July.

From Nautical Almanac Extracts:

G.M.T. of Moon’s mer. pass. at Greenwich on 30th June = 23 h. 48 m.
G.M.T. of Moon’s mer. pass. at Greenwich on Ist July = — — —
G.M.T. of Moon’s mer. pass. at Greenwich on 2nd July = 00h. 43 m.

G.M.T. of mer. pass. at Greenwich (30) 23h. 48 m.

Correction for Longitude (120/360X 55 m.) + 18 m.
L.M.T. of mer. pas. at Observer = (1) 00h. 06 m.
Longitude in time = 08 h. 00 m. W.

G.M.T. of mer. pas. at Observer = (1) 08 h. 06 m.
Answer—G.M.T. = (1) 08 h. 06 m.
Example 33-12—Find the G.M.T. of the Moon’s upper meridian passage over the meridian
of 60° 00’ E. on 1st June.

From Nautical Almanac Extracts:

G.M.T. of Moon’s mer. pass. at Greenwich on 31st May = 23 h. 08 m.
G.M.T. of Moon’s mer. pass. at Greenwich on Ist June = — — —

G.M.T. of Moon’s mer. pass. at Greenwich on 2nd June = 00 h. 07 m.
G.M.T. of mer. pass. at Greenwich = (2) 00h. 07 m.
Long. Corr. (60/360X 60 m.) = — 10 m.
L.M.T. of mer. pas. at Observer = (1) 23h. 57 m.
Longitude in time = 04h. 00 m. E.

G.M.T. of mer. pas. at Observer (1) 19h. 57m.

Answer—G.M.T. = (1) 19h. 57 m.

6. G.M.T. of Planet’s Meridian Passage

! The G.M.T. of a planet’s meridian passage at Greenwich is given to the nearest minute of
time, for every third day throughout the year, on the left-hand Daily Pages of the Nautical
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Almanac. The tabulated time is the approximate L.M.T. of the planet’s meridian passage
over every other meridian. If it is required to find the exact L.M.T. (to the nearest minute of
time) of meridian passage of a planet, it is necessary to apply a Correction for Longitude to
the G.M.T. of meridian passage at Greenwich, as in the case for the Moon.

Example 33-13—Find the G.M.T. of the upper meridian passage of Jupiter over the meridian
of 90° 00’ W. on 14th June.

From Nautical Almanac Extracts:

G.M.T. of mer. pass. at Greenwich (14) 19h. 52m.

I

Corr. for Long. (90/360X 4 m.) — 0l m.
L.M.T. of mer. pas. at Observer = (14) 19h. 51 m.
Longitude in time = 06h. 00 m. W.

G.M.T. of mer. pas. at Observer (15) O01h. 51 m.

Answer—G.M.T. = (15) 01 h. 51 m.

Example 33-14—Find the G.M.T. of the upper meridian passage of Saturn over the meridian
of 90° 00" E. on 15th June. : ‘

From Nautical Almanac Extracts:

G.M.T. of mer. pass. at Greenwich (15) 23h. 53 m.

Long. Corr. (90/360X 6 m.) + 01 m.
L.M.T. of mer. pas. at Observer = (15) 23 h. 54 m.
Longitude in time = 06 h. 00 m. E.

I

G.M:T. of mer. pas. at Observer (15) 17h. 54 m.

Answer—G.M.T. = (15) 17h. 54 m.

Observation Notes relating to the planets, appropriate for the whole year, together with a
diagram illustrating the relative positions of the planets and the Sun, are given on pages 8
and 9 of the Nautical Almanac.

7. G.M.T. of Star’s Meridian Passage

When a celestial body is on the upper meridian of an observer, its L.H.A. is 00 h. 00 m. 00
s. Therefore, the L.S.T.—which is equivalent to the L.H.A. of v —at the time of a star’s
meridian passage is equal to (360° — S.H.A. of the star).

Fig. 33-12, which represents the celestial sphere projected onto
the plane of the celestial equator serves to show the relationship
between S.H.A. * and L.H.A. of y when the star is on the
observer’s upper celestial meridian.

The L.H.A. of v at the time of a star’s meridian passage may be
found by subtracting the star’s S.H.A. from 360° 00’. By applying

| the Longitude of the observer to the L.H.A. of -, the G.H.A. of v is
b (@)

found. The G.M.T. corresponding to any given G.H.A. of y may be
found by interpolation using the Nautical Almanac.

Fig. 33-12
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Example 33:15—Find the G.M.T. of the upper meridian passage of Achernar over the planet Venus or Jupiter (these planets, when suitably placed, being visible during the
meridian of 11° 00’ W. on 15th June. daytime), when at meridian passage, in order to find his latitude. It is seldom, however, that
I the meridian altitude of a star is observed at sea. Problems involving star meridian altitudes
i S.H.A. of Achernar = 35° 58’ are largely of academic interest only.
B 360° 00
' N The following examples illustrate how the latitude and position line are deduced from
b 360° — S.H.A. = 24° 02" = L.H.A. mer. pass. meridian altitude observations.
o Longitude = 11° 00’ W.

M\ G.H.A. mer. pass. = 35° 02

Example 33-16—16th June in E.P. Latitude 36° 05’ N., Longitude 16° 00’ E. Find the
it G.M.T. at which the star Formalhaut is at meridian passage. If the meridian altitude
observed was 24° 180 S., and the height of the observer’s eye was 15-5 metres, find the

i From Nautical Almanac Extracts: € _ Aemy.
j Latitude and position line.
w"*', G.M.T. when G.H.A. is 23° 06" = (15) 08 h. 00 m. 00s.
"‘ i Increment for (35° 02" — 23° 06") = 47m. 44s. From Nautical Almanac Extracts:
||‘ “" G.M.T. of star’s mer. pass. = (15) 08 h. 47 m. 44s. G.M.T. of mer. pass. of Aries = (15) 06 h. 28 m.
_— [ J— =
o , . . L.M.T. mer. pas. Formalhaut = (16) 05h. 23 m.
| f In practice, the G.M.T. of a star’s meridian passage may be found by applying Longitude in time = 0lh. 04m E.
| f (360° — S.H.A. star) to the G.M.T. of meridian passage of the First Point of Aries. The s
:l“" G.M.T. of the meridian passage of ‘Aries is tabulated every third day on the left-hand Daily Lﬂf G.M.T. mer. pas. Formalhaut = (16) 04h. 19 m.
| Pages of the Nautical Almanac. o -
i
qh The G.M.T. of the passage of Aries over the meridian of Greenwich is nearly the same as Observed Meridian Altitude = 24° 18”0 S.
| Hp the L.M.T. of its passage over every other meridian. (It will be remembered that the sidereal \TI = Total Correction =  — 90
i day is 4 minutes shorter than a solar day). Therefore, the approximate L.M.T. of a star’s s |y e —
;l? meridian passage may be found by applying (360° — S.H.A. % ) to the G.M.T. of J'Q*: TMA. = 240 09"0 S. (SX)
i meridian passage of Aries found from the Nautical Almanac. ar 90° 000
| , , s M.Z.D. = 65° 510 N. Z
}! ;][l Example 33-15, using this method, is solved as follows: o Declination = 29° 50”3 S. EQ)I\(’))
.f' From Nautical Almanac Extracts: Latitude = 36° 00’7 N. (ZOQ)
‘
| ( G.M.T. of mer. pass. of Aries at Greenwich = (15) 06h. 28 m. Azimuth = 180°
il (360° — 335°58) = 24° 02" = 0l h. 36 m.
l‘ I Approx. L.M.T. of mer. pas. at Observer = (15) 08 h. 04 m. Lat. 36° 00™7 N.
I Longitude in time = 00h. 44m. W. Position Line runs 090° — 270° through
|| S — Answer— Long. 16° 000 E.
} ! Approx. G.M.T. of mer. pas. at Observer = (15) 08 h. 48 m. G.M.T. of local meridian passage = 04 h. 19 m.
: i Answer—G.M.T. = (15) 08 h. 48 m.
' I
‘ . . ¢ e . . Example 33-17—16th June in E.P. Latitude 41° 30”0 S., Longitude 03° 000 W. Find the
| . tion Line from Meridian Altitude Ob tion P 9Lt , Long
| ’ l ‘ Sl 55 e o e g -y G.M.T. of the meridian passage of Mars. If the sextant altitude of Mars at meridian passage
1l ‘ Finding Latitude from a meridian altitude observation of the Sun is a common-place task was 48° 02”0 bearing north, find the Latitude and position line. Index error 1”0 off the arc.

of practical navigation. Occasionally a navigator observes the Moon, and sometimes the Height of eye 91 metres.
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From Nautical Almanac Extracts:

(16) 06h. 51m.
12m. W.

