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PREFACE

THIS new edition includes numerous changes and additions. Various steps involving
calculations and procedure have been included in worked out examples particularly in
navigational sight calculations.

All calculations are worked out into metric (S.1.) units.

Although the plan of this present book follows closely of the original, the new features
include the latest methods of Tidal calculation using 1987 Tide Tables. All information
relating to chartwork has been updated. Other new features are the inclusion of a chapter in
Satellite Navigation System and Omega. Many new diagrams have been added.

This revised edition and enlarged version provide the basic groundwork for the
professional examination for Class I, Class II and Class III Certificate of Competency in
Navigation and Nautical Astronomy and aimed specially to cadets preparing for B/TEC
National Diploma and Higher Diploma in Nautical Science.

This book brings a fresh approach to the study of Navigation, and the emphasis is on the
understanding of principles as well as on practical applications. It provides a thoroughly
comprehensive and logically arranged scheme of studies in all fields of Navigation and
Nautical Astronomy. The book is splendidly produced in large format, and among its
attractive features are numerous clear line drawings, a wide range of worked examples and a
large number of exercises, making it ideally suitable for classroom tution as well as for
students working independently.

My share of the labour involved in producing the revised version was greatly reduced by
Mrs. Manjusha Lahiry, my wife, for her patient and invaluable assistance with proof reading.
It is a pleasure for me to record my sincere appreciation.

I have great faith and hope that the students and officers in Merchant Navy from all parts
of the world will benefit from this book.

HIMADRI K. LAHIRY
FLEETWOOD, 1987
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| CHAPTER 1

: PLANE TRIGONOMETRY

1. Introduction

| The branch of mathematics which deals with the calculation of the unknown parts of a
' | triangle is known as trigonometry. The word trigonometry—usually frightening to a

beginner—means nothing more than triangle measurement. An important part of a
| navigator’s work involves solving triangles, so that it is essential for a student of navigation
l to have a full knowledge of the elements of this important branch of mathematics.

| Trigonometry is divided into two parts. The part which deals with the mathematics of
, plane triangles is known as plane trigonometry: that which deals with spherical triangles is
known as spherical trigonometry.

one of the three known parts is a side, the unknown parts may be found geometrically by
. construction, or trigonometrically by calculation. The calculations of the unknown parts of a
triangle is facilitated by using tables of trigonometrical functions. A function in mathematics
is a quantity whose value depends upon the value of some other quantity. We say, for
\ example, that the speed of a ship through the water is dependent upon her displacement, so
" that speed is a function of displacement. It is also a function of any of a variety of other
factors, such as the rate at which the propeller is revolving, and the rate at which fuel is being
consumed.

:
1 Of the six parts—three angles and three sides—of a plane triangle, provided that at least
|

A trigonometrical ratio is a function of an angle. In a right-angled triangle which contains
an acute angle 0, the trigonometrical ratios of the angle 6 are the numerical comparisons
between the lengths of pairs of sides of the triangle. Because a triangle has three sides there
are, accordingly, six trigonometrical ratios. These are known, respectively, as the sine,
cosine, tangent, cotangent, secant and cosecant.

In the right-angled triangle illustrated in fig. 1-1, the trigonometrical ratios of the angle 6
are:
The ratio a:c, that is a/c, is the sine of 0, or sin 0
The ratio b:c, that is b/c, is the cosine of 6, or cos 0
c a  The ratio a:b, that is a/b, is the tangent of 6, or tan 6
The ratio b:a, that is b/a, is the cotangent of 6, or cot 0
% The ratio c:b, that is ¢/ b, is the secant of 6, or sec 6
' The ratio c:a, that is c/a, is the cosecant of 6, or cosec
0.

Fig. 1-1

5 ﬁvr-wﬂ:r_f[
o

a

In addition to these six trigonometrical ratios there are two other trigonometrical
functions known, respectively, as the versine and the haversine. These are of considerable use
in the practice of navigation and nautical astronomy.

3

i




4 THE ELEMENTS OF NAVIGATION AND NAUTICAL ASTRONOMY

versine (or vers) 6 = 1 — cos )
haversine (or hav) 6 = half vers 0)
(1 — cos 0)

The trigonometrical functions of an angle are dependent solely upon the magnitude of the
angle.

Y Referring to fig. 1:2, suppose the line 4.X to be

rotated about the point A4 so that any acute angle

D 0 is swept out. Perpendiculars dropped from any

points B and D on AY onto AX will form two

B similar or equiangular triangles ABC and ADE
respectively. Now the ratio between any two

corresponding sides of similar triangles is a con-

0 stant amount. It follows that:
A C E % BC/AB = DE/AD = sin 0
AC/AB = AE/AD = cos 9
Fig. 1-2 BC/AC = DE/AE = tan 0

2. Complementary Angles

Two angles are said to be complimentary when their sum is 90°. Angles of 30° and 60°
are complementary, each being the complement of the other. Because the sum of the three
angles of a plane triangle is 180°, it follows that the two non-90° angles of a right-angled
triangle are complementary.

In the right-angled triangle illustrated in fig. 1-3, the
angle BAC is denoted by 6. The angle 4 BC, therefore,
is (90° — 0).

It is readily seen that:

sin 6 = a/c = cos (90° — 9)
tan 0 = a/b = cot (90° — 9)
Fig. 1-3 sec 6 = ¢/b = cosec (90° — 0)

Thus, the sine of an angle is equal to the cosine of its complement; the tangent of an angle
is equal to the cotangent of its complement; and the secant of an angle is equal to the
cosecant of its complement. Similarly, the cosine of an angle is equal to the sine of its
complement; the cotangent of an angle is equal to the tangent of its complement; and the
secant of an angle is equal to the cosecant of its complement. This is the reason for the prefix
“co” which stands for complement, in the names cosine, cotangent and cosecant. We have,
for example:

sin  55° = cos 35°
tan 60° = cot 30°
sec  24° = cosec 66°
cos 67° = sin 23°
cot 86° = tan 4°
cosec 14° = sec 76°

PLANE TRIGONOMETRY 5

3. Trigonometrical Functions as Straight Lines

Sine and Cosine. Suppose the radius of the circle illustrated in fig. 1-4 to be of any unit
length. Let the radius 4B sweep out any acute angle 6. Because the radius of the circle is
unity the length of the side DC in the right-angled triangle ACD is the sine of the angle 6.
That is: sin 8 = DC

The sine of an arc or angle may, therefore, be defined
as the length of a perpendicular dropped from one
extremity of an arc of unit radius onto the diameter of
the circle of which the arc forms part drawn through the
other extremity.

If the angle BAE infig. 1-4 is 90°, the angle EAD is
the complement of 6. The sine of the complement of 6,
that is to say, cos 0, is denoted in fig. 1:4 by the line DF.
But DF is equal in length to AC, so that:

Fig. 1-4 cos 6 = AC

The sine of 0° is zero because when 0 is 0° the length of the perpendicular DC is zero.
The cosine of 0° is unity because when 6 is 0° the length of 4C is equal to the radius of the
circle, which is unity.

The value of the sine of an angle increases from 0 to 1 as the angle increases from 0 to 90°,
but the value of the cosine of an angle decreases from 1 to 0 as the angle increases from 0 to
90°.

If, in fig. 1-4, distances measured to the right of 4 in the direction of B are designated
positive, then distances measured to the left of 4 will be designated negative. Again, if
distances measured from A in the direction of E are designated positive, distances measured
in the opposite direction will be designated negative. It follows that the sines and cosines of
all acute angles are positive. But consider the situation for angles greater than 90°.

The sine of an angle decreases from+1 to 0 as the angle increases from 90° to 180°, and

the cosine decreases from 0 to — 1 as the angle increases from 90° to 180°. As the angle
increases from 180° to 270° the sine decreases from 0 to — 1 and the cosine increases from
— 1to0 0. As the angle increases from 270° to 360°, to complete the circle, the sine increases
from — 1 to 0 and the cosine increases from 0 to +1.
+10 — The graphs of the sine and
g . cosine of angles between 0° and
S 1o 360° are illustrated in fig. 1'S.
0 Re 3% The two curves are said to be out
-05 : of phase with each other to the
> extent of 90°. In other words if
g — the cosine curve is moved 90° to

0 30 60 90 120 150 180 210 20 270 300 330 360

the right it will coincide with the
Fig. 1-5 sine curve.
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Tangent and Cotangent. Suppose the radius of the arc illustrated in fig. 1-6 is of unit
length. Let the radius 4 B rotate about A to form the acute angle 0. Let a straight line drawn
tangentially to the arc at B cut the radius 4D produced at G. The radius of the arc is unity, so
that the length of the line BG is the tangent of the angle 6.

E
/ g If a straight line be drawn tangentially to the arc at E,

G which is 90° from B, to cut the radius 4D produced at H, the
‘ length of the line FH is the cotangent of the angle 6. In other
C words EH is the tangent of the complement of the angle 6.
A cB The triangles ACD and ABG are similar, so that the ratio
Fig. 1-6 between corresponding sides is constant. Thus:
CD/AC = BG|/AB
or: sin 6/cos § = tan 6/1

The tangent of an angle may, therefore, be defined as the ratio between the sine and
cosine of the angle.

Secant and Cosecant. The secant of an angle is the length of the line drawn from the
centre of a circle through one extremity of an arc to the tangent drawn from the other
extremity of the same arc in a circle of unit radius. In fig. 16 the secant of the angle 6 is
represented by the line 4 H. It should also be noted that the length of this line is equal to the
cosecant of the complement of 8.

The triangles ACD and ABG are similar, so that:
AG|/AB = ADJAC
and: sec 6/1 1/cos 6

The secant of an angle may, therefore, be defined as the reciprocal of the cosine of the
angle. Similarly, the cosecant of an angle may be defined as the reciprocal of the sine of the
angle.

4. The Signs of the Trigonometrical Ratios of Angles between 90° and 180°

In the practice of navigation, when solving triangles, angles having values of up to 180°
only are involved. For this reason angles over 180° need never be considered in the practical
work of solving triangles.

Two angles are said to be supplementary when their sum is 180°. It will be noted from the
graphs of the sines and cosines of angles illustrated in fig. 1-5, that the sine of an angle is
equal to the sine of its supplement, and that the cosine of an angle is equal to minus the
cosine of its supplement.

In the second quadrant, which refers to angles between 90° and 180°, the tangent and the
cotangent are negative because the sine is positive and the cosine is negative. The cosecant of
an angle in the second quadrant is positive because the sine, whose reciprocal it is, is also
positive. The secant of an angle in the second quadrant is negative because the cosine, whose
reciprocal it is, is also negative.

PLANE TRIGONOMETRY 7

D Versine and Haversine. The versine of an angle is
defined as “one minus the cosine of the angle”, and
the haversine of an angle is a half of the versine of the
angle.

It is noticed from fig. 1-7 that when the angle 6
increases from 0° to 180°, the versine of 6—which is
equal to the length of the line BC—increases from 0

Fig. 1-7 to +2.

g T [ N Fig. 1-8 illustrates the graphs of the versines and
o haversines, and the cosines, of angles between 0° and

P S 360°.

<« Vers 180>

0 7 e The principal feature of the functions versine and
haversine is that they are always positive. In contrast
Sosing to cosines, which in the second quadrant are negative,

versines and haversines are easily handled in compu-
Fig. 1-8 tations because they are always positive. It is for this
reason that they are used in preference to cosines for solving certain navigational triangles.

5. The Standard Formulae

From the foregoing remarks it will be observed that sines and cosines are lengths of lines
within a circle; tangents and cotangents are the length of lines which rouch a circle; and that
secants and cosecants are lengths of lines which cut a circle.

E H Consider the triangles 4CD, ABG, and AEH, in
/ fig. 1-9. These are similar triangles, so that:
D g CD/AC-= BG/AB = AE/EH
or: sin 6/cos 6 = tan 6 = 1/cot 6
Also: CD/AD = BG/AG = AE/AH
= or: sin /1 = tan 6/sec ® = 1/cosec 6
A e B Also:  AC/AD = ABJ/AG = EH/AH
Fig. 1-9 or: cos 6/1 = l/sec 8 = cot 6/cosec ©
By Pythagoras’ Theorem:
CDHAC? = AD?
so that: sin2 6+cos2 6 = 1
Also BG>+AB = AG?
so that: tan2 6+1 = sec? 0
Also EH?+AE? = AH?
so that: 1+ cot2 6 = cosec? 9

The above formulae are known as the Standard Formulae. They are sometimes useful in
navigational work, and are worth remembering.
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6. Special Angles

Itisa comparatively easy matter to derive the trigonometrical ratios of 0°, 30°, 45°, 60°
and 90°. It is useful to memorise the ratios of these so-called “special angles”.

. It has already been established that:

sin0° = 0
cos 0° =1
sin 90° = 1
cos 90° = 0

f It follows that:

tan 0° = sin 0°/cos 0° = 0/1 = 0
tan 90° =  sin 90°/cos 90° = 1/0 = oo
sec 0° = I/cos0° = 1/1 =1
sec 90° = 1/cos 90° = 1/0 = oo
cosec 0° = 1/sin 0° = 1/0 = oo
cosec 90° = 1/sin 90° = 1/1 = 1
cot 0° = I/tan 0° = 1/0 = o0
cot 90° = 1/tan 90° = 1/ = 0

The trigonometrical ratios of 30° and 60° may be found as follows:

B Let the radius of the circular arc illustrated in fig. 1-10 be of any

unit length. Let AX be rotated about A through an angle of 30° to AB.
From B drop a perpendicular onto 4X and produce to D on the arc.
) sl

A X Join AD. In the triangles ABC and ACD:
‘ AC = AC (common)

D AB = AD (radii)
Fig. 1-10 ACB = ACD (90°)
The triangles ABC and ACD are, therefore, congruent triangles. Also the triangle ABD is
equilateral.
Therefore:
BC = Y% BD = 4 AB
Also ABC = 60°
Now AB =1
. Thus, BC = Y
;‘,ﬁ By Pythagoras’ Theorem:
s AC? = AB> — B(?
’p = 12 — 1/22
3 Thus AC = \/3/2

g | It follows that:

PLANE TRIGONOMETRY 9

sin 30° = BC = 14 = cos 60°
sin 60° = AC = /3/2 = cos 30°
tan 30° = sin 30°/cos 30° = 1/4/3 = cot 60°
tan 60° = sin 60°/cos 60° = V3 = cot 30°
cosec 30° = 1/sin 30° = 2 = sec 60°
cosec 60° = 1/sin 60° = 2/+/3 = sec 30°

The trigonometrical ratios of 45° may be found as follows.

Let the radius of the circular arc depicted in fig. 1-11 be of any unit length. Rotate OX
about O to OA so that the angle AOB is 45°. The triangle OAB is, therefore, isosceles, and
AB is equal to OB. By Pythagoras’ Theorem:

A 0OA? = AB*+ OB?
= 2AB
Thus: AB? = 0A%/2
and AB = 1//2 = OB
O Therefore: sin 45° = cos 45° = 1//2
B X tan. 45° = cot 45° =1
Fig. 1-11 sec 45° = cosec 45° = /2

Exercises on Chapter 1

1. Find by scale drawing:
(i) tan 26°
(ii) cos 62°
(iii) sec 48°
2. Find by scale drawing the acute angle whose:
(i) cotangent is 0-7
(i) secant is 1-4
(iii) sine is 0:6
3. If the sine of an acute angle is 0-4 find, without using tables, the remaining five
trigonometrical ratios of the same angle.
4. Explain why cos 56° equals sin 34°.
Prove: (i) sin? A+cos24 = 1
(ii) cosec2a — 1 = cot2a
Show that tan 100° is equal to negative tan 80°.
Prove: cos 30° = V3/2.
Explain what is meant by the versine of an angle.
What is the principal advantage of a versine table compared with a cosine table?
10. If the haversine of an angle is 0-6 find the angle by scale drawing.
11. Derive the trigonometrical ratios of 0°, 90°, 180° and 270°.
12. Prove: sin 45° cosec 45° 'sec 30° sin 60° = 1.
13. Prove graphically that sin (180° — A) is equal to sin A4 given that 4 is an acute angle.
14. Demonstrate graphically that the secant of 38° is approximately equal to the tangent of
38°.
15. Find angle 6 given that: vers 6 = 3 cos 6.