Approx L.M.T. mer. pass. of Mars
Longitude in time

ol

Approx G.M.T. mer. pass. of Mars (16) 07h. 03 m.

Sextant Meridian Altitude = 48° 020 N.
Index Error = + 10
M’:— Observed Meridian Altitude = 48° 030 N.
iT ok Total Correction = — 6”2
a1, T.M.A. = 47° 568 N. (NX)
Al 90° 00"-0
M.Z.D. = 42°03"2S. (ZX%)
1’ Declination = 00° 323 N. (0X)
13‘ Latitude = 41° 30™9S. (ZQ)
Fig. 33-14 Azimuth = 000°

Lat. 41° 30”9 S.

Position Line runs 090° — 270° through

Answer— Long. 03° 000 W.

G.M.T. of meridian passage = 07h. 03 m.

Example 33-18—30th December in E.P. Latitude 39° 10"-0 N., Longitude 50° 150 W. Find
the G.M.T. of the Moon’s upper meridian passage. The observed meridian altitude of the
Moon’s upper limb was 59° 23”-0. Height of eye 12-1 metres. Find the observer’s Latitude and
position line.

From Nautical Almanac Extracts:

(30) 03h. 15m.
+ 7m.

G.M.T. of Moon’s upper mer. pass. at Greenwich
Long Correction (50/360X 49 m.)

([l

(30) 03h. 22m.
03h. 21 m. W.

L.M.T. of Moon’s mer. pass. at Observer
Longitude in time

1l

G.M.T. mer. pass. at Observer (30) 06h. 43 m.

Moon’s H.P. = 57”7
Moon’s declination at 06 h. 00 m. = 08° 422 N. d = 97
‘d’ correction for 43 m. = — 70
Moon’s declination at 06 h. 43 m. = 08° 49”2 N.
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ST Observed Meridian Altitude Moon’s U.L. = 59° 23”0 S.
il Total Correction (+ 3:3+ 3:6) = +6"9
(SX) T.M.A. = 59°29"9S.
1 oy 90° 00”0
o (ZX) M.Z.D. = 30°30"1N.
7 " e (0X) Declination = 08° 35”2 N.
| (Z2Q) Latitude = 39° 05”3 N.
. O
Kig. 3315 Azimuth = 180°
Lat. 39° 193 N.
Position Line runs 090° — 270° through
Answer— Long. 50° 150 W.

G.M.T. of Moon’s transit = 06 h. 43 m.

Example 33:19—30th December in E.P. Latitude 26° 35”0 N., Longitude 55° 15-0 W. Find
the G.M.T. of the Sun’s upper meridian passage. If the observed meridian altitude of the
Sun’s Lower limb was 40° 02”5 find the Latitude and position line.. Height of eye 13-8
metres.

From Nautical Almanac Extracts:

L.M.T. of Sun’s transit = (30) 12h. 02 m.
Longitude in time = 03h. 41 m. W.

G.M.T. of Sun’s transit = (30) 15h. 43 m.
Declination at 15 h. 00 m. G.M.T. = 23° 10~5S. d=0"2

‘d’ correction for 43 m. —0-1
,’-} Declination for 15 h. 43 m. G.M.T. = 23° 104 S.

Observed Meridian Altitude of Sun’s L.L. = 40° 02”5 S.

Total Correction (+ 834+ 0"5) = + 88
@l T (5X) T.M.A. = 40° 11"38.

X QL' 90° 00”0
MA (ZX) M.Z.D. = 49° 48”7 N.
1y (0X) Declination = 23° 10”4 S.
Fig. 33-16 (ZQ) Latitude = 26° 38”3 N.

Azimuth = 180°

Lat. 26° 383 N.
Position Line runs 090° — 270° through

Answer— Long. 55° 150 W.

G.M.T. of transit = 15h. 43 m.




274

THE ELEMENTS OF NAVIGATION AND NAUTICAL ASTRONOMY

Exercises on Chapter 33

What is the relationship between Observer’s Latitude, Meridian Zenith Distance of a

celestial body, and Declination of the body?
Explain clearly how an observer may find his Latitude from a sextant observation of a

celestial body on his upper celestial meridian.

19.

20.
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15th June in estimated Longitude 152° 00’ E. the meridian altitude of Avior was 26° 03”5
lS_. Index error 10 on the arc. Height of eye 9-2 metres. Find the Latitude and position
ine.

12th June in estir.nated. Long. 120° 00" W. the meridian altitude of Arcturus was 41° 05”0
S. Index error nil. Height of eye 7-9 metres. Find the Latitude and position line.

I
i 3. Explain how Latitude is found from an observation of a celestial body at lower meridian 21. 30th December during morning twilight in estimated Longitude 23° 00’ W. Pollux bore
| i passage. _ . . 000° and had an observed altitude of 61° 45"-0. Index error 1”5 off the arc. Height of eye
I | 4. Explain how an observer may find his Latitude by making sextant observations of a 10-6 metres. Find the Latitude and position line.

circumpolar body of unknown declination.
! 5. Distinguish between Meridian Altitude and Maximum Altitude. Why is it important to
il observe the meridian altitude and not the maximum altitude when observing for

I Latitude?

i 6. Find the G.M.T. of the Sun’s meridian passage:
i (i) in Long. 30° E. on 16th June

“ \ (iii) in Long. 170° E. on 22nd September.

‘ 7. Find the G.M.T. of the Moon’s meridian passage:

)
' y (i) in Long. 150° W. on 17th June
: (1) in Long. 30° W. on 16th June
(i) in Long. 155° E. on 23rd September
r (ili) in Long. 90° E. on 31st December.
| 8. Find the G.M.T. of the meridian passage of:

(i) Venus in Long. 70° W. on 23rd September

f,} (ii) Mars in Long. 90° E. on 16th June.

] 9. Find the G.M.T. of the upper meridian passage of:
% (i) Achernar in Long. 25° W. on 15th June

i (ii) Fomalhaut in Long. 20° E. on 17th June

il (iii) Alpheratz in Long. 90° W. on 30th December.

’ i 10. Find the observer’s Latitude if the true meridian altitude of Hamal was 50° 10" S.

i 11. Find the latitude of the observer if the true meridian altitude of Bellatrix was 35° 08" N.
‘ 12. 16th June in estimated Long. 78° 45’ E. the meridian altitude of the Sun’s lower limb was
i | 32° 48”0 N. Index error 1”0 on the arc. Height of eye 13-8 metres. Find the Latitude and
" t position line.

Ml || 13. 23rd September in estimated Long. 29° 45’ W. the meridian altitude of the Sun’s lower
i limb was 45° 00”5 S. Index error — 1"-0. Height of eye 15-5 metres. Find the Latitude
“ fl and position line.

it 14. 16th June in estimated Longitude 160° 45" W. the meridian altitude of the Sun’s lower
il limb was 63° 11”0 S. Index error nil. Height of eye 9-2 metres. Find the Latitude and
| position line.

w, Hl 15. 1st January in Long. 156° 00’ E. the meridian altitude of the Sun’s lower limb was 80°
, | 20’-0 N. Index error 05 off the arc. Height of eye 12-2 metres. Find the Latitude and

il || position line.
" 16. 16th June in estimated Long. 53° 15" W. the meridian altitude of the Moon’s lower limb
i was 51° 220 S. Index error nil. Height of eye 8-9 metres. Find the Latitude and position
| line.

l ‘ 17. 17th June in estimated Long. 70° 00" W. Altair bearing due South had an observed
“ altitude of 48° 20"-0. Index error was — 1”-0. Height of eye 8-9 metres. Find the Latitude
':‘ and position line.

18. 31st December during evening twilight the meridian altitude of Achernar was 62° 200 S.

the estimated Longitude was 75° 00" E.

ll l ‘ Index error nil. Height of eye 15-5 metres. Find the Latitude and position line given that
I
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CHAPTER 34
THE ASTRONOMICAL TRIANGLE AND SIGHT REDUCTION
1. Introduction
An observation, or Sight, of a celestial body enables a navigator to plot an astronomical

position line on his chart. The direction of an astronomical position line is at right angles to
that of the observed body at the time of the sight.

A position line obtained from a sight of a celestial body on an observer’s meridian lies
090° — 270° along a parallel of Latitude. The meridian altitude problem for obtaining an
East-West position line is relatively simple, as we have seen from Chapter 33. The problem of
finding a position line from a sight of a celestial body which lies out of the observer’s celestial
meridian involves solving a spherical triangle by a process known as Sight Reduction. The
spherical triangle solved in reducing a sight is a celestial triangle known as the Astronomical-

or PZX-triangle.

Fig. 34-1 illustrates a typical PZX-triangle. In fig. 34-1,
p represents the Earth’s North Pole and P the celestial pole.
o represents the observer and Z his zenith. x represents the
geographical position of a star or other celestial body
denoted by X. The great circles QQ, and HH, represent,
respectively, the celestial equator and the celestial horizon
of the observer.

The spherical triangle, the three angles of which are P,
Z and X, respectively, is the Astronomical Triangle. Notice
that the spherical triangle pxo on the Earth is geometrically
similar to the astronomical triangle PZX. Referring to fig.
34-1:

PH = Altitude of Celestial Pole
= Observer’s Latitude

But since: ZH = 90°

Therefore: PZ = Observer’s co-Latitude
AX = Declination of X

And since: AP = 90°

Therefore: PX = Polar Distance of X
BX = Altitude of X

But since: BZ = 90°

Therefore: ZX = Zenith Distance of X.
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The three sides of the PZX-triangle are:

PZ = Co-Latitude of an observer whose zenith is at Z
ZX = Zenith Distance of the Observed Body
PX = Polar Distance of the Observed Body.

The three angles of the PZX-triangle are:

P = Hour Angle of Observed Body at observer
whose zenith is at Z

Z = Azimuth of Observed Body to an observer
whose zenith is at Z

X = Parallactic Angle (of relatively minor
account in practical Nautical Astronomy).

The zenith distance of the observed body X, in minutes of arc, is equal to the great circle
distance, in nautical miles, between the observer and the geographical position of the
observed body. The distance, xo in fig. 341, is the radius of a circle of equal altitude of the
body X. A small arc of this circle, when projected onto a Mercator Chart or plotting sheet, is
a Position Line somewhere on which the navigator may fix his vessel’s position.

L€
osti®

Fig. 34-2 illustrates a typical PZX-triangle projected

onto the plane of the celestial equator. The direction of P

\ from o, which denotes the observer on the Earth, is N. 6°
, \ W., where 0 is the azimuth of the body indicated by the
3 \ angle PZX in the Astronomical Triangle. The direction of
ﬁ the circle of equal altitude at o, denoted by the pecked line,
is at right angles to the direction of x, the G.P. of X, at o.

/ This direction is determined if the azimuth of X is known.

In our discussion of the PZX-triangle above, we have
Fig. 34-2 mad'e no mention of the impor‘tant fa_ct that.a.n obseryer at

3 sea 1s generally unaware of his precise position. It is not
possible, therefore, for him to form a PZX-triangle such as that illustrated in figs. 34-1 and
34-2. This gives rise to a problem in computing a position line when the observer knows
neither his Latitude nor Longitude. We shall see later how this problem is overcome.

There are two general methods of computing a position line from an astronomical
observation. These are known, respectively, as the Longitude Method and the Intercept
Method.

2. The Longitude Method

The essence of the Longitude Method of sight reduction is the computation of the Hour
Angle of an observed body at a position where a circle of equal altitude is intersected by a
parallel of chosen Latitude. By comparing the computed Hour Angle with the Greenwich
Hour Angle of the body at the time of the observation, the Longitude of the position—the
so-called Calculated Longitude—is ascertained. The azimuth of the observed body is then
found, and the required position line is plotted on the chart at right angles to the azimuth and
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through a position having the Chosen Latitude and the Calculated Longitude. The principle
of the method is illustrated in fig. 34-3.

In fig. 34-3, the point ¢ lies on the chosen parallel of Latitude. The zenith at ¢ is denoted
by Z,.

¢p = PZ, = Co-Latitude of ¢

px = PX = Polar Distance of X

xc = XZ. = Zenith Distance of X at ¢, or at any other point
on the circle of equal altitude through c.

Hence, a PZX-triangle is formed from the sides PZ,, PX, and XZ,.

X

The angle XPZ, in the PZX-triangle formed is the Hour
Angle of the observed body X at any point on ¢’s meridian.
This angle is readily found by solving the PZX-triangle given

et Parallel of the three sides. The Longitude of the meridian of ¢ is then
c.meq,hm” S easily found by comparing the Calculated Hour Angle with
Aﬁ?ffég the Greenwich Hour Angle at the time of the observation. The
G.M.T. of the observation is, of course, obtained from the
chronometer the error of which is known. The G.M.T. also
allows the observer to lift the declination of the observed body
. from the Nautical Almanac.
Fig. 343

The angle XZ P is the azimuth of the observed body at ¢, and this angle may readily be
found by computing the PZX-triangle given the initial three sides; or, more conveniently, by
the spherical sine formula using the computed Hour Angle.

If the observer’s position is not at c—and this will generally be the case—the azimuth of
the observed body (which is necessary for the determination of the direction of the position
line) will generally be different from what is at ¢. The observer’s position (which he is
endeavouring to discover) does, however, lie on a circle of equal altitude having a radius in
miles equal to the zenith distance of the observed body in minutes of arc. Provided that c is
near to the actual but unknown position of the observer, the azimuth computed from the
PZ X-triangle may be taken to be the same at the observer’s position as it is at ¢. This is
considered in relation to fig. 34-4.

e
5

chosen |0

Suppose that o in fig. 34-4 represents an observer’s actual
position, and that ¢ is the position computed in the way we
have described above. The radius of the circle of equal
altitude through o and ¢ is usually in the order of many
hundreds or even thousands of miles. The direction of x from
o is different from that at ¢; but, provided that ¢ and o are
close to each other, the directions of ox and cx are so slightly
different from each other that, bearing in mind that an
azimuth to the nearest half a degree or so is sufficiently
accurate for nautical astronomical purposes, they may be
considered to be the same without introducing error.

Fig. 34-4

The chosen Latitude must, of necessity, be near to the actual, although unknown,
Latitude of the observer at the time of the sight. In this circumstance the resulting position
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line may be projected onto the chart as a straight line at right angles to the calculated azimuth
and through a position the Latitude of which is equal to the chosen Latitude, and the
Longitude of which is equal to the calculated Longitude.

The Longitude Method is summarized as follows:

1. The altitude of a celestial body is measured with a sextant and the G.M.T. of the
sight noted.

2. The measured altitude is corrected to give a True Altitude, which, subtracted from 90°
gives the zenith distance of the observed body, or the side ZX of the PZX-triangle.

3. The declination of the observed body is lifted from the Nautical Almanac. By
combining the declination with 90° (subtracting it from 90° when the Latitude and
declination have the same name, and adding it to 90° when the Latitude and declination have
different names) the polar distance of the observed body is found, and this gives side PX of
the PZX-triangle.

4. A latitude near to the actual but unknown Latitude of the vessel is chosen. This is
subtracted from 90° to give the co-Latitude and hence the side PZ of the PZX-triangle.

5. Angle P of the PZX-triangle is computed using a direct trigonometrical method, or,
more practically, by using a Short-Method or inspection table (see Chapter 38).

6. The computed angle P—Hour Angle of observed body—is compared with the
Greenwich Hour Angle of the body at the time of sight. The difference between the G.H.A.
(obtained from the Nautical Almanac) and the computed H.A. is the Longitude of a point on
the chosen parallel through which to project the required position line.

7. Angle Z of the PZ X-triangle is found—almost invariably by inspection from Azimuth
Tables. The direction of the required position line is at right angles to the azimuth, and the
position line is projected in this direction through a point having a Latitude equal to the
chosen Latitude and a Longitude equal to the calculated Longitude.

3. General Remarks on the Longitude Method
When the chosen Latitude and the observed body’s declination are both North or both
South, that is to say, when they have the same name, the polar distance of the body is found

by subtracting the declination from 90° 00’.