W
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CHAPTER 2
CIRCULAR MEASURE
1. The Radian

The length of the circumference of any circle is a constant number of times the length of
the diameter of the same circle. This constant number is denoted by the Greek letter Pi or 7.
It is an incommensurable quantity; but, to four places of decimals, it is:

3-1416
22/7 approximately

Tr:

It follows that the length of the circumference of a circle is 27 times the length of the
radius of the same circle. Thus, if the radius is fitted around the circumference, as shown in
fig. 21, it will be found that 27, or 6-28..radii will equal the length of the circumference.

Since the angle subtended at the centre of a circle by
the circumference is 360°, it is evident that the angle
subtended by an arc whose length is equal to the
radius of the circle is 360/2, or 360/6:28 . . degrees.
This angle is 57°-3 or 3438’ approximately. It is the
unit of circular measure known as the radian, the
symbol for which is a small letter c.

Circular measure provides a method of measuring
or denoting angles which simplifies the solutions of
certain’ navigational problems. Thus, instead of
saying that the angle at the centre of a circle
subtended by the circumference is 360°, we may say
that it is 27 radians.

Thus:
360° is equivalent to 27 radians
180° is equivalent to ¢
and 57°-3 is equivalent to 1¢ approximately

~sasge— To find the number of radians corresponding to a
given number of degrees, the latter is divided by 57-3.
To find the number of radians in a given number of
Fig. 2-1 minutes of arc the latter is divided by 3438.
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For example:

360° = 360/57-3 = 6:28..¢

90° = 90/573 = 1-57..

121° = 121/573 = 2:11..¢
59438 = 3438 = 343-8/3438 = 0-1¢

If the length of the arc of a circle of given radius is known it is an easy matter to find the
number of radians contained at the centre of the circle subtended by that arc. A circle of
radius 10 cms. has a circumference of 27 . 10 cms. or 62:83 cms. The circular measure of the
angle at the centre subtended by the circumference is 6:28 . .c. An arc which is one-quarter of
the circumference in length, that is to say 15-707 cms., subtends an angle which is equal to
one-quarter of 6-28 . ., which is 1-57 . .. This may be found by dividing the length of the arc
by that of the radius. Similarly, an arc of 23 cms. in a circle of radius 10 cms. subtends an
angle of 23/10, or 2-3¢.

Thus:
Arc length/Radius
Circular Measure X Radius

Circular Measure
or Arc length

Example 2-1—A circle has a radius of 20-0 miles. What length of its perimeter subtends an
angle of 2-3¢ at its centre?
Arc length = Circular Measure X Radius
= 2:3X 200
= 460
Answer—Length = 46-0 miles.

Example 2:2—Find the radius of a circle if an arc of 3-4 cms. subtends an angle of 1-60
radians at its centre.
Radius = Arc length/Circular Measure
3-4/1-60
2-12..

([l

Answer—Radius = 2:12..cms.

The following examples illustrate some of the practical applications of circular measure
to navigation.

Example 2:3—A headland is kept abeam at a distance of 5:0 miles. Find the distance
travelled by the ship in changing the bearing of the headland 95°.

Radius = 5-0 miles
AOB = 95°
= 95/57-3 radians
Arc AB = radius X AOB¢

50 (95/57-3)
83
Answer—Distance travelled = 8:3 miles.

Uw o [




12 THE ELEMENTS OF NAVIGATION AND NAUTICAL ASTRONOMY

Example 2-4—The horizontal angle between the extremities of a small circular island having
a diameter of 1-1 miles is 5°30". Find the distance off.

5° 30" = 330/3438

1-1 miles

a/ 6 = 1-1(3438/330) = 11-5

I

@&a:

Fig. 2-3
Answer—Distance off = 11-5 miles.

2. Trigonometrical Ratios of Small Angles

Circular measure is particularly useful when dealing with very small angles because, as fig
2+4 shows, the lengths of the sine, tangent and arc, of a small angle, are very nearly equal to
one another. The smaller the angle the more nearly so is this. In practice the degree of
smallness of the angle involved determines the accuracy required in the final result. In
general, for navigational purposes, angles of less than about 6° may be considered to be
small.

Referring to fig. 2-4 it may readily be seen that the arc BD is very nearly equal to each of
the lines CD and BE.

Now: BD/OB = BODr¢
BE/OB = tan BOD
CD/OB = sin BOD

DE If arc BD and lines BE and CD are
considered to be equal in length; then, for
practical purposes:
. c B BD/OB = BE/OB = CD/OB

- Therefore: 6¢ = tan 6 = sin 0
Fig. 2-4

This means that when the circular measure of a small angle is required, the sine or tangent

of the angle may be used without introducing material error. Conversely, when the sine or the
tangent of a small angle is required, the angle in radians may be used.

For small values of 6 the graphs of sine 8 and tangent 0, against angle 0, are almost
coincident straight lines. It follows that the sine or tangent of a small angle is proportional to
the angle itself. That is to say:

sin 6 o« @
tan 6 o 0
It follows that:
sin 1°/1° = sin 6/ 0
and, tan 1°/1° = tan 6/ 0
In other words:

sin @ = 0°sin1° and tan 6 = 6ctan 1°
or, sin 6 = 0'sinl’” and tan ® = ¢’ tan 1’
or, sin @ = 0”sin1” and tan § = 0”tan 1”

The following examples should be studied carefully.
Example 2-5—The sine of 1° to four decimal places is 0-0175. Find the sine of 4° and verify
from trigonometrical tables that your answer is correct to three decimal places.
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sin 1° = 0:0175 to 4 decimal places
Thus: sin 4° = 4 X 0-0175
= 0070 to 3 decimal places

From tables:
sin 4° = 0-0698 to 4 decimal places

Example 2-6—Find without using tables:

@) sin 0° 30’
(ii) cot 0° 20’
@) sin © = 6c when 0 is small
Therefore:
sin 30" = 30/3438 = 0-0088 approximately
(ii) cot 20’ = 1/tan 20’
tan 20" = 20/3438
Therefore:
cot 20" = 3438/20

171-9 approximately
Answers—sin 30’ = 0-0088
cot 20" = 1719.

Exercises on Chapter 2

f—

Find the values of the following angles in radians: (i) 137°, (ii) 59° 51, (iii) 37° 52”.
2. Given the following arc lengths and corresponding radii, find the angles in radians:
(i) Arc length 32”7, radius 15”.

(ii) Arc length 7-2 miles, radius 3:73 miles.
(iii) Arc length 120-0 feet, radius 0-073 nautical miles (Note:1 nautical mile = 6080
feet).

3. Find the length of an arc subtended by an angle of 2-731¢ in a circle of radius (i) 17-2
cm., (ii) 100-0 yards.

4. - Prove that: ¢ = r 8 where a is the length of an arc of a circle of radius », and 0 is the
angle subtended by the arc in circular measure.

5. Show that if 6 is a small angle:

sin 6=tan 6= 6¢

6. A nautical mile on a spherical Earth is defined asd the length of an arc of a greater circle
of the Earth, the extremities of the arc subtending an angle of 1” at the Earth’s centre.
What is the Earth’s diameter in nautical miles?

7. A ship is conned around a point of land at a constant distance of 3-5 miles. Find the
distance between the instants when the point bore respectively N. 20° E. and S. 50° E.

8. One angle of a plane triangle is m/4¢, another is 37/ 8¢. Find the third angle in degrees
and radians.

9. A tower 200-0 feet high subtends a vertical angle of 1° 40’. Find the distance off without
using tables.

10. Show that for a small angle 6: sin 6= 6’ sin 1’.

11. Given sin 1° =0-0174524, find approximate values of: (i) sin 5°, (ii) cosec 2°, (iii) tan
30’, (iv) cot 89°.

12. Given tan 1’ = 0-0002909, find approximate values of: (i) tan 1°, (ii) cot 40’. comment

upon the degree of accuracy of the answers given to questions 11 and 12.
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CHAPTER 3

THE TRAVERSE TABLE AND THE SOLUTION
OF PLANE RIGHT-ANGLED TRIANGLES

1. Introduction

Perhaps the most useful of all nautical tables is the Traverse Table. This table, simple in
construction, is nothing more than an orderly collection of solutions of plane right-angled
triangles. Although the traverse table may be used for solving any plane right-angled triangle,
its principal uses in the hands of a navigator are to find:

(a) the direction of one given terrestrial position from another,

(b) the distance between two given positions on the Earth’s surface,

(¢) aship’s position after she has travelled from a given position in a given direction for a
given distance.

These purely navigational problems are investigated in Part 2: in this chapter we shall
examine the principles of the traverse table.

2. Plane Right-angled Triangles and their Traverse Table Solutions

The hypotenuse of any right-angled plane triangle lies opposite to the right angle, and the
two non-90° angles are complementary angles.

Consider the plane right-angled triangle illustrated in fig.
3:1. The lengths of the sides 4AC and BC are functions of the
angle A (and angle B), and of the length of the hypotenuse
opposite AB.

(@)

Values of the sides AC and BC are tabulated in the
traverse table against values of angle A (and B) and of the
hypotenuse 4 B. The tabulated lengths of 4 B are usually given
at intervals of one unit from 0 to 600 units.

adjacent

The values of the three sides of every triangle that can be
solved directly by means of the traverse table are tabulated in
three vertical columns labelled Hypotenuse (Distance); Oppo-
site (Departure); and Adjacent (D. Lat.). A complete page is
given for each whole degree of angle A (and B), which is
Fig. 3-1 designated Course Angle.
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To solve a 20° right-angled triangle
having a hypotenuse of 10 units, the
traverse table is entered at the page
corresponding to a Course Angle of
20°. Abreast of 10 in the hypotenuse
(Distance) column will be found the
values of the sides adjacent and oppo-
site to the angle 20° in the triangle to be
solved. In this case, the side opposite is
3-4 units and the side adjacent to the
20° angle is 9-4 units.

adj.

A

Fig.3:2

To solve a 70° right-angled triangle having a hypotenuse of length 10 units, the table may
be entered at angle 20°—which is the complement of 70°—and the value of the side adjacent
to the angle 70° will be found in the column labelled Opposite; and that of the side opposite
to the angle 70° will be found in the column labelled Adjacent. The reason for this will be
clear from an examination of fig. 3-2.

It is not necessary to extend the traverse table beyond 45°. To solve any right-angled
triangle the table may be entered with the smaller of the two non-90° angles, one of which
must be smaller than or equal to 45°. The values of the lengths of the oppositae and adjacent
sides may then be lifted from the table remembering, that the larger of the two sides forming
the right angle is that which faces the larger of the two non-90° angles.

To facilitate the use of the traverse table angles between 45° and 90° are printed at the
bottoms of the pages, such that the sum of the angles at the top and bottom of the page is
90°. Thus, at the top of the page which is labelled 25°, the angle 65°—the complement of
25°— will be found at the bottom. The columns labelled Opposite and Adjacent,
respectively, at the top of the page are labelled Adjacent and Opposite, respectively, at the
bottom of the page.

The layout of the traverse table is illustrated in

. | o fig. 3-3.
i i
il i The solution of the straightforward right-angled
vt | o0 triangle problem, in which the given angle and side
w1 |32 P have integral values, is simple. If however, the given
g % angle is not an integral degreee and/or the given side
| ss “ wl is a fractional quantity, interpolation may be neces-
sary, and this is tedious and warrants considerable
z 1= care. It is for this reason that awkward right-angled
Fig.3-3 —— — triangle problems are usually computed instead of

being solved by inspection. It should be borne in
mind, however, that the traverse table affords a ready check on even complex right-angled
triangle solutions.

Example 3-1—From a vessel heading 110° a lighthouse bore 050° at the same time as a
steeple bore 072°. After travelling for 8-0 miles the lighthouse and the steeple were in transit
abeam. Find the distance between the lighthouse and the steeple.
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Hint—Draw a diagram and then plan a solution.

In fig. 3-4 A and B denote the positions of the vessel at each of the times of observation. C
denotes the steeple and D the lighthouse.

Plan—1. Using angle DAB and side AB in triangle DAB, find the side BD.
2. Using angle CAB and side AB in triangle ACB, find the side BC.
3. Subtract BC from BD to give the required distance.

From traverse table:
BD = 13-86 miles
BC = 6°25 miles
CD = BD — BC = 7-61 miles
Answer—Distance = 7-6 miles (to the nearest 0-1 of a mile).

Note—To find the sides BD and BC the traverse
table was entered with 80, not 8, in the column
labelled Adjacent. The decimal point was than shifted
one place to the left to give the result to the nearest
second place of decimals.

It should be appreciated that the accuracy of the
result of any computation can never be greater than
that of the data used in the computation. If, for
example, the distance given in Example 3-1 had been
8 miles to the nearest mile, BD and BC to the nearest
, mile would have been 14 and 6 respectively, and the
Fig. 3-4 w‘ required distance would have been 8 miles to the
nearest mile.

Example 3-2—The shadow of a vertical flag staff is 25
metres long at a time when the Sun’s altitude is
B 46°15’. Find the length of the staff.

In fig. 3-5 AB is the required length.
AB/AC = tan BCA
Therefore:
AB = AC. tan BCA
25 X tan 46° 15

C K465’ A
77777 SIS Vs

From traverse table, interpolating between
Fig. 3-5 angles 46° and 47°, with 25 in the column
labelled Adjacent (D. Lat.), AB, from the
column labelled Opposite (Departure), is 26 metres to the nearest unit.
Answer—Length = 26 metres.

Although the Hypotenuse (Distance) column in the traverse table extends only to 600
units, this in no way limits the use of the table. When the value of the hypotenuse of a triangle
exceeds 600, the other two side may be solved by entering the table with any fraction of the
hypotenuse, such as half or quarter, and then multiplying the tabulated values by the
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reciprocal of the fraction. An alternative method is to find the values corresponding to the
hypotenuse value of 600, and to add to these the values corresponding to a hypotenuse equal
to the excess of the given hypotenuse over 600.

To add the lengths of the adjacent and opposite sides in a 40° right-angled triangle having
a hypotenuse of 842-0, the two methods are used with reference to fig. 3-6 (a) and (b),
respectively.

Method 1—Enter traverse table at angle 40°, and with hypotenuse equal to half the given
value, that is to say, with 421-0, we have:
Tabulated adjacent = 322-5. This multiplied by 2 gives 645-0.
Tabulated opposite = 270-6. This multiplied by 2 gives 541-2.

Method 2—Enter traverse table with angle 40°, and with 600 and 242 in turn.

Adjacent for 600 = 459-6 Opposite for 600 = 385-7
Adjacent for 242 = 185-4 Opposite for 242 = 1556
Required Adjacent = 645-0 Required Opposite = 541-3
- 27064 prs5ef

The following examples illustrate that the traverse
table may be employed for solving any problem in which
a simple ratio is involved. This enlarges the scope of the
table, and a wide variety of problems suggests traverse
table solutions. In view of the versatility of the traverse
table every endeavour should be made to become
efficient in its use.

322'5
NS

@)

f—— 4556 —|

W
Fig. 36
Example 3-:3—Find, by means of the traverse table: (i) cot 50°, (ii) hav 32°.

b )
50 32°
a a
(@) (b)
Fig. 3-7
(i) Referring to fig 3-7 (a)
cot 50° = a/b

= a/100 (Note the convenient denominator.)

Enter traverse table at angle 50°. The value of @ is found in the column labelled Adjacent
abreast of 100 in the column labelled Opposite.
cot 50° = 83-9/100
= 0-839

(ii) Referring to fig. 3-7 (b)

hav 32° = 14(1 — cost 32°) = (1 — a/b)
Let 5 = 100

Enter traverse table at angle 32°. The value of a will be found abreast of 100 in the
column labelled Hypotenuse (Distance).




¥ ST e S T

18 THE ELEMENTS OF NAVIGATION AND NAUTICAL ASTRONOMY

Thus: hav 32° = 14(1 — 84:8/100)
= L5(1 — 0-848)
= 14.0-152
= 0:076

Answers—cot 50° = 0-842; hav 32° = 0-076.
Example 3:4—Find the area of a triangle 4 BC given that AB = 14:0 cms, AC = 20-0 cms.
and angle BAC = 58°.

Area of triangle = 5 baseX height
= 14.20-0.14-0 . sin 58°
From traverse table:

sin 58° = 0-848
Therefore:
10-0. 14-0.0-848
118-7 sq. cms.

Answer—Area = 1187 sq. cms.

Area

(1l

Fig. 3-8
Example 3-5—Given that 38 statute miles is equal to 33 nautical miles, find the number of
nautical miles in 187 statute miles.

The problem is equivalent to finding the angle in a
triangle such that the ratio of any two sides containing the

S angle is 38:33.
From the traverse table it may readily be seen that the
30° ratio between Hypotenuse and Adjacent is 38:33 when the
33 angle is 30°. The page of the traverse table for 30° is,
Fig. 3-9 therefore, a conversion table for converting nautical into

statute miles or vice versa. Refer to fig. 3-9.
Answer—187 statute miles = 162 nautical miles.

Exercises on Chapter 3

1. Explain clearly the construction of the traverse table. Why is it unnecessary to extend
the traverse table beyond 45°?

2. Explain why the traverse table may be used to find the trigonometrical ratios of any
angle. Find, by means of the traverse table, (i) sin 50°, (ii) sec 64°, (iii) tan 36°.

3. Explain how the traverse table may be used as a conversion table. Convert, using the
traverse table, 18° Centigrade into degrees Fahrenheit.

4. What pages of the traverse table may be used for converting pounds weight into
kilograms, given that 2-2 kg = 1 1b. wt.

5. Given the relationship: Convergency = D. Long..sin Lat., find Convergency if
latitude is 56° and D. Long. is 16°.

6. If 84 Lire are equivalent to 26 Francs, find (i) the number of Lire in 130 Francs, and (ii)
the number of Francs in 524 Lire. '

7. Given the relationships: Departure = D. Long..cos Latitude and: Error in Lati-
tude = Error in Departure. cot Azimuth, find the Error in D. Long. if the Error in the
Latitude is 110, the Azimuth 047°, and the Latitude 29°.

10.

11.

12;

13.

14.

15.
16.
17.
18.
19.

20.

21.

22,

23,
24.
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Find the area of an equilateral triangle given the length of a side as 14-8 miles.

Two adjacent sides of a plane triangle have lengths of 100 cms. and 85 cms.
respectively, and the included angle is 36°. Find the area of the triangle.

Given the relationship: D. Long./D.M.P. = Tan course, find course if D. Long. is 457’
E. and D.M.P. is 642 N.

To find Latitude from an observation of the altitude of the Pole Star the formulae:
Latitude = Altitude — ¢, and: ¢ = p.cos P are used. Find Latitude given
Altitude = 42°10”; p = 61’; and P = 37°30".

Parallax-in-Altitude = Horizontal parallax . cos Altitude. Find parallax-in-Altitude if
Altitude is 36° 00" and Horizontal parallax is 60”0.

Compass Deviation due to Force P is proportional to Sine Compass Course. If the
maximum deviation due to Pis 10°-0 W. on East by Compass, find the deviation due to
P on (i) 030° Compass, (ii) 240° Compass.

Deviation due to Force Q is proportional to the Cosine of the Compass Course. If the
maximum deviation due to Q is 6°-5 E. on North by Compass, find the deviation due to
Q on (i) 320° Compass, (ii) 120° Compass.

If x = B.sin 6, and x = 10°-0 when 6 = 90°, find x when 6 = 40°.

Ify = C.cos 6, and y = 6°-5 when 6 = 0°, find y when 6 = 60°.

A lighthouse bearing 010° subtended a vertical angle of 1° 30’. The ship travelled on a
course of 340° for a distance of 10-0 miles, when the vertical angle of the lighthouse was
again 1° 30’. Find the distance off the lighthouse at the time of the second observation.
The vertical angle of a cliff was 30°. At a point 1 metre nearer to the foot of the cliff the
vertical angle was 60°.-Find the height of the cliff.

The vertical angle of a cliff was 20°. At a point 10 metres nearer to the foot of the cliff it
was 70°. Find the height of the cliff.

Find the course to steer to make good a course of due East in order to counteract the
effect of a current setting due South at 4-0 knots given the speed of the ship through the
water as 12-0 knots.

From a vessel heading due North two beacons were observed to bear 030° and 045°
respectively. After having travelled for 10-0 miles the beacons were in transit abeam.
Find the distance between the beacons.

A vertical rod 10-0 metres in length casts a shadow 4-0 metres long at noon when the
Sun is at an equinox. Find the Latitude of the place.

Find the area of a regular pentagon the length of the side of which is 5:0 cms.

The length of a shadow of a vertical pole of length 10-0 metres is 20-0 metres. Find the
Sun’s altitude.
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Also Note that:

sin A = sin (4/2+ A/2)
cos A = cos (4/2+ A/2)

2sin A/2 cos A/2
cos2A/2 — sin? A/2

1

COMPOUND ANGLES

‘ A knowledge of the contents of this chapter is necessary if it is required to understand the
‘ derivation of certain navigational formulae.

1. Trigonometrical Ratios of the Sum of Two Angles

1 — 2sin2 4/2
2cos2 A2 — 1
veis A = 1 —cos A
But: 1 = sin24+ cos24
Thus: vers A = 2sin2 A/2
And: Hav A = sin? 4/2

2. Trigonometrical Ratios of the Difference of Two Angles

In fig. 4-1:
sin (A+B) =

°

B

A° o
(o} P Q
Fig. 4-1

That is: sin (4+B) =

cos (A+B) =

That is: cos (A+B)

WRE -

Note that if A = B, then:

TR

sin (4+B) =
8 cos (A+B) =

TP
oT
RO+ ST
oT
RQ, ST
oT OT
RQ - L ST
- OT - OT
RQ OR_ ST TR
TR OT

OR OT

sin A cos B+ cos A sin B

op
or
00 SR
oT OT
0Q - SR -

- OT - OT
00 OR _ SR TR
OR OT TR OT

cos A cos B — sin 4 sin B

sin 24 = 2 sin A4 cos A
cos 24 cos24A — sin24
1 — 2sin24
2cos24 — 1

o

20

In fig. 4-2:
sin (A — B) = %
T _sP_mR
) OR OR
_SP- TR -
Fig. 42 R =~ —orR " -OR
g =5P OS TR RS
: o OS OR RS OR
o P Q
That is: sin(4 — B) = sin A cos B — cos A4 sin B
cos (4 — B) = g}%
= OP ST
OR  OR
= 0P OS5 _ST SR _
OS OR SR OR
That is: cos (A — B) = cos A cos B+ sin A4 sin B

3. Products as Sums and Differences

By addition:
By subtraction:

By addition:
By subtraction:
or:

sin (A+ B) = sin A cosB+ cos A sin B

sin (4 — B) = sin 4 cosB — cos A sin B

sin (A+ B)+sin (4 — B) = 2sin A cos B

sin (A+ B) — sin (4 — B) = 2 cos A sin B
cos (A+ B) = cos A cosB — sin A4 sin B

cos (A — B) = cos A cosB+sin A sin B

cos (A+ B)+cos (A — B) = 2 cos A cos B
cos (A+B) —cos (A — B) = — 2sin Asin B
cos (A — B) — cos (A+ B) = 2sin A sin B
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4. Sums and Differences as Products

Let X = WBX+DN+KHX— Y
and Y= WBX+Y)—KHX—Y
Then: sin X+sin ¥ = sin (X+ Y) cos B(X — T)
+cos B(X+ Y)sin (X — T)
+sin Y(X+ Y) cos KL(X — T)
— cos B(X+ Y)cos (X — )
= 2sin B(X+ Y) cos B(X — 1)
Similarly: sin X — sin ¥ = 2cos (X+ Y)sin H(X — Y)

cos X+cos ¥ = 2cos (Xt Y)cos (X — )
cos X —cos Y = — 2 sin B(X+Y)sin B(X — Y)
cos ¥ — cos X = 2sin (X — Y) sin K(X+ Y)

Exercises on Chapter 4

—

Using the expansions for sin (4+ B) and cos (A4 + B) derive expressions for tan (4+ B)
and cot (A+ B).

Using the expansion for sin (4 + B) derive an expression for sin 3A4.

Using the expansion for cos (4+ B) derive an expression for cos 3A4.

Prove that: sin 24+ 1 = (sin A+ cos A)2

Without using trigonometrical tables find cos 15° and sin 75°.: (Hint 15 = (45 — 30),
and 75 = (45+ 30).

Without using trigonometrical tables find tan 15° and tan 75°.

Sl

&

CHAPTER 5
OBLIQUE-ANGLED TRIANGLES AND THEIR SOLUTIONS
1. Introduction

Any triangle which does not contain a right angle is known as an Oblique-Angled
Triangle. Any oblique-angled triangle may be divided to form two right-angled triangles,
simply by dropping a perpendicular from any corner of the triangle onto the opposite side or
side produced. In this way an oblique-angled triangle may be solved by the methods
described in Chapter 3. But such methods are indirect: in this chapter we shall be concerned
with the DIRECT methods of solving oblique-angled triangles.

2. The Sine Formula

Let the triangle ABC illustrated

|
B £ : in fig. 5-1 denote any oblique-angled
I 2RL triangle. From any vertex, say B,
c x! o Co drop a perpendicular onto the oppo-
| dl site side or side produced to X. Let
A X C A ¢ T X the length of this perpendicular be x.

In the two right-angled triangles so
Fig. 51 formed we have:
x =csin 4

and x = a sin C (Remember that sin 6 = sin (180 — )
Therefore: c¢sin 4 = asin C

By dropping a perpendicular from either of the other two vertices onto the opposite side
or side produced it may be shown that, in general:

a/sin A = b/sin B = ¢/sin C

This relationship is known as the Sine Formula. Stated in words, it is:
The ratio between any two sides of a plane triangle is equal to the ratio between the
sines of the angles opposite to the respective sides.

When two sides of a plane triangle and an angle opposite to one of the sides are given, or
when two angles and a side opposite to one of them are given, the unknown parts of the
triangle may be solved by means of the Sine Formula.

Example 5-1—The horizontal angle at a point 4 between two other points B and C is 30°.
The horizontal angle between A and C at point Bis 100°. Find the distance between B and C
if the distance between 4 and B is 8:20 miles.

23
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Referring to fig. 5-2: (3) To find CD
To find a:
CD/2 = 8:00.cos 6
ajc = sin A/sin C CD = 16:00. cos 57° 313’
a = csin A cosec C log 16:00 = 1-:20412
log ¢ = 0-91381 log cos 6 = T1-72987
log sin A = T1-69897 iy
log cosec C = 0-11575 log €D = 093399
log a = 072853 CD = 8-60 miles
A C= 82 B _
, 2 Sg Tl - (4) To find BC
Fig. 5:2 Answer—BC = 5-35 miles. BC = BC — CD
= 123 — 86

If two sides and an angle of a plane triangle are given, and the shorter of the two given 3-7 miles
sides is opposite to the given angle, two values will satisfy each of the unknown parts of the

triangle. This is known as the Ambiguous Case. This is illustrated in Example 5-3. Answer—Distance travelled = 3-7 miles or 12-3 miles.

Example 5:2—A vessel heading 340° bears 200°

at a distance of 10-50 miles from a lighthouse.
Fig. 53 Find the distance the vessel travels so that the 3. The Cosine Formula
distance between her and the lighthouse is 8-:00
miles. 2 Let ABC illustrated in fig. 5:5 be any plane
triangle. Drop a perpendicular from any vertex,

say C, onto the opposite side or side produced.

A @ Cz

It is evident from fig. 5-4 that, because the smaller of the given sides is opposite to the
given angle, two values satisfy the solution.

(1) To find 6 In the acute-angled triangle ABC: ¢ = x+y

sin 8/AB = sin 40°/AD In the obtuse-angled _triangle ABC:c =x — y
sin 0 = (10-50 . sin 40°)/8-00 . _ In both triangles: ¢ = b cos A+ ccos B. (I)
log 10-50 = 1-02119 Fig. 5-5 ' _ o ‘
log sin 40° = 1-80807 (Note that B is an obtuse angle and that its cosine is negative.)
log product = 0-82926 By dropping perpendicular from 4 and B onto sides BC and AC respectively. It may be
log 8-:00 = 0-90309 shiswn ‘hats
1 in 8 = 192617 b =ccos AT acos C....oovriiiinininnnanenenenns I
Kk a=bcosCHtccosB ....coviiiiiiiiininannnn. (III)
0 = 57°313’
P-4 From equations (I), (IT) and (IT), the plane Cosine Formula is deduced as follows:
(2) To find BD Multiply equation (I) by a; equation (II) by b; and equation (III) by c, thus:
BAD = 180° — ( 6+ 40°) a* = ab cos C+ ac cos B
= 82°28%’ b2 = bc cos A+ ab cos C
a BD/sin A = AD/sin 40° ¢ = bccos A+ accos B
= BD = 8-:00.sin 82°28Y4’ . cosec 40°
E léggsii(ig ; ?ggggz By subtracting each of these from the sum of the other two, we have:
o log cosec 40° = 0-19193 i g
4 log BD = 1-09126 Bt — ot

or cos A = “obe

; BD = 12-3 miles oF a2 = b2+ 2 — 2bccos A %\\O

T I
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Similarly:
_ @t — b
cos B = Yo
or b2 = a2+ ¢2 — 2ac cos B
And
_ @+ b —
cos C = 2ab
or ¢z = g2+ b2 — 2ab cos C

These formulae are not suitable for use with logarithms, since addition and subtraction
do not require logarithyms. Their use, therefore, should be confined to solving triangles
whose sides are integral numbers which can easily be squared arithmetically, and the whole
problem—except perhaps for the extraction of a square root—completed by simple
arithmetic.

The plane Cosine Formula may be used for:
1. Finding an angle given the three sides of a triangle.

2. Finding a side of a triangle given the opposite angle and the other two sides.

Example 5-3—Find the largest angle in a plane triangle whose sides are 5:0 miles, 8-:0 miles
and 4-0 miles, respectively. Refer to fig. 5-6.
(Note that the largest angle of a triangle is opposite to the longest side.)