When the observed body is West of the observer, the Hour Angle of the body is less than
180° 00"
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Figs. 345 and 34-6 illustrate typical PZX-triangles projected onto the plane of an
observer’s celestial horizon. In fig. 345 the observer’s Latitude and the body’s declination are
both North: in fig. 34:6 they are both South. In both figs. the body is West of the meridian in
which case the angle P is less than 180° 00’

When a celestial body is East of the meridian of an observer its Hour Angle is greater
than 180°. In these cases the angle P of the PZX-triangle is found by subtracting the Hour
Angle from 360° 00’

When the chosen Latitude and the declination of an observed body have different names,
the polar distance of the body is found by adding the declination to 90° 00’.

w Z e w Z E
Q)
—_ [N Q
- S
Fig. 34-7 Fig. 34-8

Figs. 34'7 and 34-8 illustrate typical PZX-triangles in which the declination of the
observed body X and the Latitude of an observer have different names. In both figs. the
Hour Angle is greater than 180°—the observed body lying East of the meridian—and the
angle P, therefore, is obtained by subtracting the Hour Angle from 360° 00’.

In practice, when computing a PZX-triangle using a direct method of spherical
trigonometry, it is usual to choose a Latitude corresponding to the Latitude by estimation in
order to determine the side PZ of the PZX-triangle. When using Short-Method or Inspection
Tables, it is usually necessary to choose a Latitude having an integral value.

When a sight has been reduced and a calculated Longitude found, it is important to
realize that the calculated Longitude is not necessarily the Longitude of the observer at the
time of the observation. It is not uncommon to hear inexperienced navigators refer to the
Calculated Longitude as the Vessel’s Longitude: it cannot too strongly be emphasized that a
single astronomical observation yields only a single position line. In the absence of additional
information a navigator cannot possibly tell where on such a line his vessel is located. The
calculated Longitude is the actual Longitude only if the chosen Latitude happens to be the
actual Latitude at the time of the observation.

If a sight is solved several times using a different Latitude for each solution it will be
found that, in general, a different Longitude will be computed in each case. The exception to
the general rule applies to the case when the azimuth of the observed body is due East or due
West. It is very instructive to carry out this exercise and to verify that every position, having a
computed Longitude and its corresponding chosen Latitude, will lie on a smooth curve, the
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direction at every point on which is equal to the azimuth at the position of the point.
Provided that the zenith distance of the observed body is large and that the azimuth of the
body is not too near due North or due South, the “smooth curve” will be projected on the
Mercator Chart as a straight line.

4. The Longitude Method in Practice

The following examples are solved using a direct method popularized by P. L. H. Davis
of the Nautical Almanac Office. Davis is credited with having introduced the arrangement of
the Haversine Table in which Natural and Logarithmic Haversines are tabulated abreast of
one another, thus facilitating computation using the so-called Haversine Method.

Example 34-1—17th June in D.R. position Lat. 40° 02”0 N., Long. 54° 000 W., at about
0800 hr. on board, the observed altitude of the Sun’s lower limb was 38° 20":0. Height of eye
7-9 metres. Chronometer time 11 h. 32 m. 26 s. Chronometer error 08 m. 40 s. slow on
G.M.T. Using the Longitude method of sight reduction ascertain the position line on which
the observer is located at the time of the observation.

Fig. 34-9

Fig. 34-9 illustrates the PZX-triangle for this problem.

The first step in this problem is to ascertain whether the G.M.T. of the observation is 11
hr. or 23 h. remembering that the dial of a chronometer extends only to 12 hr. This is the
reason why the time on board, namely 0800 hr. approx., is given.

Approx. LM.T. = 08 h. 00 m. Chron. Time = 11h. 32m. 26s.
Approx. Long. W. = 03 h. 36 m. Chron. Error = + 8 m. 40s.
Approx. GM.T. = 11 h. 36 m. G.M.T. (17th) = 11h. 41 m. 06s.
Obs. Altitude = 38° 200
Dip. = —4"9
Dec. at 11 h. GM.T. = 23° 224 N. Apparent Altitude = 38° 15”1
‘d’ correction for 41 m. =  +0"1 Total correction =  + 14”8
Dec. at 11 h. 41 m. 06 s. = 23° 225 N. True Altitude = - 38° 29”9
90° 000 90° 000
Polar Distance (PX) = 66° 37"5 Zen. Distance (ZX) = 51° 30”1




282 THE ELEMENTS OF NAVIGATION AND NAUTICAL ASTRONOMY THE ASTRONOMICAL TRIANGLE AND SIGHT REDUCTION 283

i Latitude = 40° 02”0 N. G.H.A. at 11 h. = 344° 497 ‘ Fig. 34-10 illustrates this problem.
90° 000 Incr. for 41 m. 06 s. = 10° 16”5
[ ‘ . = : —
_ p _ Approx. LM.T. = 15h. 00 m. Chron. Time = 15h. 40 m. 20s.
: co-Lat. (PZ) = 49° 58”0 G.H.A. = 355° 06"-2 pb _ _
§ (PX) = 66° 37"5 Cale. HA. = 301° 297 Approx. Long. = 00h. 42 m. Chron. Error = +00m. 22s.
(PX~ PZ) = 16° 395 Calc. Long = 53°36"-5W. Approx G.M.T. = 15h. 42 m. G.M.T. (24th) = 15h. 40 m. 42s.
hav P = { hav ZX — hav (PZ~ PX) } cosec PZ cosec PX N.B.—Sun is West of Meridian
th =0
nat hav“&,ziv PZX)§ L 8,5%33 Dec. at 15 h. = 00° 25"1S. d=1%0
- Increment = +0"7 Sext. Alt. = 25° 265
nat hav 6 = 0-16778 Dec. = 00° 258 S. Index Er. = +0"5
log hav 6 = 1-:22473 90° 00”0 Obsd. Alt. = 25° 270
log cosec PZ = 0-11596 Azimuth (from Azimuth Tables) = 090° Dip. = — 61
i | log cosec PX = 0-03719 (Sun is on P.V.) . Py e
- Apparent Altitude =  25° 20”9
log hav P = T1-37788 PX = 90° 258 Total correction = + 14"-0.
Calc. H.A. = 301° 297 Lat. = 50° 200 N. True Altitude =  25° 34”9
— 90° 000 90° 00”0
‘ PZ = 39° 400 ZX = 64°25-1
Position Line runs 000° — 180° through Lat. 40° 020 N., Long. 53° 36™5 W. PX = 90° 258