By the Cosine formula:

_ b2t — @
= 2bc
16+ 25 — 64
40
23
40
— 0-575
180° — 54°54’
125°06’

I

o

Fig. 56
Answer—Largest Angle = 125°06’.

4. The Haversine Formula

The Haversine Formula, derived from the Cosine Formula, is useful for solving an angle
in a plane triangle given the three sides of the triangle. Being suitable for use with logarithms,
it is a more useful formula than the Cosine Formula for solving angles.

In any plane triangle: ABC:
b2+ 2 — .2

cos A = 2be
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h gy multiplying each side by — 1, adding+ 1 to each side, and dividing each side by 2, we
ave:

22 2
l—cosA_l—bLa
5 = 2bc
2

The left-hand side of this expression is equal to the haversine of A4, thus:

— p2 — 2 2
havA=2bC b 2+ a

4bc
_ @ (— b2+ ¢2 — 2bc)
o 4bc
@ = (b= cp
- 4bc
_(@a—bto@thb—o
- 4bc
_(atbtc=2)(@+b+c=2)
- 4bc
= s — ig)c (25 — 2¢) where s = (a +b +¢)/2
_As— b6~ 09
4bc
or: hav4 = == e = )
bc
Similarly:
hav B = - a6~ o
ac
havC:(s_a)(s_b)
ab

Example 5-4—Point Q lies 17-:540 miles from Point P. Point R lies 13:600 miles from Point Q
and 18-770 miles from Point P. Find the angle between the directions of Q and R from P.

In fig 5:7:
p = 13:600
q = 18770
r = 17-540
2)49-910
s = 24955
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By the Haversine Formula: In fig. 5-8:
_ =@ —=0n C+ A4 = 130°
hav P S : K(C + 4) = 65°
6185 X 7-415 Plan (i) Find C by the Tangent Formula.
= 187770 X 17-540 (ii)) Find b by the Sine Formula.
log 6:185 = 0-79134
log 7-415 = 0-87011 tanA(C —A) _c—a
tan B(C+ A) c+a
log num’ = 1-66145 (c — a
1 —_ — 1
log 18770 = 1-27346 B = ) = gy e Ml )
| log 17-540 = 1-24403 = 1/9.tan 65°
{ i
log den” = 2:51749 = 1/9.2-14451
2 = (-23828
log hav P = T-14396 P = 43° 50’ W — A) = 13°24
4 Reaied B(C + A) = 65° 00’
nswer—Required Angle = 43° 5('.
q g C = 78° 24
Course = N. 68° 24’ W.
5. The Tangent Formula b = 5 sin 50° cosec 78° 24’
log 5 = 0-69897
. . log sin 50° = T1-88425
We have, by the Sine Form}xla, for tr1apgle ABC; . log cosec = 0-00896
a/sin A = b/sin B = ¢/sin C = x
Therefore: ' log b = 0-59218
a= xsinA b = 391
and b = xsin B o
Therefore: Answer—Course = 291%°, Distance = 3-9 miles.
atb _xsind +xsinB '
a—b xsinA— xsinB Exercises on Chapter 5
_sinA+ sin B . . .
T sinAd — sin B 1. From a vessel at anchor a Point 4 bore 030° and a lighthouse B bore 070°. B lies 190°
: at a distance of 5-40 miles from A. Find the distance between B and the vessel.
2sin 15 (4 + B) cos (A — B)
2 cos }A(A + B) sin /3(4 — B) The horizontal angle between two vessels A and B is 62°. A is 4-0 miles from an
tan 14(A + B) cot (A — B) observer and B is 5-0 miles from him. Find the distance between the vessels.
Or a +b ._ tan %(A + B)
a— b tan %4 — B) In a plane triangle ABC, ABis 3:0 miles; AC is 7-0 miles; and BC is 6:0 miles. Find the
three angles of the triangle.
This formula may be used instead of the Cosine or Haversine Formula for finding an . p ; : . . .
' angle of a plane triangle given any two sides and the included angle. 4. In a plane triangle POR, Q is 97° 00" PQ is 7-40 miles and QR is 6:70 miles. Find the
%% The quantity }5(4 + B) is equal to the complement of C, because the sum of the angles of distance PR.
W a plane triangle is 180°. Thus, if %4(4 — B) is known, the angles 4 and B may be found by : .
] addition and subtraction. 5. Two vessels A and B are 6:30 miles apart. The horizontal angle between B and a rock C
is 20° 32’, and that between A and C at B is 70° 15’. Find the distance BC.
1 _Example 5:5—A yacht sails for a distance of 5:0 miles on a course of 060°, and for 4-0 6. Find the required course to steer to counteract the effect of a current which sets 100° at
| @ mlles: on a course of 190°. Find the course to steer and the distance to sail to regain the a rate of 4-0 knots, given the course to make good is 025° and the ship’s speed through
o starting position. the water is 13 knots.
oy
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11.

12.
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A point of land bears 305° at a distance of 46:0 miles. Find the course to steer and the
time taken to reach the point in a current which sets 045° at 3-5 knots, and the speed of
the vessel through the water is 15-5 knots.

A point of land bore 034°. After travelling for 5-60 miles on a course of 268°, it bore
050°. Find the distance off at the time of the second observation.

A point of land bore 066° from a vessel heading 030°. After travelling for 30 minutes
the point bore 146° at a distance of 6:0 miles. Find the speed of the vessel.

A, Band C, are three buoys in a harbour. The distance between 4 and Bis 1256 metres;
that between B and C is 130-4 metres and that between C and A is 112-0 metres. At a
vessel D, A and B, and A and C, subtend, respectively, angles of 48° 58’ and 25° 52".
Find the distances between the vessel and each of the buoys.

In a plane triangle ABC, ABis 562 yards, BC is 320 yards, and angle Bis 128° 04’. Find
AC.

In a triangle ABC, the sides AB and BC are 345 cms. and 232 cms. respectively, and the
angle A4 is 37° 20’. Find the angle B.

CHAPTER 6
SPHERICAL TRIGONOMETRY
1. The Geometry of the Sphere

A sphere is a three-dimensional shape every point on the surface of which is equidistant
from a fixed point known as the Centre of the Sphere. It may be defined as the shape swept
out by rotating a circle about any fixed diameter through an angle of 180°. Such a circle is
the largest possible circle that may be drawn on the surface of the sphere produced.

It will be noticed in fig. 6-1 that the centre of the
sphere illustrated lies on the planes of the circles A4 and
BB. Any circle on he surface of a sphere, on whose plane
the centre of the sphere lies, is known as a Great Circle
of that sphere. A4 and BB in fig. 6:1 are examples of
great circles. A great circle divides a sphere into two
Hemispheres. Any circle on the surface of a sphere
which is not a Great Circle is known as a Small Circle.
In fig 6:1 CC and DD are examples of small circles.
Notice that the word “small” in this context has no
reference to the actual size of a circle: it is used merely to
Fig. 6-1 distinguish between great cirles on whose plane the
centre of the sphere rests from those circles on whose planes the centre does not rest.

An arc of a great circle is measured in angular units: it is a measure of the angle at the
centre of the sphere subtended by the two radii which terminate at the extremities of the arc.
The measure of a complete circle is 360°; that of a semi-great circle is 180°; and that of a
quadrant or quarter of a great circle is 90°. The measure of an arc of a great circle is known
as a Spherical Distance.

Two points on a great circle which are diametrically opposed to one another, that is to
say, two points which are separated by a spherical distance of 180°, are known as Antipodal
Points, each being an Antipodes of the other.

A point on the surface of a sphere which is 90° from every point on a particular great
circle is known as the Pole of that great circle. The diameter of a sphere which connects the
two poles of a great circle is known as the Axis of the Great Circle.

Any semi-great circle which connects the poles of a given great circle is referred to as a
Secondary to the given great circle which is known,; in this case, as the Primary Great Circle.
A secondary cuts its primary great circle at an angle of 90°. It follows that the axis of a
primary great circle lies in the plane of every secondary.

31
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Fig. 6-2

In fig. 6-2, P and P, are the poles of a great circle GG,. PA and PB are 90° arcs of the
secondaries PAP, and PBP, respectively. The point G is the antipodes of the point G,.Note
that the arc AB has a spherical distance equal to the angle AOB at the centre of the sphere.

The shortest distance between two points on the
surface of a sphere is, of course, a chord joining the
two points; but the shortest distance over the surface
of the sphere between the points is along the lesser arc
of the great circle on which the two points lie. This
readily may be verified by stretching a length of
chord between any two points on the surface of a
model globe.

A Spherical Angle is formed at the intersection of
two great circle arcs. The magnitude of a spherical
angle is equal to that of the plane angle between the
Fig. 63 tangents to the great circles at the point of inter-
section.

The angle between the two great circles XX, and Y7 illustrated in fig. 6-3, is A°. This is
equal to the angle between the tangents as indicated in the figure.

A Spherical Triangle is formed on the surface of a sphere by the intersecton of three great
circle arcs.

Fig. 64 depicts a typical spherical triangle formed by
great circle arcs XY, YZ and ZX.

The sum of the three angles of any plane triangle is
always 180°. The sum of the three angles of any spherical
triangle, however, is always greater than 180°, by an
amount known as Spherical Excess. It is impossible to
construct a plane triangle on the surface of a sphere, but
the smaller is a spherical triangle on a given sphere the
more nearly is the sum of its three angles equal to 180°. In
some navigational problems small spherical triangles are
treated as if they are plane, and no material error results.
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The maximum value of any one angle of a spherical triangle is 180°, or 2 right angles. The
sum of the three angles of a spherical triangle must, therefore, be less than 540° or 6 right
angles. It follows that a spherical triangle cannot be larger than a hemisphere.

The spherical distance of any side of a spherical triangle never exceeds 180° or 2 right
angles. Because a spherical triangle cannot be larger than a hemisphere, it follows that the
sum of the three sides cannot be more than 360° or 4 right angles.

2. Propertise of a Spherical triangle.

i) Each side of a spherical triangle is an arc of a great circle. The length is measured in
degree and minutes.
ii) Each angle is measured between great circles forming adjacent sides and is measured
in degree and minutes. .
iii) The sum of the length of the sides is less than 360°.
iv) The sum of the angles lies between 180°-540°.
v) No angle or side is greater than 180°.
vi) The greatest side is opposite the greatest angle and similarly, the smallest side and
angle are opposites.
vii) Two or more sides and angles can be 90° in size.
viii) If two sides are equal in size, so are angles opposite to them.
ix) If three sides are equal, the angles are equal but not necessarily equal to 60°.

3. Spherical Trigonometry

The main use of spherical trigonometry is in the solving of spherical triangles. If any three
parts of a spherical triangle are known, any of the remaining parts may be solved direct by
one of the three so-called Fundamental Formulae of spherical trigonometry. These are the
Sine Formula, the Cosine Formula and the Four Parts Formula. In addition to the
fundamental formulae there are numerous derived formulae. The spherical trigonometrical
formulae used in the practice of navigation and nautical astronomy will be considered in
Chapter 7. !

In Chapter 10 we shall see that the Earth’s shape is not that of a perfect sphere.
Nevertheless the spherical formulae used by navigators, despite the fact that they give
accurate results only for perfectly spherical surfaces, yield results which are generally
sufficiently accurate for all navigational problems.

Exercises on Chapter 6

Define: Sphere, Great circle, Poles of a Great Circle, Axis of a Great Circle.

Define: Secondary, Primary Great Circle.

What are antipodal points?

Show that the magnitude of a spherical angle is equal to that of the plane angle between
the tangents at the intersection points of the two, great circle arcs which form the spherical
angle.

5. Prove that the sum of the three angles of a spherical triangle cannot exceed 540°, and that
the sum of the three sides cannot exceed 360°.

B SIEhI




CHAPTER 7

THE STEREOGRAPHIC PROJECTION AND THE GRAPHICAL SOLUTIONS
OF SPHERICAL TRIANGLES

1. Introduction

The representation on a plane surface of points and lines on an object as they appear in
the eye, is known as Perspective or Geometrical Projection. The plane surface is called the
Plane of the Projection, and the position of the eye as the Point of Projection. A straight line
extending from the Point of Projection to any point on the object is called a Line of
Projection.

There are many methods of projecting a spherical surface onto a plane surface. All maps
and charts, for example, are projections of the whole or part of the spherical Earth’s surface,
and some of these are perspective projections. Non-perspective projections, such as the
Mercator Projection (see Chapter 12), are known as Conventional Projections.

2. The Stereographic Projection

A very useful method of projecting a spherical surface onto a plane surface is the
stereographic projection, which is a perspective projection. In the stereographic projection a
great circle of the sphere to be projected is assumed to lie in the plane of the projection. This
great circle is known as the Primitive, and the point of the projection is one of the poles of the
primitive great circle.

On a stereographic projection of a sphere all projected arcs of circles, great and small, are
straight lines or arcs of circles. This property makes it possible to construct a stereographic
projection geometrically by means of straightedge and drawing compasses. Other interesting
properties of the stereographic projection are that more than a hemisphere can be projected,
and that the projection is Orthomorphic, which means that angles at any point on the plane
of projection are without distortion.

The stereographic projection is often used for Star Maps, and it has been used as the basis
of a variety of instruments designed for solving spherical triangles, especially in nautical
astronomy. Although we shall indicate how to construct a stereographic projection and how
to measure angles and spherical distances, our main intention here is to assist students in
visualizing the relative positions of points and arcs on a spherical surface, especially that of
the celestial sphere, thereby leading them to an understanding and appreciation of certain
navigational and nautical astronomical problems.

3. The Principles of the Stereographic Projection

Fig. 7:1 serves to illustrate the principle of the stereographic projection.
34
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The great circle A HG illustrated in fig. 7-1 lies in the
plane of the projection. It is, therefore, the primitive,
and it is upon the plane of the primitive that the sphere’s
surface is to be projected.

Consider a great circle A DGP which stands perpen-
dicular to the plane of the projection. If lines of
projection are drawn from the point of projection to

Projection

Fig. 7-1 several points on the great circle, the points at which
these lines cut the plane of the projection lie on the straight line 4dG. This line, therefore, is
the projection of the great circle arc A DG, and the point d, which is the projection of D, lies

at the centre of the primitive.
D

In fig. 7-:2, P is the point of projection and the

straight line AdGY lies in the plane of the projection.

Points A, B, C, D, E, F, G and J, are points on a

J ¥  great circle which is a secondary to the primitive.

- These points are 30° apart and they are projected at

points a to j respectively. It will be noticed that the

projected lengths of these equal arcs are not uniform.

Fig. 7-2 The projected arc Ab is longer than that of CD, and

the pr0]ect1on of arc GJ, which is Gj, is even longer than the projection ab of arc AB. At the

edge of the primitive there is no distortion of arcs; within the primitive distortion is such that

equal arcs of the sphere are projected as increasingly smaller lines as the centre of the

projection is approached; and that outside the primitive the distortion is such that equal arcs

of the sphere are projected as increasingly longer lines as distance from the primtive
increases.

All great circles which cut the primitive at right angles, that is
to say, all the secondaries to the primitive, are projected as
straight lines which pass through the centre of the projection.

Imagine the sphere illustrated in fig. 7-2 to be rotated about
the diameter AdG through an angle of 90°. The points 4, b, ¢,
etc., remain stationary because they lie on the axis of rotation.
The points B, C, D, etc., however, move to new positions on the
. plane of the projection. The projection viewed from directly
Fig.7-3 above now appears as in fig. 7-3.

Fig. 7- 3 serves to demonstrate that when constructmg a stereographic pI'OJCCthII all
projecting is made from a pomt on the circum-
ference of the primitive. It is to be realized,
however, that the completed projection is a view of
the sphere’s surface from the pole of the primitive.

Fig. 7-4 illustrates that all circles on the sphere
are projected as circles or straight lines. Let the
pomt P, in fig. 7-4, be the point of projection, and
* CD the primitive. In fig. 7-4(a) AB denotes any
small circle on the sphere, and in fig. 7-4(b) AB
denotes any great circle on the sphere. In both
cases the circle is projected as circle ab.
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4. To Project a Great Circle about a Given Point as Pole

Case |—If the given point is at the centre of the primitive, the required projection is the
primitive itself.

Case 2—If the given point is on the circumference of the primitive the required projection
is a diameter lying perpendicular to the diameter on which the given point lies.

Referring to fig. 75, let the circle A CBD be the primitive and the point P the pole of the
required projection.

Case 3—If the given point is within the primitive, as illustrated in fig. 7-5. The procedure
in this case is as follows: '

o

3 (i) Draw diameter 4B through P.
(ii) Draw diameter CD at right angles to AB.
(iii) Draw chord DE through P.
= (iv) Describe 90° arcs EF and EG.
(v) Draw chord FD to cut diameter AB at I.
(vi) Draw chord FD (produced) to cut diameter 4B
(produced) at H.
(vii) Bisect /H at O, which is the centre of the
required projection, radius OI or OH.

Fig. 7-5
In practice it is customary to find the centre O, which is known to lie on the diameter AB,
or AB produced, by trial and error.

The construction described above is demonstrated
thus. Because arcs EF and EG of the primitive are each 90°, the projections /P and PH are
each 90°. P, therefore, is the centre of the great circle which passes through 7 and H, and /
and H are projections of antipodal points.

3. To Project a Small Circle about a Given Point as Pole

Case 1—If the given pole is at the centre of the projection.

@

Referring to fig. 7-6:

(i) Draw any two perpendicular diameters 4B and CD.
(i) Mark off an arc BE (or AE, CE or DE) equal to the
radius of the given small circle. '
(i) Draw the chord EA to cut the primitive at F.
(iv) PF is the radius of the required projection which is
centred at P.

Case 2—If the given pole is on the circumference of the

Fig.7-6 primitive.
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Referring to fig. 7-7:

(i) Let B be the given pole.

(ii) Draw the perpendicular diameters 4B and CD.

(iii) Mark off arcs BE and BF each equal to the radius of the
given small circle.

(iv) Draw EC to cut AB at G.

(v) Draw CF and produce to cut 4B produced at H.

(vi) Bisect GH at O which is the centre of the required
projection of radius OG or OH.

Case 3—If the given pole is within the primitive but not at
the centre.

Referring to fig. 7-8.

(i) Let ACBD be the primitive and P the given pole.
(ii) Draw diameter 4B through P the given pole.
(iif) Draw diameter CD perpendicular to 4B.

(iv) Draw the chord DP and produce to E.

(v) Centre at E and describe arcs EF and EG, each
equal to the radius of the given small circle.

(vi) Draw DF to cut diameter AB at I, and DG

produced to cut AB produced at H.

Fig. 7-8
(vii) Bisect /H at O, which is the required centre, the radius of the required projection

being OI or OH. (It is instructive to compare this construction with that given in fig.
7-5).

6. To Find the Locus of Centres of All Great Circles which Pass Through a Given Point

\ Referring to fig. 7-9:
(i) Let the circle ACBD be the primitive and P the

G
given point.
Wb s . (i) Draw diameter 4B through P.

§ (iii) Draw diameter CD perpendicular to 4B.
\ (iv) Draw the chord CE through P.
(v) Centre at E and radius 90°, describe arc EF.
{ : (vi) Centre at F and radius 90°, describe arc FG.

3 (vii) Draw chord CF to cut AB at H.
(viii) Draw CG and produce to cut 4B produced at /.
Fig.7-9 (ix) Bisect PI at O.

(x) Draw a perpendicular to 4B through O, which is the required locus.

Locus

The proof of this construction is as follows:

Because EF and FG are each 90°, it follows that arcs PH and HI are each 90°. The point
1, therefore, is 180° from P, so that P and 7 are antipodal points. Every circle passing through
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Pand I must be a great circle. The locus of centres of all circles passing through P and [ is the
perpendicular bisector of PI, so that the required locus must be this bisector.

7. To Project a Great Circle through Two Given Points

Case 1—If one of the points is at the centre of the primitive, the required projection is the
diameter drawn through the two points.

Case 2—If one of the points lies on the circumference of the primitive and the other point
is not at the centre or the circumference of the primitive.

\‘ Referring to fig. 7-10:

(i) Let the circle ACBD be the primitive and 4 and P the

. two given points.

(i) Draw diameter 4B.

(iii) Draw diameter CD perpendicular to 4B.

(iv) The centre of the required projection is at the point where
the perpendicular bisector of AP cuts CD or CD
produced.

Fig. 7-10

This is so because:

1. All great circles which pass through 4 must pass through the antipodes of A, that is to
say, through B.

2. The locus of centres of all great circles which pass through 4 and B must lie on the
diameter CD or CD produced.

3. The centres of all circles which pass through 4 and P must lie on the perpendicular
bisector of the chord AP.

Therefore, the centre of the great circle which passes through 4 and P, must lie at point X
which is the point at which perpendicular bisector of 4P cuts CD.

Case 3—If neither of the given points lies at the centre or the circumference of the
primitive.

Referring to fig. 7-11:

(i) Let A and B be the two given points.
(ii) Find the locus of centres of great circles through A.
(iii) Bisect the straight line joining A to B by the line XY.
(iv) The centre of the required projection is the point O at
which the line XY cuts the locus of centres of great
circles through A.
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8. To Measure a Given Arc of a Projected Great Circle

Case 1—If the given arc is part of the primitive, the required measure is the angle at the
centre of the primitive contained between the extremities of the given arc.

Case 2—If the arc is part of a great circle which is projected as a straight line.

i
=

Referring to fig. 7-12:

(i) Let AB be the projected arc.
(i) Draw a diameter through 4 and B.
(iii) Draw a diameter perpendicular to 4 B.
(iv) The Draw chords CE and CF through A and B respectively.
(v) Arc EF is the required measure of the arc 4B.

Fig. 7-12

Case 3—1If the given arc is part of a great circle which is inclined to the primitive.
\ < Referring to fig. 7-13:
7\ o (i) Let AB be the given arc.
VA =g (i) Find the pole P of the projected circle on which arc

AB lies.

(iii) Draw PA and PB and produce each to cut the
primitive at C and D respectively.

(iv) Arc CD is a measure of the arc 4B.

Fig. 7-13

9. To Measure a Projection of a Spherical Angle

The angle between two great circle arcs is equivalent to the plane angle between their radii
or the tangents of the projected great circles at the point of intersection.

In fig. 7-14 the angle between the projected great circles 4B and
CD is equal to the plane angle POR or the plane angle SOQ.

10. Examples

The following examples serve to show how the stereographic
projection may be used to solve spherical triangles by construction.
The student is advised to read and understand Chapter 4 before
considering Examples 1 to 4 inclusive, and to read and understand
Parts 4 and S5 before considering Examples 5 to 10 inclusive.

Example 7-1—Construct a stereographic projection of the Earth’s northern hemisphere.
Project meridians at intervals of 30° from the Greenwich meridian and the parallels of
Latitude of 30° and 60° North. Project the positions of London (Lat. 51° N., Long. 0°); New
York (Lat. 41° N., Long. 74° W.); Moscow (Lat. 56° N., Long. 38° E.); and Tokyo (Lat. 36°
N., Long. 139° E.). Refer to fig. 7-15.
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Example 7-5—Construct a stereographic projection, of the celestial sphere on the plane of
the celestial equator. Project celestial meridians at intervals of 45° from the meridian of the
First Point of Aries. Project parallels of declination 30° and 60° N., and the positions of
Capella (dec. 46° N., S.H.A. 283°), and Arcturus (dec. 19%4° N., S.H.A. 147°). Refer to fig.

Fig.7-15 7-19.

° \h“

Example 7-2—Construct a stereographic projection of the Earth on the plane of the s
Greenwich meridian. Project the parallels of 30° and 60° N. and S., and the meridians at ¥ 5 o
intervals of 45° from the meridian of Greenwich. Project the positions of Panama (Lat. 9°
N., Long. 80° W.) and Cape Horn (Lat. 55° S., Long. 66° W.). Refer to fig. 7-16.

f.« S
¥
Fig. 7-19
Fig. 7-16 Example 7-6—Construct a stereographic projection, of the celestial sphere on the plane of
the celestial horizon of an observer in Lat. 50° N. Project the celestial equator and hour
o A circles at intervals from 3 hr. from the Observer’s lower celestial meridian. (Note
that—Latitude of Observer = Altitude of Celestial Pole). Refer to fig. 7-20.

Example 7-3—Find, by scale drawing, the initial course of the great circle route from A4 in
Lat 20° N., Long. 100° W., to Bin Lat. 60° N., Long. 40° W. (Note that because B lies to the
eastwards of 4, it is convenient to project on the plane of A’s meridian). Refer to fig. 7-17.

Tangent

o Locus of centres of Hour Circles Centre \ of
ec ©3% H.C.

Fig. 7-17 Example 7-7T—Construct a stereographic projection, of the celestial sphere on the plane of
the celestial horizon of an observer in Lat. 30° S. Project the celestial equator and parallels of
declination of 30° N., 30° S. and 60° S. Refer to fig. 7-21.

Auna3 Fig. 7:20 - ‘
\
\

Answer—Initial Course = 033°.

Example 7-4—Find by means of a stereographic projection, the great circle distance
between X in Lat. 30° S., Long. 90° E., and Y in Lat. 40° N., Long. 40° E. Refer to fig. 7-18.

P Tangent

A - Centre of Y's meridian
- Pole of Great Circle through X and Y
=~ Centre of Great Circle through X and Y

:.(;“
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Example 1-8—Construct a stereographic projection, of the celestial sphere on the plane of
the celestial meridian ‘of an observer in Lat. 30° N. Project the position of a star whose
declination is 40° N., and whose altitude is 50° and decreasing. Measure the azimuth and the
Local Hour Angle of the star. Refer to fig. 7-22.

Answer—Azimuth = 298°

L.H.A. = 46°.

Example 7-9—Construct a stereographic projection, of the celestial sphere on the plane of
the celestial horizon of an observer in Lat. 40° N. Measure the L.H.A. and the azimuth of a
star whose declination of 35° S. and whose altitude is 35° and rising. Refer to fig. 7-23.

AnsWer—Azimuth = 065°

L.H.A. = 80°.

Example 7-10—Construct a stereographic projection, of the celestial sphere on the plane
of the celestial equator. Measure the azimuth and L.H.A. of a star whose declination is 20°
N. and whose altitude is 30° and setting. The observer’s Latitude is 50° N. Refer to fig. 7-24.
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Locus of centres
of V.Cs.

Fig. 7-24

Answer—Azimuth = 266°

L.HA. = 67°.

11. Figure Drawing

Although in the practice of navigation and nautical astronomy solutions by scale drawing
arenot,ingeneral,sufficientlyaccurate,freehandsketchesoftenhelptoclarifyproblems. Thestudent
is recommended to illustrate his navigational and astronomical problems by
freehand sketches, and to continue to do so until he is confident of solving his problems
without the assistance of diagrams.




CHAPTER 8
THE TRIGONOMETRICAL SOLUTIONS OF SPHERICAL TRIANGLES
1. The Spherical Sine Formula
In any spherical triangle A BC:
sin a/sin A = sin b/sin B = sin ¢/sin C

Let ABC in fig. 8:1 be any spherical triangle on a
sphere whose centre is at O. Drop a perpendicular from
B A onto the plane BOC at P. Drop a perpendicular from
P onto the radii OC and OB at Y and X respectively.
Join 4 to Y and 4 to X.

¢ Because 4Y and AX are in the planes of the arcs 4C
and A B respectively, therefore:

Plane angle AYP = Spherical angle ACB

Fig. 8-1 c Plane angle AXP = Spherical angle ABC
Therefore:
si.n b/s?n B = (AY/AO)/(AP/AX) = (AY.AX)/(AO.AP) . . . . .. Q)
sin ¢/sin C = (AX/AO)/(AP/AY) = (AX.AY)/(AO.AP) . . . . .. (1D

From (I) and (II):
sin b/sin B = sin ¢/sin C

By dropping a perpendicular from B or C onto the opposite plane, it may similarly be
shown that:

sin b/sin B = sin a/sin A

Therefore:
sin a/sin A = sin b/sin B = sin ¢/sin C

Example 8:1—In the spherical triangle PZX, P = 30° 00’, PX = 100° 00", and
ZX = 40° 00’. Find Z.

p

In fig. 8-2:
sin Z/sin z = sinP/sin p
sin Z = sin P sin z cosec p
. z log sin P = 1-69897
log sin z = 1-99335
log cosec p = 0-19193
log sin Z = 1-88425 Z = 180° — 50°00" = 130°00"

x ’
Fig. 8-2 Answer—Z = 130° 00
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It will be remembered that the sine of an angle between 90° and 180° has a positive value.
Care, therefore, must be taken when using the Spherical Sine Formula to ensure that the
correct quadrant is designated for the computed angle. In other words, it must not be
thought that the computed angle is always less than 90°.

2. The Spherical Cosine Formula
In any spherical triangle ABC:

cos a — cos b cos ¢

cos A =

sin b sin ¢
= cos A sin b sin ¢+ cos b cos ¢

Let ABC in fig. 8-3 be any spherical triangle on
the sphere whose centre lies at O. At A draw
tangents to the arcs 4B and AC. These tangents lie
in the planes of their respective arcs. Thus, the first
must meet OB produced at D, and the second
must meet OC produced at E. Join D to E.

¢ Because AD and AFE are tangents, the plane
(3 angle DAE is equal to the spherical angle BAC,
Fig. 8-3 and the angles OAF and OAD are right angles.
By the Plane Cosine Formula:
DE? = OD>+OF* — 20D OEcosa . . . ....... 0]
DE? = AD>+AF? — 2AD AEcos A . . ... ..... an

Subtract (II) from (I):

0 = (OD*+ OFE? — 2 OD OEcosa — AD? — AE2+2 AD AEcos A
= (OD? — AD>)+ (OF* — AE?) — 2 OD OEcos a+2 AD AE cos A
= 2 0A? — 20D OEcosa+2 AD AE cos A
Therefore:

OD OE cos a — 0OA?
AD AF

By dividing throughout by OD OE, we get:

cosa — cos b cos ¢

cos A =

cos A =

sin b sin ¢

or: cos a = cos A sin b sin ¢+ cos b cos ¢

The Spherical Cosine Formula suffers from two disadvantages:

1. It is not convenient for logarithmic computations.

2. The cosines of angles in the second quadrant are negative so that great care must be
taken in handling signs.

A formula similar to the Spherical Cosine Fbrmula, but which does not suffer from the
disadvantages of the Spherical Cosine Formula, is the Spherical Haversine Formula, which
is easily derived from the former.
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3. The Spherical Haversine Formula

In any spherical triangle ZY.X:
hav x — hav (y~ 2)

hav X = i _
sin y sin z
or: hav x = hav X sin y sin z+ hav (y ~ z2)
Proof: hav X = 4(1 — cos X)
[ COS X — COS Y COS z
=yl - 2 F Y )]
I { sin y sin z
_ rsin y sin z — cos x + cos y cos z
1 /2_ sin y sin z ]
[cos x + cos (z~ y)
= 2 e B ]
sin y sin z
_ Y[1 — cos x] — W[l — cos (z~ y)]
sin y sin z
— (7~
That is: hav X = hey & : haY > )
sin y sin z
or: hav x = hav X sin y sin z+ hav (z~ y)

By doubling each side we have the Spherical Versine Formula, viz:
vers x = vers X sin y sin z+ vers (z~ y)

The principal advantage of the haversine or versine formula is that all the trigonometrical

functions used for solving triangles by its means are positive.