| (PX — PZ) = 50° 458

| Example 34-2—24th September in D.R. position Lat. 50° 20”0 N., Long. 10° 300 W., at hav £ == { hav ZX — hay (PX — PZ) } cosec £Z cosec £
' about 3 p.m. on board, the sextant altitude of the Sun’s lower limb was 25° 26"5. Index error — Q. — 460 5%’
i 0”5 off the arc. Height of eye 121 metres. Chronometer time 3 h. 40 m. 20 s. Chronometer it T (I}?)t(hiv I?Z/'Y) _ g?gg;g G'H'Aﬂ::erlsegi — ‘1‘(6)0 ?g,:;
| error 00 m. 22 s. slow on G.M.T. Ascertain, using the Longitude method, the position line on
," which the vessel was located at the time of sight. nat hav 8 = 0-10036 GH.A. = 57° 08”8
| N log hav 6 = T-00157 Calc. H.A. = 46° 433
il - ;\ log cosec PZ = 019496 Calc. Long. = 10° 25"5 W.
{' / \ log cosec PX = 0-:00001 Azimuth (From Azimuth Tables) = 23314°
i fi | \ _—
.i ; A / log hav P = 1-19654
il | \]é\ ANy Calc. HA. = 46° 43"3
i N e ptgy —
i ) /
l ?t | S Position Line runs 143° - 3231° through Lat. 50° 200 N., Long. 10° 255 W.
i 5
“ i}\‘ Fig. 34-10
| } ‘ Example 34:3—23rd September in D.R. position Lat. 45° 100 S., Long. 118° 050 W. the
i1t sextant altitude of the star Alphard was 32° 30"0. Index error + 10. Height of eye 9-5
il | - metres. Chronometer time 13 h. 45 m. 10 s. Chronometer error 02 m. 05 s. fast on G.M.T.
il Ascertain the position line on which the observer is located.
] ‘;
|
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nat hav ZX = 0-23208 G.H.A. vy at 13h. = 196° 522
nat hav (PX — PZ) = 0-09920 Increment = 10° 48”0
nat hav 6 = (0-13288 G.H.A. v = 207° 40"-2
log hav 6 = T-12347 S.H.A. % = 218° 36"7
log cosec PZ = 0-15178 G.H.A. % = 426° 16”9
log cosec PX = 0-:00477 Calc. H.A. = 308° 14”1
log hav P = T1-28002 Calc. Long. = 118° 028 W.
Calc. H.A. = 308° 14”1
Fig. 34-11
Azimuth (From Azimuth Tables) = 113°
Fig. 34-11 illustrates this problem. Position Line runs 023°-203° through lat. 45° 10”0 S., Long. 118° 028 W.
Chron. Time = 13 h. 45m. 10s. S.H.A. Alphard = 218° 36”7 Example 34-4—24th September in D.R. position Lat. 35° 10~0 N., Long. 165° 150 E.,
Chron. Error = — 02m. 05s. 360° 000 during morning twilight at about 0550 hr. on board, the observed altitude of Hamal was 39°
_ e 55"0. Height of eye 7-5 metres. Chronometer time 6 h. 44 m. 10 s. Chronometer error 01 m.
G.M.T. (23rd) = 13h. 43m. 05s. ¢ = 141° 233 53 s. fast on G.M.T. Ascertain the position line on which the observer is located.
_— \ P
G.M.T. of Transit of y= (22) 23 h. 46 m. L X /
9= 09h 25m. W S e
G.M.T. of Transit of % (23) 09h. 11 m. Q
Therefore the % is East of the meridian and its H.A. is > 180°. s
Fig. 34-12
| | Lat. = 45° 10-0S. Sext. Altitude = 32° 30”0
I PZ = 44° 50"0. Index Error = +1-0 Fig. 34-12 illustrates this problem.
i | D;; = 82878, Obs. Altitude = 32° 310 Approx. Local Time = (24) 05h. 50 m. S.H.A. % = 328° 469
| = 81°31"3 Dip =" - 54 Approx. Longitude = E. 11h. 00 m. 360° 00”0
‘ —ee - -
‘ (PX — PZ) = 36° 41”3 Apparent Altitude = 32° 25”6 ° Approx. GM.T. = (23) 18h. 50 m. o = 31°13"1
I ——— Total correction = — 15 —————
| _ = 02 hr. 05m.
‘]J | True Altitude = 32° 24”1 TR
i ——— Chron. Time = 18h. 44 m. 10s. G.M.T. of Transit of v = 23 h. 50-7 m.
’ ZX = 57°35"9 Chron. Error = — Im. 53s. ¢ = 02h. 05m.
: G.M.T. 23rd) = 18h. 42m. 17s. G.M.T. of Transit of % = 01 hr. 557 m.
| hav P = { hav ZX — hav (PX — PZ ) } cosec PX cosec PZ (24th) —
|l
il
Il
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Therefore % is West of the meridian and H.A. is < 180°.

Lat. = 35° 100 N. Observed Altitude =  39° 550

PZ = 54° 50”-0. Dip = — 48

Dec. = 23° 16”1 N. Apparent Altitude =  39° 5072

PX = 66° 43”9 Total correction = - 172

(PX — PZ) = 11° 539 True Altitude = 39° 490
e ZX =

50° 110

hav P = { hav ZX — hav (PX — PZ) } cosec PZ cosec PX

nat hav ZX = 0-17983
nat hav (PX — PZ) = 0:01075

nat hav 6 = 0-16908
log hav 6 = 1:22811

G.H.A. vy at 18 = 272° 04”5
Increment = 10° 360

G.H.A. yh. = 282° 40"5
S.H.A. % = 328° 469

G.H.A. % = 251°27"4
Calc. HA. = 56° 392

log cosec PZ = 0-08752
log cosec PX = 0-03684

log hav P = 1-35247
Calc. H.A. 56° 39”2

Calc. Longitude = 165° 11”8 E.

Azimuth (From Azimuth Tables) = 273°

Position Line runs 003°-183° through Lat. 35° 10”0 N., Long. 165° 11’8 E.

5. The Intercept Methad

The radius of a circle of equal altitude is equivalent to the great circle distance between an
observer and the G.P. of an observed body. This spherical distance in minutes of arc (or
nautical miles) on the Earth’s surface is equal to the zenith distance of the observed body in
minutes of arc, and this may readily be found from an astronomical observation or “sight” of
the body.

In the Intercept Method, which was first given by the French Naval Officer, Captain
(later Admiral) Marcq St. Hilaire in 1875, a position near to the actual but unknown position
of the vessel is chosen. In the Longitude Method, it will be remembered, only a Latitude is
chosen. The radius of the circle of equal altitude on, which the chosen position lies is
computed using the angle P opposite to the side ZX, and the other two sides, viz., PZ and
PX., of the PZX-triangle. This computed Zenith Distance is compared with the True Zenith
Distance obtained from the altitude observation of the body. The difference between the
computed and observed zenith distances is known as the “intercept”. The chosen position is
plotted on the chart, and the intercept is projected in a direction from the plotted chosen
position corresponding to the azimuth of the observed body. The position line is then
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projected through the end of the intercept in a direction at right angles to the azimuth of the
body. Fig. 3413 serves to illustrate the principle of the Intercept or “Marcq St. Hilaire
Method” of sight reduction.

P

Referring to fig. 34:-13: o denotes an observer
and Z, his zenith. ¢ is a chosen position which is
near to o; and x is the G.P. of an observed celestial
body. Because the distance oc is small (never more
than 40 or so miles in practice), and the distance
from o (or ¢) to x is great (usually in the order of
many hundreds, or even thousands of miles), the
direction of x from o is almost the same as that of
Fig. 3413 x from c. No error is introduced in practice by
assuming these directions to be the same. It is to be noted that the direction of x from o (or ¢)
is equivalent to the azimuth Z in the PZX-triangle.

The Intercept method is summarized as follows:
1. The altitude of a celestial body is observed and the G.M.T. of the observation noted.

2. The zenith distance of the observed body at the observer’s actual, but unknown,
position is found by subtracting the true altitude of the body from 90° 00"-0.

3. A position (Latitude and Longitude) near to the observer’s position is chosen.

4. The Latitude of the chosen position subtracted from 90° 000 gives the side PZ, of the
astronomical triangle which has to be solved.

5. The Longitude of the chosen position allows the observer to find the angle XPZ, of the
astronomical triangle. This angle is found simply by combining the Longitude of the chosen
position with the G.H.A. of the observed body determined by means of the Nautical
Almanac.

6. The declination of the body at the time of the obvservation is found from the Nautical
Almanac, and the polar distance gives the side PX of the astronomical triangle.

7. The side XZ, of the astronomical triangle is computed using the angle P and the
adjacent sides PZ, and PX.

8. The azimuth of the body is found, usually from Azimuth Tables.

9. The position line is plotted on the chart through the end of the intercept which is found
by taking the difference between the Computed Zenith Distance and the Observed Zenith
Distance or True Zenith Distance (T.Z.D.). The direction of the position line is at right
angles to the azimuth.

Great care must be taken to plot the intercept in the correct direction. If the Computed
Zenith Distance (C.Z.D.) is greater than the Observed Zenith Distance (T.Z.D.) the observer
must be nearer to the G.P. of the observed body than is the Chosen Position. In this case the
intercept is named TOWARDS. If, on the other hand, the C.Z.D. is less than the (T.Z.D.)
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the observer must be farther from the G.P., of the observed body than is the Chosen
Position. In this case the intercept is named AWAY. The following examples illustrate this.

Example 34-5— The T.Z.D. of a star was 42° 20"0 and the
C.Z.D. was 42° 30"0. The azimuth of the star was 240°. Plot
the position line.

Fig. 34-14 illustrates that the intercept in this case is
named TOWARDS.

Example 34:6—The Sun’s T.Z.D. was 20° 00~0 and the
C.Z.D. was 19° 50-0. The azimuth was 330°. Plot the position
line.

Fig. 34-15 illustrates that, in this case, the intercept is named AWAY.

wer It is clear from examples 34-5 and 34-6, that the intercept

ut o is named AWAY when the T.Z.D. is greater than the C.Z.D.,

X and that it is named TOWARDS when the C.Z.D. is greater

than the T.Z.D. Most practical navigators use a mnemonic

for finding, without effort, whether an intercept is AWAY or

TOWARDS. A common mnemonic is “TTT’ meaning True

¢ Tiny Towards or ‘TAG’ meaning True Greater Away. These

mnemonics often serve useful purposes, but it is always a

source of satisfaction to understand the basis of the
mnemonic.