Example 8:2—In the spherical triangle 4ABC, a = 50°00°, b = 60°00’, ¢ = 100°00".

|
|
\ Find A.
? Referring to fig. 8-4:
| < a = 50°00’
b o b = 60°00’
¢ = 100°00’
‘ S (c — b) = 40°00
‘ A B hav A = hava — hav (¢ — b) cosec b cosec ¢
) nat hav a = 0-17861
Fig. 8-4 nat hav ¢ — b) = 011698
F nat hav 6 = 0-06163
-1 log hav 8 = 278978
!"‘J‘ 1 log cosec b = 0-06247
21 log cosec ¢ = 0-00665
" | loghav 4 = 285890 A = 31° 1I’
1
. | Answer—A = 31° 11,
i
=

-
‘ >

;

.”

THE TRIGONOMETRICAL SOLUTIONS OF SPHERICAL TRIANGLES 47
Example 8:3—In the spherical triangle XYZ, X = 40°00", z = 30°00’, y = 80°00’. Find

X,
v Referring to fig. 8:5:
x 3 X = 40°00’
y = 80°00’
z = 30°00’
4 X r~2z) = 50°00

2 hav x = hav X sin y sin z+ hav (y ~ 2)
Fig. 85 log hav X = T-06810
log sin y = 1-99335
log sin z = 1-69897
log hav 6 = 2:76042
nat hav 6 = 0-05760
nat hav (y~z) = 0-17861

nat hav x = 0-23621 x = 58°09’

Answer—x = 58°09’.

4. The Four Parts Formula

In any spherical triangle if three of any four adjacent parts are known the unknown of the
four parts may be found direct by means of the Four Parts Formula.

Referring to the spherical triangle 4BC in fig. 8-6:

B is the Outer Angle (0.A.)
c is the Inner Side (I.S.)

A is the Inner Angle (I1.A))
b is the Outer Side (0.S.)

Fig. 8-6

The Four Parts Formula relating to these parts is:
cos ¢ (I.S.) cos 4 (I.LA.) = sin ¢ (I.S.) cot b (0.S.) — sin A (I.A.) cot B(0.A))

Proof:

By the Spherical Cosine Formula:
cos b = cos Bsincsina+cosccosa .. ....... @D
cosa = cos Asinbsinctcosbcosc......... (I1)

By the Spherical Sine Formula:
sing = (sinAsinb)/sinB.............. (I1T)

Substitute (II) for cos a in (I), and (III) for sin a in .
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Thus:
cos b = cos Bsin ¢ [(sin A4 sin b)/sin B]+ cos ¢ (cos A4 sin b sin ¢+ cos b cos ¢)

That is:
cos b = cot B sin ¢ sin A4 sin b+ cos ¢ cos A sin b sin ¢+ cos b cos? ¢

From which: ) _
cos b — cos b cos?2 ¢ = cot B sin ¢ sin A sin b+ cos ¢ cos A4 sin b sin ¢

That is: )
cos b (1 — cos?2 ¢) = sin b sin ¢ (sin 4 cot B+ cos ¢ cos A)
cos b sin? ¢
sinbsinc = sin Acot Bt+cosccos 4
That is:
cot b sin ¢ = sin A cot B+ cos ccos A
or: cosccos A = sinccot b — sin A cot B

Exercises on Chapter 8

. In the spherical triangle ABC: B = 75°00’, C = 55°00’, Ac = 67°00". Find AB.

. In the spherical triangle XYZ: XZ = 105°00", XY = 95°00’, XZ = 54°00’. Find X.

. In the spherical triangle PQR: PQ = 65°10’, PR = 106°23’, Q = 43°10’. Find RQ

. In the spherical triangle DEF: DE = 30°00’, DF = 60°00’, EF = 50°00’_. Find E.

. In the spherical triangle ABC: A = 35°00’, AB = 65°00’, B = 54°00". Flnd_BC.

. In the spherical triangle PQR: PQ = 100°00’, RQ = 54°00", @ = 67°00". Fmd P.

. In the spherical triangle XYZ: XY = 65°00’, ZX = 78°00’, Z = 34°00". Elnd X.

. In the spherical triangle PZX: P = 03h.24m., PZ = 54°55, PX = 87°10'. Find Z and ZX.

CONO\N WU P WA =

CHAPTER 9
NAPIER’S RULES
1. Napier’s Rules for Solving Right-angled Spherical Triangles

Any spherical triangle, right-angled or otherwise, may be solved using one or more o/f~ the
formulae described in the preceding chapter. If, however, a spherical triangle contains a right
angle, a shorter and simpler solution than that in which a formula for oblique-angled
triangles is used, is made possible by Napier’s Rules.

In the spherical triangle illustrated in fig. 91 51}pp0$¢
that 4, a and c are known, and that it is required to find
C. 1

By the Spherical Sine Formula:

sin C = sin ¢ sin 4 cosec 4 . . ;515 (D)

Suppose that 4, b and c in triangle A BC are knoWﬁ,
and that it is required to find a:

By the Spherical Cosine Formula: o
cos a = cos A sin b sin ¢c+cos b cos ¢ . . U AT R (ID

Suppose that 4, B and c are known and that it is required to find a:
By the Four Parts Formula:
‘ cos ¢ cos B = sin ¢ cot @ — sin B cot 4

or cot a = (cos ¢ cos B+sin Bcot A)/sinc . . .., (LIL)

Now suppose that the angle A4 in the triangle 4 BC is 90°. Then, because.cos 90° .= :0.and
sin 90° = 1, the three formulae (I), (I) and (III) reduce, respectively, to:

sin C =sinccoseca . ... ......... (Iv)
cosa =coshcosc ......... wi dsd T (V)
cota =cotccos B .......... . (VD

It is possible to derive ten simple formulae which, collectively, providethe:nteans: for
solving every possible case of a right-angled spherical triangle. Instead: of: deducing from
these ten formulae so many distinct rules for the solution of the various! cases; the whole; by
the assistance of an ingenious contrivance, may be comprehended in two remarkably simplée
rules. These rules, named after their illustrious inventor, are known as /Napier’s Rules For
Circular Parts. SRS ENRE

49
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The parts of a given right-angled spherical triangle, not including the right-angle, are
written in order—either clockwise or anti-clockwise—in the five sectors of a cartwheel as
illustrated in fig. 9-2.

Referring to fig 9-2 it will be noticed that the two angles
and the side opposite to the right angle are prefixed with
a the letters “co” which denotes complement.

c B Of the three parts in the cartwheel one must be a
Middle part, and the other two must be either Opposite or

v v Adjacent parts.
' l Napiers Rules are:
L sine middle part = product of the cosines of the opposites

Fig.9- sine middle part = product of the tangents of the
adjacents

If, in the triangle A BC in fig. 9-2, the sides b and c are known, and it is required to find the
remaining three unknown parts, the rules are:

(a) To find C
Of the three parts C, b and ¢, c is the Middle part, and C and b are Opposite parts. Thus:

sin ¢ = sin co-C cos co b
That is: sin ¢ = sin Csin b
and: sin C =sinccosecb . .............. (4))

(b) To find a
Of the three parts @, b and ¢, b is the Middle part and @ and ¢ are Opposite parts. Thus:
sin co-b = cos a cos ¢

That is: cos b = cos a cos ¢
and: cosa = coshbsecc ... (I1)

(c) To find A
Of the three parts A, b and ¢, A is the Middle part and b and ¢ are Adjacent parts.

sin co-4 = tan ctan co b
That is: cosA =tanccoth . ... ... ... ..., (I11)

It is imprudent, in circumstances when it can be avoided, to solve a right-angled triangle
using a part which has previously been calculated, and which may, therefore, be in error. Any
error in such a part used to solve another part will cause unnecessary error in that part. When
solving the three unknown parts of a right-angled spherical triangle it is advisable, therefore,
to derive the three formulae before commencing the calculations. By so doing, not only is the
time spent in entering tables reduced, but the possibility of blundering in the calculation is
also reduced.
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Before commencing to solve a right-angled spherical triangle it is advisable to ascertain
whether or not the value of any unknown part is greater or less than 90°. This is easily done
by means of the device now to be described.

A

Fig. 9-3 illustrates each of the four cases of right-angled
spherical triangles.

In the triangle ABC ALL parts, except the right angle, are
LESS than 90°.

In the triangle BCD only D and BC are less than 90°
Fig. 93 In the triangle CDE only C and DE are less than 90°
. b In the triangle ACFE only Ac is less than 90°.

By constructing such a simple figure the relative values of the unknown parts are readily
seen.

Example 9-1—In the spherical triangle PQR: P = 45°, r = 60°, Q = 90°. Find the
remaining parts.

Fig. 9-4

Referring to fig. 9-4:
All parts are LESS than 90°

To find p: . To find R:
sin r = tan p tan co-P sin co-R = cos r cos co-P

sin r = tan p cot P cos R = cos rsin P

tan p = sin r tan P cos R = cos rsin P
r = 60° log sin = 1-93753 log cos = 1:69897
P = 45° log tan = 0-00000 log sin = 1-84949
log tan = T1-93753 log cos = 1-54846
p = 40° 54’ R = 69° 17
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To find q:
sin co-P = tan r tan co-q
cos P = tanr cot g
cot g = cot r cos P
log cot = T1-76144
log cos = 1-84949

log cot = T1-61093

g = 67° 47

Answer—p = 40° 54’, R = 69° 17’, g = 67° 47..

Example 9:2—In the spherical triangle PQR: P = 90°, R = 45°, p = 110°. Solve the
triangle.

* Fig.9'5

Referring to fig. 9-5:
g and Q are more than 90° and r is less than 90°

To find q: To find r:
sin co-R = tan g tan co-p sin r = cos co-p cos co-R
cos R = tan g cot p sin r = sin p sin R
tan ¢ = tan p cos R sin r = sin p sin R
p = 110° log tan = 0-43893( — ) ‘ log sin = 1-97299(+)
R = 45° log cos = T1-84949(+) -3t log sin = 1-84949(+)
log tan g = 0-28842( — ) log sin r = 1-82248 (+)
g = 117° 14 r = 41° 38"~
To find Q:

¢ Sin co-P = tan co-Q tan co-R
. -cos P =.cot Qcot R
-cot Q = cos p tan R
log:cos = 1-53405( — )
log tan. = 0-:00000(+)

log cot = T1-53405( — )
Q = 108° 53

Answer—q = 117° 14, r = 41° 38/, Q = 108° 53"
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2. Napier’s Rules for Solving Quadrantal Spherical Triangles

A Quadrantal Spherical Triangle is one in which one of the sides has a value of 90°.
Quadrantal triangles may be solved by a modification of Napier’s Rules for Right-angled
Triangles. The modifying rule is:

“In a quadrantal triangle, if both Adjacents or both Opposites are both sides or
both angles, change the final sign”.

This modifying rule is derived from the fact that a quadrantal triangle may be solved by
first solving a “related” right-angled spherical triangle. The following example serves to show
this.

Example 9-3—In the quadrantal triangle ABC: BC = 90°00’, BAC = 60°00’,
ABC = 30°00". Find ACB.

Referring to fig. 9-6:

To find C use trhe right-angled spherical triangle 4ABD in which:

2 b D = 90°
BD = 9(0°
Y b DAB = supplement of BAC = 120°
DBC = complement of ABC = 60°
d
To find a:
B
g sin co-A = cos co-B cos a
cos A = sin Bcos a
v cos a = cos A cosec B
@ log cos A = 1-69897( — )
dh log cosec B = 0-06247(+)

Fig. 9-6
log cos a = 1-76144( — ) a = 125° 16’

Answer—a = ACB = 125° 16'.
To solve a quadrantal triangle using the modifying rule, the procedure is as follows:
The parts of the quadrantal triangle are written in order in the sectors of the cartwheel as

in fig. 9-7.

Notice that in fig. 9-7 the angle opposite to the
90°-side and the other two sides are prefixed with the
“co” to denote complement.

To find C:

sin co-A = cos Bcos C
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Note that Both the Opposites (B and C) are angles in this case. Therefore the final sign

will have to be changed as shown below.

cos A = cos Bcos C

cos C = cos A sec B
log cos A = 1-69897(+)
log sec B = 0-06247(+)

log cos C = 1-76144(+) This becomes ( — )

Therefore:

C = 180° — 54° 44’

125° 16’

Answer—C = 125° 16'.

3. The Solution of Oblique Spherical Triangles by Napier’s Rules

Any oblique spherical triangle may be solved by Napier’s Rules simply by dividing the
triangle into two right-angled spherical triangles by dropping a perpendicular great circle arc
from any vertex onto the opposite side or side produced. This artifice is often used in the
construction of Short Method Tables used in nautical astronomy (see Part 5). Moreover, in
many cases, particularly when the Four Parts Formula may be used to solve a spherical
triangle, the solution by Napier’s Rules is considerably simpler than the alternative.

Example 9-4—In the spherical triangle ABC, B = 30°00’; ¢ = 60°00’, » = 70°00’. Find A

using Napier’s Rules.

cot

log cos ¢ =

log tan B =

‘b logcot 6 =

X s_in x =

log sin B =

Fig. 99 (a) log sin ¢ =

log sin x

Referring to fig. 9-8: To solve A direct the Four
Parts Formula would have to be employed. The
following solution, using Napier’s rules, is simpler.

Drop a perpendicular great circle arc from A onto
the side BC at X.

From the cartwheel illustrated in fig. 9-9 (a):

sin co-¢c = tan co-B tan co- 0

0 = cos c tan B
1-69897

1-76144

1-46041 0 = 73° 54’

sin B sin ¢
1-69897
1-93753

1-63650 x = 25° 39
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From the cartwheel illustrated in fig. 9-9(b):
sin co- ¢
log cot b
4‘ log tan x
1
+ 0g cos ¢

Fig. 99 (b) A

tan co-b tan x
cot b tan x
1-56107
1-68158

1-24265 ¢ = 79° 56
0+ o

73° 54’+ 79° 56’

153° 50’

Answer—A = 153° 50’

i

Exercises on Chapter 9

1§

. In the spherical triangle ABC: A = 40°00°, B = 90°00’, C = 65°00’. Find the three

sides.

In the spherical triangle EFG: F = 90°00’, E = 28°45’, EF = 75°15’. Find the
unknown parts. '

In the spherical triangle XYZ: Z = 90°00’, ZY = 40°30°, Y = 102°30". Find the
unknown parts. -

In the spherical triangle PQR: R = 90°00°, P = 115°35’, PQ = 98°40’. Solve the
triangle.

In the spherical triangle ZYX: Z = 90°00, X = 140°00’, ZX = 123°00". Solve the
triangle. _

In the spherical triangle ABC: AB = 90°00°, C = 65°00°, B = 150°00’. Solve the
triangle.

. In the spherical triangle XYZ: XY = 90°00’, YZ = 55°00’, ZX = 70°00’. Find the

unknown parts.

In the spherical triangle PZX: PX = 50°00’, ZX = 30°00’, P = 35°00’. Explain why
two values may be assigned to angle Z. Compute these values.

In the spherical triangle ABC: AB = 75°00’, BC = 60°00’, A = 50°00’. Find B and C.
In the spherical triangle XYZ: XZ = 100°00, X = 30°00’, Z = 40°00". Find YZ.




PART 2

THE SAILINGS

The “Sailings” embrace the several methods used to find the course to steer and the distance
to travel in going from one position on the Earth’s surface to another. The fact that vessels
travel over a spherical surface made for difficulties in connection with sailing problems which
were not overcome until the advent of the Mercator Chart in the sixteenth century. In this
Part we shall first consider the shape and size of the Earth; the methods of defining position
on the earth’s surface; the nature of the tracks traced out by vessels moving over the sea; and
the principles of the Mercator Chart. Following this a discussion on the several methods of
computing courses and distances will be presented.




CHAPTER 10
THE SHAPE AND SIZE OF THE EARTH
1. The Earth .

The Earth’s shape is not quite spherical. In many navigational problems, however, the
Earth is considered to be a perfect sphere—an assumption which leads to no appreciable
error.

It is believed that the notable Pythagoras, of right-angled
triangle fame, taught that the Earth “is a ball suspended in
space”. It was not, however, until about three centuries after
the time of Pythagoras, that the first recorded attempt at
measuring the Earth was made by the Greek philosopher
Eratosthenes. Eratosthenes noticed that at noon on the
longest day of the year, at Syene in the upper Nile valley, the
buidings cast no shadows. At Alexandria, situated to the
north of Syene, the buildings did cast shadows at noon on the
longest day of the year. Eratosthenes accounted for this by
arguing that the Earth must be spherical, and that the parallel
rays of the very remote Sun cast shadows of different lengths
at the two places.

Fig. 10-1 illustrates the methods used by Eratosthenes for
determining the circumference of the Earth. By finding the
angle 6 by measurement, and estimating the distance between
A and B, the earth’s circumference may be deduced from the
relationship:

Fig. 10-1

Arc AB : 6° : : Circumference : 360°
From which:

: . AB
Circumference = 360*0‘4

| The Earth rotates about a fixed diameter known as the Earth’s polar axis. The rate of the
F | Earth’s rotation is relatively slow: it spins once in twenty four hours.

The direction towards which points on the earth’s surface are carried around the Earth’s
polar axis is known as East. The direction opposite to East is called West.

= ||

‘ ‘ The extremities of the Earth’s axis are known as the Earth’s Poles. These two points are

the poles of a great circle which lies in the plane of the Earth’s rotation. This great circle is

k] known as the Equator. i.e. The Equator is the great circle on the surface of the earth so that
: ‘ all points on it 90° away from each pole.
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The Earth’s pole at which the Earth’s rotation is anticlockwise when viewed from above it
is known as the North Pole. The other is called the South Pole.

An observer facing the direction of the North Pole from any point on the Earth’s surface,
would be looking in a direction which is 90° to the left of East. This direction is called North.
The direction opposite to North is called South.

The four directions North, South, East and West, which are abbreviated to N., S., E. and
W., respectively, are known as the Cardinal Points of the Compass. All other horizontal
directions may be referred to the two adjacent cardinal points. Thus we may signify that a
lighthouse bears N. 28° E., meaning that the horizontal angle between the direction of North
and that of the lighthouse is 28°.

The complete “compass”, that is to say, the hotizontal circle through the cardinal points,
is divided into 32 points. The term Point of the Compass sometimes refers to a direction and
sometimes to the 32nd part of the compass, which is an arc of 1114°.

The directions which lie midway between any two adjacent cardinal points, such as N.E.,
S.W., are called Half Cardinal Points. Those which lie midway between any two adjacent
cardinal and half cardinal points, such as E.N.E., W.S.W., N.N.W., are called Intermediate
or Three-Letter Points. The remaining points are called By-Points. Although the points of
the compass are not used so extensively as in days gone by, every mariner worthy of the name
should be able to Box the Compass.

The quadrantal system of denoting horizontal directions, noted above, has given way to
the superior Three Figure Notation, in which North is referred to as 000°, East as 090°,
South as 180°, West as 270°, and so on to 359° which corresponds to N.1°W. by the
quadrantal notation.

The equator divides the Earth into the Northern and Southern Hemispheres. All places in
the northern hemisphere are said to have North Latitude, and all places in the southern
hemisphere, South Latitude. The equator may be defined as the Parallel of Zero Latitude
because every point on the equator has a Latitude of 00° 00’ 00”.

Small circles on the surface of the Earth, which are parallel to the equator, are known as
Parallels of Latitude. All points on a particular parallel of Latitude have the same latitude.
The Latitude of a place on the Earth’s surface, assuming the Earth to be perfectly spherical, is
the angle at the Earth’s centre, measured in the plane of a secondary to the equator, from the
plane of the equator to the place. ’

Secondary great circles to the equator are called Meridians. Thus, the Latitude of a place
is defined as the arc of a meridian intercepted between the equator and the place. Strictly
speaking, meridians are semi-great circles which terminate at the Earth’s Poles. In other
words a secondary to the equator forms two antipodal meridians.

2. Describing a Terrestrial Position

Navigators employ one of two general methods of describing a position on the Earth’s
surface. The more common method is to state the parallel of Latitude and the meridian on
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which the position to be described rests. The parallel of Latitude is denoted by stating the
Latitude of the place, and the meridian is denoted by stating an angle called Longitude.
Whereas the datum parallel from which Latitude is measured is the equator, the datum
meridian from which Longitude is measured is the meridian of Greenwich. This meridian, the
Prime Meridian, is generally called the Greenwich Meridian.

In fig. 10-2, the angle DOC is the Latitude of the point
C (and of every other point on C’s parallel of Latitude). If
the meridian on which the point G lies is the Greenwich
Meridian, then the West Longitude of C is given by the
angle EOD.

But: Angle EOD = Angle GFC
= Angle EPD

Arc ED
Notice in fig. 10-2 that the Latitude of the pole is 90°.

The Longitude of a place is the smaller angle at either
pole, or the lesser arc of the equator, contained between the
Fig. 10-2 Greenwich Meridian and the meridian on which the place
lies. Every point on the Greenwich Meridian has a
Longitude of 00° 00’ 00”.

The Greenwich and the Antipodal, or 180th meridian, divides the Earth into the Eastern
and Western Hemispheres. All places which lie to the east of the Greenwich Meridian and to
the west of the 180th meridian, are said to have East Longitude. All places which lie to the
west of the Greenwich Meridian and to the east of the 180th meridian have West Longitude.

By examining a world map it may be verified that Cardiff is in Latitude 51°30’N.
Longitude 03°10’'W., and that Capetown is in Latitude 34°00’S. Longitude 18°30’E.

The Difference of Latitude—abbreviated to D. Lat.—between two places is the arc of any
meridian contained between the parallels of Latitude of the two places. If the two places have
Latitudes of the same name, the D. Lat. is found by subtracting the smaller from the greater
Latitude. If the two places have Latitudes of different names, the D. Lat. is found by adding
the two Latitudes. D. Lat. is sometimes named North or South, according as the ship is
moving northerly or southerly, respectively.

The Difference of Longitude—abbreviated to D. Long.—between two places is the
smaller angle at either pole, or the lesser arc of the equator, contained between the meridians
of the two places. If the two places have Longitudes of the same name the D. Long. is found
by subtracting the smaller from the greater Longitude. When the two places have Longitudes
of different names, and the Greenwich Meridian lies within the arc of D. Long., the D. Long.
is found by adding the Longitudes. When, however, the 180th meridian lies within the arc of
D. Long. between the two places, the D. Long. is found by adding the longitudes and
subtracting the sum from 360°00'00”. D. Long. is named East or West, according as the ship
moves easterly or westerly, respectively.
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Example 10-1—Find the D. Lat. and D. Long. between the following pairs of positions:

(@) From Lat. 20° 38’N. Long. 96° 54'W.
To Lat. 15° 22’'N. Long. 35° 34'W.

(b) From Lat. 15°10’S. Long. 36° 06’ E.
To Lat. 06° 08’ N. Long. 06° 55’E.

(¢) From Lat. 20° 33’S. Long. 04° 00’ W.
To Lat. 15°36’S. Long. 05° 38"E.

(d) From Lat. 54° 45'N. Long. 176° 25’ E.
To Lat. 00° 55’S. Long. 164° 52’ W.

(@) From Lat. 20° 38’N. Long. 96° 54’ W.
To Lat. 15° 22’N. Long. 35° 34’ W.

D. Lat. 05° 16’S. D. Long. 61° 20’E.

() From Lat. 15° 10’S. Long. 36° 06’ E.
To Lat. 06° 08" N. Long. 06° 55"E.

D. Lat. 21° 18’N. D. Long. 29° 11’ W.

() From Lat. 20° 33’S. Long. 04° 00’ W.
To Lat. 15° 36’S. ‘Long. 05° 38"E.

D. Lat. 04° 57’N. D. Long. 09° 38’E.

(d) From Lat. 54° 45’'N. Long. 176° 25’E.
To Lat. 00° 55’S. Long. 164° 52'W.

D. Lat. 55°40’S. D. Long. 18° 43’E.

In the alternative method of describing a terrestrial position the direction of the position
and its distance from some known reference point are stated. The reference point is usually a
prominent headland, a lighthouse, or an important landmark. The direction is given by
stating a Bearing. The Bearing of an object indicates its compass direction. Thus we may say
that a ship is in a position with Cape Hatteras bearing 265° at a distance of 16 miles. This
means that the ship lies 085°—which is the opposite direction to the bearing of the Cape—16
miles from Cape Hatteras.

3. The True Shape of the Earth

Thus far the shape of the Earth has been considered to be a perfect sphere. For certain
problems in navigation, notably in connection with the mariner’s chart and the nautical unit
of distance, it is necessary for us to consider the Earth’s true shape. The actual shape of the
Earth is that of an oblate Spheroid of Revolution. An oblate spheroid is the shape that would
be swept out by rotating an ellipse about its minor diameter.

THE SHAPE AND SIZE OF THE EARTH 63

The Ellipticity of the terrestrial spheroid, that is to say, the ratio between the difference of
the lengths of the equatorial and polar radii, and the length of the equatorial radius, is
approximately 1/300. This very small fraction indicates that the Earth is almost a perfect
sphere. The Earth’s principal radii are:

Equatorial radius = 6,378,249 metres
Polar radius = 6,356,515 metres

The true shape of the Earth affects our earlier definition of Latitude, so that it is necessary
to examine this closely.

The Vertical at any place is the direction perpendicular to the horizontal plane which
touches the Earth’s surface at the place. The angle contained between the vertical at a place
and the plane of the equator is known as the Geographical Latitude of the place. It is the
Geographical Latitude that is measured in astronomical observations for Latitude. For this
reason it is often called True or Astronomical Latitude. When the term Latitude is used
without qualification, it is understood to mean Geographical Latitude.

The angle at the Earth’s centre contained between the equator and any place on the
Earth’s surface and measured in the plane of the meridian of a place, is called the Geocentric
Latitude of the place. Except for places on the equator or at either pole, the Geocentric
Latitude of a place is always smaller numerically than the Geographical Latitude of the place.
For this reason Geocentric Latitude is sometimes called Reduced Latitude.

In fig. 10-3:

Geographical Latitude of X = ZYX = ¢
Geocentric Latitude of X = ZOX = 0

The maximum difference between the Geographical Latitude
of a place and its Geocentric Latitude occurs when the latitude of
the place is 45°. The Geographical Latitude and Geocentric
Latitude of any point on the equator is 00°00". The Geographical
Fig. 10-3 Latitude and the Geocentric Latitude of either pole is 90°00".

The difference between the lengths of the equatorial and polar radii is 21,734 metres. This
is equivalent to 11-6 nautical miles.

4. The Nautical Mile

The important feature of the navigational unit of distance called the Nautical Mile is that
it is related to a meridian spherical distance of one minute of arc. A nautical mile is the length
of an arc of a meridian the Geographical Latitudes of the end points of which differ by 1’ of
arc. In fig. 10-3, if the angle between BE and AE, which are the verticals at B and A,
respectively, is exactly 1’, the arc-length 4B is one nautical mile. It is for this reason that a
nautical mile is sometimes defined as the length of an arc of a meridian between two points
whose verticals are inclined to one another at an angle of 1”. Thus, if angle AEB is 1’, the arc
AB is one nautical mile. The point E is at the centre of curvature of the small piece of the
meridian contained between A4 and B. Because of the oblateness of the Earth, the radius of
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curvature of the meridian increases as the Latitude increases. As the radius of curvature
increases, the arc-length corresponding to an angle of 1’ at the centre of curvature also
increases. For this reason, the length of a nautical mile increases as the Latitude increases.

1842-787 metres or 6046 feet
1861:656 metres or 6108 feet

Length of nautical mile in Lat. 0°
Length of nautical mile in Lat. 90°

I

The average length of the nautical mile is 6077 feet, or 1852:221 metres. This corresponds
to the length in Latuitude 45°. The figure 6077 is rounded off to 6080 and this latter figure is
taken as the number of feet in the Standard Nautical Mile. The Standard Nautical Mile in
metres is taken as 1852.

The length of the actual nautical mile in-any Latitude ¢ is given by the formula:

Length in Metres = 1852 — 19 cos 2¢
or Length in Feet = 6077 — 31 cos 2 ¢

From this formula it may be verified that the standard nautical mile of 6080 feet or 1852
metres may be used without introducing error only in Latitude 49° approximately. In all
other Latitudes, by using a distance-measuring instrument calibrated in standard nautical
miles, an error proportional to the distance results. This error is, of course, greatest for any
given distance when the latitude is zero or near 90°. The lengths of a minute of a meridian in
latitudes 0° and 90° are, respectively, 0-995 and 1-005 nautical miles.

Example 10-2—Find the length of the nautical mile in metres in Lat. 60°00".

Length = 1852 — 19 cos (2X 60)°
= 1852 — 19 cos 120°
1852+ 9-5

= 18615 metres
Answer—Length = 1861-5 metres.

[

A commonly used sub-multiple unit of the nautical mile is the cable. The cable is a tenth
of a nautical mile. In practice it is usual to reckon a cable as being 600 feet or 200 yards. The
nautical unit of speed is the Nautical Mile per Hour. This is called the Knot.

5. Reduction of the Geographical Latitude

We have noted above that the distance between the lengths of the equatorial and polar
radii of the Earth is 11-6 nautical miles. The reduction R of the Geographical Latitude may,
therefore, be found from the following formula:

R = 11-6sin2¢
where ¢ is Geographical Latitude.

Example 10-3—Find the Geocentric Latitude of a place whose Geographical Latitude is
30°00".
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11-6 . sin (2X 30)°

11-6 . sin 60°

10-0

reduction =

|

Geocentric Latitude = Geographical Latitude — Reduction
30° 00" — 10
29° 50

I

Answer—Geocentric Latitude = 29° 50",

6. The Geographical Mile

The length of a minute of arc of the equator is called a Geographical Mile. It is of interest
to note that the equator is the only true great circle on the Earth. Meridians, because of the
Earth’s oblate shape, are semi-ellipses.

The geographical mile is 6087 feet or 1855-4 metres. This distance is used for computing
the distance along a parallel of Latitude for purposes of surveying and large-scale mapping.