Fig. 34-15

6. The Intercept Method in Practice

Example 34-7—13th June during evening twilight at about 1950 hr., the sextant altitude of
the star Denebola was 61° 02-0. Index error 05 on the arc. Height of eye 65 m.
Chronometer time 22 hr. 43 m. 50 s. Chronometer error 00 m. 05 s. fast on G.M.T. Using
Latitude 36° 100 N., Longitude 44° 000 W., ascertain the position line on which the
observer was located using the Intercept Method.

N
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Chron. Time 22h. 43m. 50s. G.H.A. y at22h. = 231°42"2

Chron. Error

— 00m. 05s.

Increment = 10° 58”-0

G.M.T. (13th) = 22h. 43m. 45, G.HA. v = 242°40"2
S.HA. % = 183° 15"8
Latitude = 36° 10”0 N. G.HA. * = 65 560
PZ = 53° 500 Longitude = 44° 00”0 W.
Declination % = 14° 48”3 N. H.A. % = 21°56™0
PX = 75° 11"
(PX — PZ) = 21°21"7

hav ZX = hav Psin P sin PZ sin PX + hav (PZ~ PX)

Azimuth (from Azimuth Tables) = 22814°

log hav P = 2-55859 Sext. Altitude = 61° 02”0
log sin PZ = 1-90704 Index Error = —0"5
log sin PX = 1-98634 Observed Alt. = 61° 015
log hav 6 = 2:45097 Dip = —4"5
nat hav 0 = 0-02824 Apparent Altitude = 60° 570
nat hav (PX — PZ) = 0:03435 Total corr. = —0"5
nat hav ZX = 0-06259 True Altitude = 60° 56”5
ZX = 28° 585 T.Z.D. = 29° 03”5
Tm aa C.ZD. = 28° 585
Intercept = 50 AWAY

289

p Position Line runs 138%4° — 318%4° through a point 5-0 miles 048%° from Latitude 36°
10"-0 N., Longitude 44° 000 W.
w/ AN =B Z/ — d E
| < Example 34:83—31st December at about 0800 hr. on board, the sextant altitude of the Sun’s
i lower limb was 36° 07-0. Index error — 1-0. Height of eye 22-8 m. Chronometer time 3 hr.
;}l I 47 m. 10 s. Chronometer error 05 m. 06 s. fast on G.M.T. Ascertain the position line on
| AT which the observer was located using the Intercept Method and a chosen position in Latitude
( | Fig. 34-16 40° 05”0 S., Longitude 63° 300 E.
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Position Line runs 001%° — 18114° through a point 15-9 miles 09114° from Lat. 40° 050
S., Long. 63° 300 E.

| i‘ W —] E
it
‘ Example 34-9—30th December at about 3 p.m. on board, the sextant altitude of the Sun’s
i lower limb was 18° 24”5, Index error 10 off the arc. Height of eye 21-4 m. Chronometer
time Ol hr. 34 m. 50 s. Chronometer error 08 m. 05 s. slow on G.M.T. Find, using the
| b S Intercept Method, the position line on which the observer was located, the chosen position
“'t Fig. 34-17 being Lat. 35° 100 N., Long. 161° 150 W.
lw Fig. 34-17 illustrates Example 34-8.
[t
0
[y Approx. Local Time = (31st) 08 h. 00 m. G.H.A.T.S. at 03 h. = 224° 19”2
in Longitude E. = 04h. 14 m. Increment = 10° 31”0 N
Y l Approx. G.M.T. = (31st) 03 h. 46 m. G.H.A.T.S. = 234° 5072 4
“l: Chron. Time = 03h. 47m. 10s. Longitude = 63° 300 E.
'l‘ Chron. Error = —05m. 06s. .
' HA. = 298° 202 ~
rll G.M.T. (31st) = 03h. 42m. 04s. P = 61°39-8 e
" Dec. (03h.) = 23°08-5S. d = 0”2 Latitude = 40° 05”0 S.
g Increment = — 01 PZ = 49° 550
al _ oo Fig. 34-18
4 | Dec. = 23°08-4S. (PX — PZ) = 16° 566
| PX = 66° 516
I @ hav ZX = hav Psin PZ sin PX + hav (PX~ PZ) Fig. 3418 illustrates Example 34-8.
1 .
dl log hav P = T1-41941 Sext. Altitude = 36° 07”0 )
| log sin PZ = T1-88372 Index Error = — 1”0 Approx. Local Tlme = (30th) 15h. 00 m. ‘
1 . — Longitude = 10 h. 45 m. |
| log sin PX = 1-96357 Obs. Altitude = 36° 06”0 - \
| ; A . G.M.T. = (31st) 01 h. 45 m.
| log hav 0 = 126670 Dip = —84 PProx (lst) 01h. 45m
| ! e
|\' nat hav 0 = 0-18480 Apparent Altitude = 35° 57”6
t hav (PX — PZ) = 0-:02170 Total corr. = + 149
H 1 Bt hex 4 Chron. Time = 0l h. 34m. 50s. G.H.A.T.S. at 01 h. = 194° 198 E.
. ) _ Chron. Error = +08m. 05s. Increment = 10° 43’8
I | nat hav ZX = 0-20650 True Altitude = 36° 125 e -
il | — ‘ G.M.T. (31st) = 01 h. 42m. 55s. G.H.A.T.S. = 205° 03”6
| ‘ ZX = 54° 034 T.Z.D. = 53° 47”5 Dec. (01h.) = 23°08’8S. d = 02 Longitude = 161° 150
\‘ | - _ ° , ——
“l fi CZD == 54 03 4 Increment — _Orl HA — 430 48/6
[ Interoept = 159 TOWARDS Dec. = 23° 08'7S. Lat. = 35° 100 N.
| PX = 113° 08”7 PZ = 54° 50”0
,} ! Azimuth (from Azimuth Tables) = 0914° (PX — PZ) = 58° 187
Ll = i
i |
{' }
1
|l
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hav ZX = hav P sin PZ sin PX + hav (PX — PZ)

log hav P = T1-14358 Sextant Alt. = 18° 24”5
log sin PZ = 1-91248 Index Error = + 10
log sin PX = 1-96358 Obs. Altitude = 18° 25”5
log hav 6 = T1-01964 Dip = —8"1
nat hav 6 = 0-10463 Apparent Altitude = 18° 174
nat hav (PX~ PZ) = 0-23736 Total correction = + 13”4
nat hav = 0:34199

ZX = 71° 34”7 True Altitude = 18° 30”8
T.Z.D. = 71° 292
C.Z.D. = 71° 347

Intercept = 55 TOWARDS

Azimuth (from Azimuth Tables) = 214°

Position Line runs 124° — 304° through a point 5-5 miles 214° from Lat. 35° 100 N.,
Long. 161° 150 W.

7. The Modified Formula

In the Longitude Method of sight reduction the angle P is found from the formula:

hav ZX — hav (PX~ PZ)

ey ¥ = sin PX sin PZ

This formula is simplified by a modification illustrated in fig. 34-19.

Referring to fig. 34-19:
PZ = (90° — NP) = 90° — Lat.)

Therefore:
% sin PZ = cos lat.
PX = (90° &+ QY) = (90° =% dec.)
X Therefore:
sin PX = cos dec.
Fig. 34-19
hav (PX ~ PZ) hav { (90° + dec.) ~(90° — Lat.) }

hav (Lat. ~ dec.) when Lat. and dec. have different names
hav (Lat.+ dec.) when Lat. and dec. have same name

o
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In general, therefore:
hav (PX~ PZ) = hav (Lat. £ dec.)

The Haversine Formula given above may, therefore, be modified to:

- +
bhaw P hav ZX — hav (Lat. £ dec.)

cos. Lat. cos. dec.
or: have P = { hav ZX — hav (Lat. = dec.) } sec. Lat. sec. dec.

By transposition, we have:

hav ZX = havP cos. Lat. cos dec. + hav (Lat. & dec.)
this being the corresponding formula for use with the Intercept Method of sight reduction.

The following examples illustrate the use of the Modified Haversine Formula.

Example 34-10—23rd September during evening twilight the observed altitude of Jupiter
West of the meridian was 16° 42”-0. Height of eye 8:6 m. Chronometer time 20 hr. 44 m. 10 s.
Chronometer error 07 m. 04 s. fast on G.M.T. Using the modified Haversine Formula and
the Intercept Method, ascertain the position line on which the observer was located given the
chosen position in Lat. 35° 20”0 N., Long. 40° 300 W.

N

e

Fig. 34-20 illustrates Example 34-10.

Approx. Local Time = (23rd) 18 h. 45 m. Chron. Time = 20h. 44 m. 10s.
Approx. Longitude = W. 2h. 42 m. Chron. Error = — 07 m. 04s.
Approx. GM.T. = (23rd) 20 h. 42 m. G.M.T. (23) = 20h. 37m. 06s.
Dec. at 20h. = 11°37%5S. d=0"2 G.H.A. at20h. = 90° 534 v=2"0
Increment =  +0"1 Increment = 9° 16”5
Dec. = 11° 376 S. veorr. = +1"3
G.H.A. Jupiter = 100° 11”2
Latitude = 35° 200 N. Longitude = 40° 300 W.
(Lat.+ dec.) = 46° 57”6 H.A. = 59°41"2
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|

‘ hav ZX = hav P cos Lat. cos dec. + hav (Lat. + dec.) Dec. at I5h. = 13° 504 N. d=7"0 G.H.A. = 89° 1040 v=13"2

; Incr. = +5-1 Incr. = 10° 25”6

log hav P = 1-39381 Obs. Altitude = 16° 42”0 PP —

A T . = 7. = /.

;| log cos Lat. = T-91158 Dip = —5°2 Dec. 13° 555 N. Vv corr. + 96

| - S

| = T ; = 16° 36" G.H.A. = 99°45"2

‘ log cos dec. = 1-99100 Apparent Altitude = 16° 36”8 Lat. = 40° 30N, Long, W. = 150° 000

| 1 =T Total tion = —3°2 repa —
§ ey )= e otal correction (Lat. — dec.) = 26° 245 H.A. = 300° 45'2

t‘ nat hav @ = 0-19788 True Altitude = 16° 33”6

[||| nat hav (1+d) = 0-15875 T.Z.D. = 73° 264 hav ZX = hav P cos Lat. cos dec. + hav (Lat. — dec.)

i {l nat hav ZX = 0-35663 C.Z.D. = 73° 202

| v:l — log hav P = T1-25589 Sext. Altitude = 38° 47”4
‘ | ZX = 73° 202 Intercept = 6-2 AWAY log cos Lat. = T1-88105 Index Error = —0"5

— — log cos Dec. = 1-98704 Obs. Altitude = 38° 469

| _ -

5 Azimuth (from Azimuth Tables) = 243° log hav 8 = 1-12398 Total corr. = + 214

!' ) i ) ) . (From Nories Table H.P. = 54"7)
| , Position Line runs 133° - 313° through a point 62 miles 043° from Latitude 35° 20”0 N.,
!

Longitude 40° 300 W. nat hav 8 = 0-13304 True Altitude = 39° 083

. nat hav (1-d) = 0-05217 T.Z.D. = 50° 517
Example 34-11—13th June at about 0545 hr. on board, the sextant altitude of the Moon’s —_—
upper limb was 38° 47"-4. Index error 0”5 on the arc. Height of eye 9:2 m. Chronometer time nat hav ZX = 0-18521 C.Z.D. = 50° 589
15 hr. 14 m. 20 s. Chronometer error 29 m. 22 s. slow on G.M.T. Using the modified formula m——

|
|
' and the Intercept Method, ascertain the position line on which the observer was located given _ , L =
| the chosen position in Lat. 40° 200 N., Long. 150° 000 W. ZX = 50°58"9 Intercept = 46 TOWARDS
‘ - -
Al -
:f i ( I\ Azimuth (from Azimuth Tables) = 106°
' om0
it / \ /
— 2 3 ' Position Line runs 016°-196° through a position 7-2 miles 106° from Latitude 40° 20’-0
\K\ sl N., Longitude 150° 000 W.
T e
| \
| -] 8. The Azimuth
| Fig. 34-21

\ ) ) In the early days of position line navigation the customary method of finding the azimuth
| Fig. 34-21 illustrates Example 34-11. was to apply the relatively simple Spherical Sine Formula to the PZX-triangle. The following
! example illustrates the method.

i! Approx. Local Time = (13) 05h. 45 m. Chron. Time = 15h. 14 m. 20s.
J ‘ Longitude W. = 10 h. 00 m. Chron. Error = +29m. 22s.
it | A .G.M.T. = (13) 15h. 45 m. G.M.T. (13th) = 15h. 43 m. 42s. Example 34-12—The altitude of Alphard (dec. = 8° 28”7 S.) was 32° 24’. The observer was
|1 1 pprox (13) hm ( ) " in Latitude 45° 100 S. Find the azimuth of the star at the time when its H.A. was 308° 14".
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Fig. 34-22
Referring to fig. 34-22:
sin Z = sin PX sin P/sin ZX
or: sin Z = cos dec. sin P sec alt.
log cos dec. = 1-99525
log sin P = 1-89515
log sec alt. = 0-07349
log sin Z = T1-96389
Therefore: Z = S.113° E.

N.B.—Care was necessary in using this formula because the sine of an angle is equal to the
sine of its complement; and, in the example given, it is not an uncommon mistake to call the
azimuth 67° instead of its complement, viz. 113°.

This example should be compared with Example 34-3.
Answer—Azimuth = S, 113° E.

At the time when position line navigation was discovered iron, and later steel, vessels
were becoming increasingly common. The difficulties associated with the magnetic compass
on board iron and steel vessels paved the way for the introduction of pre-computed Azimuth
Tables of the Davis and Burdwood type which are triple-entry tables giving azimuths against
Latitude, hour angle and declination. The Davis and Burdwood Tables, although designed
specifically for checking magnetic compasses, were readily adapted for position line
navigation. They are still commonly used today for this purpose as well as for checking
compasses. Although straightforward in use care is important in the necessary interpolation.

Another type of azimuth table is the 4 BC table which we shall discuss in detail in Chapter
38.

9. Compass Error by Azimuth

Compass Error is found by comparing an observed Compass Bearing of a body whose
True Bearing is known. In the days before pre-computed Azimuth Tables, the true bearing of
a celestial body was computed by the observer. This required the solution of the
PZX-triangle for the angle Z. Celestial bodies are more conveniently observed for azimuth
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when their altitudes are not great. Azimuth Mirrors and other devices used for observing
azimuths or bearings are subject to error when observing bodies at altitudes in excess of
about 30°.

True Azimuths at the present time are almost always obtained from Azimuth Tables or
ABC Tables.

10. Compass Error by Amplitude

The angle at the observer’s position between the East or West point of his celestial
horizon and the direction of a heavenly body at rising or setting is known as the body’s
Rising- or Setting-Amplitude. To facilitate finding compass error from an observation of a
body at rising or setting. Amplitude Tables are included in collections of tables such as those
of Norie’s or Burton’s. Amplitude Tables are double-entry tables giving amplitudes against
arguments Latitude and declination. Amplitudes are readily computed by applying Napier’s
Rules to the PZX-triangle, which is a quadrantal triangle in cases in which the True Altitude
of the body is 0°. Fig. 34:23 illustrates the so-called Amplitude Formula.

Fig. 34-23
In fig. 34:23:
ZX = 90°
PZ = co-latitude of observer
PX = 90° +£ declination of observed body
PZX = 90° * amplitude of observed body = (90° + A4°)

By Napier’s Rules:

cos PX = cos (90° = A) cos (90° — PZ)
That is: sin dec. = sin A cos Lat.
or: sin A = sin dec. sec Lat.

Amplitudes are always named from East on rising and from West on setting towards
North or South, the same as the name of Declination.
e.g. E. 10° N., or W. 5° S. etc.

Example 34-13—Find the Sun’s rising amplitude when its declination is 20° S., and the
observer’s Latitude is 40° N.
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sin Amp. = sin dec. sec Lat.
log sin dec. (20°) = 1-53405
log sec Lat. (40°) = 0-11574

log sin Amp. = 1-64979
E.26%° S.

Rising Amplitude
Answer—Amplitude = E. 2614° S.

It is important to bear in mind that when observing the Sun or Moon in an amplitude
observation that the centre of the observed body should be on the celestial horizon of the
observer, and to remember that the visible horizon does not coincide with the celestial
horizon. The effects of refraction, parallax and dip, results in the Sun’s and Moon’s lower
limb having an altitude of several minutes of arc at the time its centre is on the celestial
horizon. The following examples demonstrate this.

Example 34:14—Find the observed altitude of the Sun’s lower limb at a time when its
semi-diameter is 16" and the dip of the horizon is 5.

True Altitude of Sun’s Centre = 00° 00’
Semi-diameter = — 16’

True Altitude of Sun’s L.L. = — 16
Refraction = + 33’

Apparent Altitude of Sun’s L.L. = +17
Dip = +5

Observed Altitude of Sun’s L.L. = + 22

Answer—OQObserved Altitude of Sun’s L.L. = 00°-22".

Example 34:-15—Find the observed altitude of the Moon’s lower limb at a time when the
Moon’s H.P. and S.D. are, respectively 64’ and 16’, and the dip of the horizon is 5.

True Altitude of Moon’s centre = 00° 00’
Semi-diameter = — 16"

True Altitude of Moon’s L.L. = —00° 16’
Parallax = —01° 04’

Refraction = + 33’

Apparent Altitude of Moon’s L.L. = — 47
Dip = + 5

Observed Altitude of Moon’s L.L. = — 42

Answer—OQObserved Altitude of Moon’s L.L. = — 42,
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It is particularly important when using amplitude tables to make the observation at the
precise time at which the body’s centre is on the celestial horizon, especially when the latitude
is high. The reason for this stems from the fact that the higher the Latitude the sharper the
angle a body’s diurnal circle makes with the horizon. In these circumstances the rate at which
a body is changing its azimuth is relatively large, and a small change in altitude results in a
large change in azimuth. In practice it is better to treat all observations made to find compass
error as straightforward azimuth problems and to ignore the amplitude table.

Exercises on Chapter 34

Explain the term “sight” used in nautical astronomy.

Explain carefully the sides and angles of a typical PZX-triangle.

Explain the principles of astronomical position line navigation.

Describe Captain Sumner’s discovery.

Analyse the Longitude Method of obtaining a position line, and explain the

circumstances in which the method falls down.

Explain carefully the intercept method of sight reduction.

7. Explain the basis of naming the intercept TOWARDS or AWAY.
8. Demonstrate that the intercept method is superior to the longitude method of sight
reduction.

9. Explain why a single sight yields only a position line and not a position.

10. Show how the haversine formula applied to the PZX-triangle for finding (i) angle P, (ii)
side ZX, is modified by using Latitude and declination instead of sides PZ and PX
respectively.

11. Explain the Amplitude Table and its construction.

12. What precautions are necessary when making observations of (i) Azimuths, and (ii)
Amplitudes?

13. Explain why great care is necessary when making amplitude observations in high
Latitudes.

14. 16th June, at about 0730 hr. on board, the observed altitude of the Sun’s lower limb was
38° 05"0. Height of eye 10-8 m. Chronometer time 11 h. 30 m. 05 s. Chronometer error 8
m. 12 s. slow on G.M.T. Using Latitude 40° 000 N., Longitude 53° 30-0 W. reduce the
sight using the intercept method, and ascertain the position line on which the vessel was
located.

15. 22nd September, during the afternoon, the observed altitude of the Sun’s lower limb was
26° 30"0. Height of eye 12 m. Chronometer time 15 h. 35 m. 20 s. Chronometer error 4
m. 02 s. slow on G.M.T. Using Lat. 50° 000 N., Long. 10° 00’ W. reduce the sight using
the intercept method, and ascertain the position line on which the vessel was located.

16. 15th June, at about 1430 hr. on board, the observed altitude of the Sun’s lower limb was
12° 30™0. Height of eye 10-5 m. Chronometer time 0 h. 59 m. 20 s. Chronometer error 19
m. 10 s. fast on G.M.T. The sight was reduced using Lat. 45° 10”0 S., Long. 29° 30”0 E.,
find the intercept and position line.

17. 30th December, a.m. on board, the observed altitude of the Sun’s lower limb was 44°
460. Height of eye 19 m. Chronometer time 4 h. 22 m. 10 s. Chronometer error 20 m. 05
s. slow on G.M.T. The sight was reduced using Lat. 35° 100 S., Long. 59° 30”0 E.
Ascertain the position line.

18. 22nd September, a.m. on board, the observed altitude of Alphard, east of the meridian,

was 30° 12-0. Height of eye 13:5 m. Chronometer time 1 h. 35 m. 20 s. Chronometer

e (0 19

&
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error 5 m. 02 s. slow on G.M.T. The sight was reduced using Lat. 44° 50”0 S., Long. 120°
000 W. Find the intercept and position line.

19. 14th June, during morning twilight, the observed altitude of Mars was 64° 02-0. Index
error 05 off the arc. Height of eye 7-7 m. Chronometer time 10 h. 55 m. 23 s.
Chronometer error 13 m. 04 s. fast on G.M.T. Using Lat. 25° 10”0 S., Long. 50° 00”0
W., find the intercept and position line. Verify that the Longitude method of sight
reduction breaks down for this problem.

20. 22nd September, during evening twilight, the observed altitude of Jupiter was 19° 32”0.
Height of eye 8:8 m. Chronometer time 7 h. 01 m. 23 s. Chronometer error 18 m. 14 s.
fast on G.M.T. Reduce the sight using Lat. 45° 000 N., Long. 25° 000 W., and
ascertain the interceept and position line.

21. 14th June, during morning twilight, the observed altitude of Altair was 31° 44’-0. Height
of eye 13-4 m. Chronometer time 08 h. 00 m. 00 s. Chronometer error 16 m. 04 s. fast on
G.M.T. Using Lat. 25° 00”0 S., Long. 32° 00"-0 W., find the intercept and position line.

22. 15th June, during morning twilight, the observed altitude of Achernar was 51° 47”-0.
Height of eye 15 m. Chronometer time 07 h. 40 m. 03 s. Chronometer error 2 m. 20 s.
slow on G.M.T. Using Lat. 27° 000 S., Long. 28° 000 W., find the intercept and
position line.

23. 23rd September, during morning twilight, the observed altitude of Regulus was 40° 40"-0.
Height of eye 11 m. Chronometer time 5 h. 40 m. 20 s. Chronometer error 4 m. 15 s. fast
on G.M.T. Using Lat. 26° 00”0 N., Long. 165°-00"-0 W., ascertain the position line using
the intercept method. :

24. 23rd September, p.m. on board, the observed altitude of the Moon’s upper limb was 12°
11"-3. Height of eye 12 m. Chronometer time 18 h. 40 m. 20 s. Chronometer error 01 m.
02 s. slow on G.M.T. Reduce the sight using the intercept method using Lat. 54° 00”0 N.,
Long. 15° 000 W., and ascertain the intercept and position line.

25. 31st December, a.m. on board, the observed altitude of the Moon’s upper limb was 35°
48"7. Height of eye 12 m. Chronometer time 8 h. 36 m. 02 s. Chronometer error 00 m. 04
s. slow on G.M.T. Using Lat. 48° 00”0 N., Long. 30° 00"-0 W. reduce the sight using the
intercept method and ascertain the intercept and position line.

Note—It would be a useful and illuminating exercise to solve questions 14 to 25 inclusive
using the Longitude method of sight reduction, and to verify that the same position line is
found in every case.

CHAPTER 35
POSITION LINES AND PLOTTING CHART

1. Introduction

Not uncommonly, a navigator observes the Sun in the morning and solves his sight using
the Longitude Method. It is important to realize, as we have stressed in Chapter 34, that the
calculated Longitude is not generally the observer’s actual Longitude at the time at which the
observation is made. The calculated Longitude is the observer’s actual Longitude only if the
Latitude used in the computation is the actual Latitude of the observer at the time of the
sight. Because, in general, the Latitude of a vessel is not known, the Longitude of the vessel
cannot be determined from a single sight. It is important to appreciate that the result of a
morning Sun-sight is NOT a longitude but a POSITION LINE. The Longitude calculated is
that of a point located on the position line which also lies on the parallel of the Latitude used
in reducing the sight; and the direction of the position line is at right angles to the bearing of
the observed body at the time of the sight.

Referring to fig. 35-1, suppose an observation of the Sun bearing 070° gives a calculated
Longitude 4° when Latitude a° is used in the computation; then the calculated Longitude
would be B° had Latitude »° been used; Longitude C° had latitude ¢° been used; and so on.
Notice that, in every case, although a different Longitude is computed, the same position line
is determined.

" Fig. 35-1
Referring to fig. 35-2, suppose that a navigator aboard a stationary vessel in Latitude 50°
00”0 N., Longitude 30° 000 W., observes the Sun, having North declination, when it is
successively at positions d, e and f. Suppose that these observations are reduced by the
Longitude Method using, in turn, Latitude 50° 00”-0 N.—the true Latitude of the vessel—and
Latitude 50° 100 N.

Fig. 35-2
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