Exercises on Chapter 10

Define the Great Circle; Small Circle. Give examples of terrestrial great and small circles.
Describe the method used by Eratosthenes for measuring the circumference of the Earth.
State four proofs of the earth’s rotundity.
. Describe the true shape of the Earth. Explain why, in most navigational problems, the
Earth may be assumed to be a perfect sphere.
5. What is a Meridian? In what direction would a ship be sailing were she steered along a
meridian?
6. Define Bearing. Explain why the bearing of every point on Earth is 180° from the earth’s
North Pole. '
7. Define Statute Mile; Geographical mile; Cable.
8. Explain clearly the meaning of Reduction of the Latitude.
9. Describe two systems of defining terrestrial positions.
10. Explain clearly the derivation of the Standard Nautical Mile.
11. Define Prime Meridian; Eastern Hemisphere; D. Lat.; D. Long.
12. What is the antipodal position of Lat. 20°S. Long. 15°W.?
13. A ship sailed due North for two days at 10 knots along the Prime Meridian. Find her
final Latitude if her Departure position was in Lat. 54°00'S.
14. A ship sailed due West along the equator for 18 hours at 16 knots. Find her final position
if her Departure position was in Long. 10°30'W.
15. What is the D. Lat. and D. Long. between the following pairs of positions:
(@) From Lat. 10°43’S. Long. 05° 56’ W.
To Lat. 06°34’S. Long. 18° 05’E.
(b) From Lat. 34° 18’ N. Long. 177° 08’E.
To Lat. 22° 52'N. Long. 06° 18’ W.
16. What is meant by the term Ellipticity as it applies to the Earth?
17. Explain how the radius of curvature of the meridians changes with Latitude. How does
this change affect the seaman’s unit of distance?

AN
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18.
19.

20.
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Describe the error that results by using a patent log calibrated in Standard Nautical
Miles when sailing in very low or very high Latitudes.

Define a Geocentric Latitude; Geographical Latitude. What is the Geocentric Latitude of
a place whose True Latitude is 60°00'N.?

Calculate the length in metres of the nautical mile in Lat. 42°S.

CHAPTER 11
THE RHUMB LINE
1. Introduction

Ships are steered from place to place, when out of sight of land, by means of a magnetic
or gyro compass which indicates a fixed horizontal direction irrespective of the movements
of the ship. Compass Points are marked on the outer edge of the compass card; and radial
lines, extending from the centre of the card to the several points, are known as Rhumbs.
When a ship’s head is steadied in a certain compass direction the fore-and-aft line of the ship
lies in the vertical plane of the rhumb, and it is easy to visualise the path and track of the ship
as extensions of the rhumb. For this reason a line of constant course is known as a Rhumb
Line.

A rhumb line is usually defined as a line on the Earth’s surface which cuts every meridian
at the same constant angle. The most convenient path to travel along is a thumb line path
which connects the places of departure and destination. This is so because, in travelling along
a rhumb line, the course of the vessel remains constant.

In fig. 11-1, AB represents a typical rhumb
line. Notice the constant angle which it makes
with the meridians it crosses.

‘cUATOH

Special cases of rthumb lines are the equator,
parallels of Latitude, and meridians. The equa-
tor and all other parallels of Latitude are rhumb

A lines because the course of a vessel travelling
along a parallel is constantly 090° or 270°.
Meridians are rhumb lines of constant course
000° or 180°

The art of sailing obliquely across the meridians is known as loxodromics, from the
Greek words “loxos” and “dromos” meaning oblique and running respectively. For this
reason all rhumb lines, other than parallels of latitude and meridians, are sometimes called
Loxodromic Curves. When a vessel sails along a Loxodromic Curve her track is an
equi-angular spiral which constantly approaches the Earth’s Pole. This follows because the
meridians close together, or converge, as the Latitude increases. Theoretically a Loxodromic
Curve continually gets closer to but never reaches the Earth’s Pole.

2. The Sailings

The Sailings comprise the various methods of finding the course and distance from one
place on the Earth’s surface to another. When the distance travelled by a vessel is relatively
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small it is usual, when practicable, to travel along the rhumb line connecting the points of
departure and destination. For long distances, however, it is often advantageous to travel
along the great circle arc connecting the points of departure and destination. In the latter case
the distance to travel is less than the rhumb line distance.

There are four methods of Rhumb Line Sailing. Two of these will be dealt with in this
chapter.

3. Parallel Sailing

When a vessel travels in any direction except due North or due South, she moves some
distance towards due East or due West. This distance is known as Departure. Departure may
be represented by an arc of a parallel of Latitude cut off between the meridians of the points
between which the vessel travels.

If a vessel travels along the equator the D. Long. between the places left and arrived at is
numerically equal to the Departure, the D. Long. being given in minutes of arc and the
departure in nautical miles. This, of course, assumes the Earth to be a perfect sphere, in
which case a nautical mile would the be length of any arc of the Earth’s surface, the
extremities of the arc subtending an angle of one minute at the Earth’s centre.

When a vessel travels along any parallel of Latitude other than the equator; that is to say,
when her course is due East or due West, the Departure measured in miles between the points
left and arrived at is always numerically less than the D. Long. in minutes of arc between the
two points. This is due to the Convergency of the meridians.

The relationship between D. Long., Departure, and Latitude, is given in the Parallel
Sailing Formula, in which the Earth is assumed to be a perfect sphere.

4. The Parallel Sailing Formula

oIn fig. 11-2:
] AB = Departure in miles
\ 3 CD = D. Long. in equatorial minutes of arc, these
ﬂ being equivalent to nautical miles on a
. N, spherical Earth.

Now:
Departure _ AB

D. Long. CD

= Ié—g(arcs of concentric circles subtended by
the same angle are proportional to their
radii)
_ AE _ .
" = A—O(CO = AOQ: radii of the same sphere)

Fig. 11-2 = cos Lat. 4 (or B)
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Therefore:
Departute _ o Late v 1)
Departure
D. Long. _
Dopattate ~ SEC LAt uuivsnismimrmiimnmmnnomen 2
Departure = D. Long..cosLat. ................ 3)
D. Long. = Departure.sec Lat.................. @)

These four relationships are variations of the Parallel Sailing Formula.

The traverse table is almost invariably used for solving problems in which the Parallel
Sailing Formula is involved. The three columns of the table are labelled with supplementary
headings: the top of the Distance column is labelled D. Long., and the top of the D. Lat.
column is labelled Dep. In a traverse table which extends only to 45°, the bottoms of the
Distance and Departure columns are labelled D. Long. and Dep. respectively.

Example 11-1—A vessel travelled 100 miles due East along the parallel of 50° 30’ N. If the
Longitude of the point she left was 03° 50’ W., find her final Longitude.

D. Long = dep. sec Lat.
= 100. sec 50° 30’
From traverse tables:

D. Long. = 158’
= 02° 38’ E.
Long. left = 03° 50" W.
Final Long. = 01° 12’ W.

Answer—Final Longitude = 01° 12’ W.

Example 11-2—A vessel left a position in Lat. 39° 00’ S. Long. 30° 08’ W. and travelled due
East until her Longitude was 25° 22’ W. How many miles did she travel?
Long. from = 30° 08’ W.
Long. to = 25° 22" W.

D. Long. = 04° 46’ E.
= 286’ E.
Dep. = D. Long. . cos Lat.
= 286.cos 39°
From Traverse Table:
Dep. =

222-3 miles
Answer—Distance = 222-3 miles. -

Example 11:3—What is the Latitude where the D. Long. is numerically equal to three times
the Departure?

o5 Lk, = Departure
’ D. Long.
De

X Dep.

;

3
1
3
Lat. = 7
Answer—Latitude = 70° 32’ N. or S.

0° 32’ N. or S.




70 THE ELEMENTS OF NAVIGATION AND NAUTICAL ASTRONOMY
5. Plane Sailing

dep.

When a vessel travels along a rhumb line, the acute
angle which her fore-and-aft line makes with the meridians
she crosses is known as the Course Angle. When a vessel
travels along any rhumb line except a meridian or parallel
of Latitude; the Distance steamed, the difference of
Latitude, and the Departure between the first and final
positions, may be regarded as forming the sides of a plane right-angled triangle with the
Course Angle opposite to the side representing the Departure. This plane right-angled
triangle is called the Plane Sailing Triangle. It must be borne in mind that this triangle does
NOT represent a triangle on the Earth’s surface: it is simply an artifice which shows the
relationship between Rhumb Line Course, Distance, D. Lat. and Departure. If the Distance
and Course Angle are known the D. Lat. and Departure may be found by solving a Plane
Sailing Triangle. The formulae used in solving plane sailing triangles are called the Plane
Sailing Formulae as indicated in fig. 11-3.

d.lat.

They are,
Departure = Distance.sin Course..................... 0))
D. Lat. = Distance.cos Course..................... 2

By dividing (1) by (2) we get:

Dep.
D Lat tan CoursSe ......ovvvviie e, 3)

6. Proof of Plane Sailing Formulae

Fig. 11-4 represents a portion of the Earth’s surface
showing parts of two meridians and two parallels of Latitude.
The rthumb line between A and Bis drawn. Let the rhumb line
Course Angle be denoted by 6.

Imagine the distance 4B to be divided into a sufficiently
large number of small pieces, so that the triangles Aab, acd,
cef, etc., may be considered to be plane. Strictly speaking the
pieces Aa, ac, ce, etc., should be infinitely small. On this
assumption the following proof holds good.

Ab, ad cf, etc., are pieces of D. Lat.
ab, cd, ef, etc., are pieces of Departure.

Then
ab +cd +ef +etc. = Aa. sin 8 +ac. sin 0 +ce. sin 0 +etc.
= sin 0 (Aa +ac +ce +etc.)
But, Aa +ac +ce +etc. = Distance AB
And, ab +cd +ef +etc. = Departure between A and B
Therefore:

Departure = Distance . cos 6
Similarly it may be proved that:

D. Lat. = Distance.sin 6

THE RHUMB LINE 71

Example 11-4—A vessel travelled for 245-0 miles on a Course of 062° S. Find the D. Lat. and
Departure.
Course Angle = 62° Distance = 245-0 miles
From Traverse Tables:
Departure = 216-3’ E.
D. lat. = 115:0’ N.
Answer—Departure = 216-3 miles East.
D. Lat. = 115-0 miles North.

Example 11-5—A vessel left position Lat. 41° 44’ S. on a course of 158°. Find the distance
she had travelled on reaching the parallel of 48° 16" S.

Lat. from = 41° 44’ S. Course Angle

Lat. to = 48° 16’ S. D. Lat.

D. Lat. = 06° 32" S.

22°
392" S.

From Traverse Tables:
Distance = 423 miles
Answer—Distance = 423 miles.

Example 11-6—A vessel travelled for a distance of 346-0 miles and changed her Latitude by
4° 00", If the course had been in the S.E. quadrant, find it.
D. Lat. = 240-0’ S.
Distance = 346-0 miles
From Traverse Tables:
46°
134°

Course Angle =
Course S. 46° E. =

Answer—Course = 134°

Example 11-7—A vessel travelled for a distance of 928:0 miles on a course of 306°. Find the
D. Lat. and Departure.
Distance = 928:-0 miles
= (600+328) miles
Course Angle = 54°
From Traverse Tables:
D. Lat. = 352-74+192-8
= 545-5' N.
Departure = 485-4+265-4
: = 750-8" W.
Answer—D. Lat. = 545-5" N.
Departure = 750-8’ W.

7. Traverse Sailing

When a vessel in travelling from one place to another has to make several courses, the
irregular track she makes is known as a Traverse. Ths name is derived from the circumstance
that a sailing vessel, in making a passage, would have to cross and recross the desired path
several times because of the direction and/or change in direction of the wind during the
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passage. The problem of finding the course and distance the vessel would have made had it
been possible for her to sail directly from the Departure position to the destination; that is to
say, the Course and Distance Made Good, is known as Resolving a Traverse. This method of
zig-zag sailing was, therefore, known as Traverse Sailing.

When making a traverse, the, several legs of the track may be considered to be the
hypotenuses of plane sailing triangles. The D. Lat. and Departure of each of these triangles
may be solved by means of Plane Sailing. By summing the D. Lats. and Departures of the
several plane sailing triangles, the D. Lat. and Departure between the points left and arrived
at may be found.

The record of the courses and distances sailed on each leg of a traverse was known, in
by-gone days, as the Ship’s Reckoning. By means of the reckoning, and a knowledge of the
initial Latitude, the Latitude of the vessel at any time could be found without recourse to
observations. A Latitude so found was known as a Dead Reckoning, or D.R. Latitude.

In the modern practice of navigation, a D.R. position is one that has been worked up
from the last Observed Position, making no allowance for current and /or leeway. The name
Observed Position is given to any position obtained from observations of celestial or
terrestrial objects, or from any electronic navigation instrument such as radar, Decca
Navigator or Radio Direction Finder.

When observations are not possible, and a navigator wishes to know his vessel’s position,
he applies to the last Observed Position, courses and distances travelled through the water
since the time of the Observed Position, and so finds his D.R. Position. To the D.R. he
applies an estimated allowance for current, leeway, and any other disturbing factor which has
influenced the vessel’s movement. The position so found is referred to as an Estimated
Position (E.P.). An Estimated Position is the most reliable position obtainable when direct
observations are not available.

The traverse table lends itself admirably to the solution of traverse sailing. This is the
reason, in fact, why the traverse table is so-named.

8. The Departure Position

When it is necessary to venture into the open sea it is essential, before the land is lost to
sight, that the position of the vessel be found from terrestrial observations, in order to obtain
a reliable Observed Position from which the course may be set. Such a position is known as a
Departure Position. It is customary to describe a Departure Position as a bearing and
distance from some conspicuous land- or sea-mark.

9. Current

The movement of the surface layers of the sea, due to meteorological causes, is known as
current. The direction towards which the water in a current is moving is known as the Set,
and the speed is known as the Rate of the current. The distance which a vessel is set in any
given interval of time is called the Drift of the current.

If current is the only external factor influencing the movement of a vessel, the set and drift
is equivalent to the course and distance from a D.R. Position to a corresponding Observed
Position.

THE RHUMB LINE 73

Example 11-8—A vessel takes her Departure from a position with Cape Sable in lat. 43° 25
N. Long. 65° 30" W., bearing 062° distance 12-0 miles. Course was set to 210°, log zero.
When the log registered 14 the course was altered to 300° and when it registered 32 the course
was altered to 223°. Find the vessel’s D.R. Latitude when the log registered 49. Find also the
course and distance the vessel made good. ’

In fig. 11-5
Departure Bearing is N. 62° E.
Departure Course is S. 62° W.
D. Lat. Dep.
N. S. E. W.
Dep. course S. 62° W. distance 12 miles — 56 — 10-6
Ist course S. 30° W. distance 14 miles — 12-1 — 70
2nd course N. 60° W. distance 18 miles 90 — — 156
3rd course S. 43° W. distance 17 miles — 12-4 — 11-6
30-1" S.
9-0” N.
D. lat. (for lat.) 21-1’S. 34-2 = Dep.
56

D. Lat. (for Co.) 15-5’S.

From Traverse Tables:
Course and Distance Made Good = 246° X38 miles
Lat. Cape Sable = 43° 25’ N.
D. Lat. = 21-1’S.

D.R. Lat. ship = 43° 03-9’ N.

Answers—Course Made Good = 246°
Distance Made Good = 38 miles
D.R. Latitude = 43° 04’ N.

It is to be noted at this stage that it is not possible to find the final Longitude by using
Plane or Traverse Sailing. When sailing obliquely across meridians, the Latitude changes
constantly, and difficulty arises in finding the correct Latitude to use for converting
Departure into D. Long. and vice versa. To find the position (Latitude and Longitude) of a
vessel after she has travelled on a given course for a given distance such that her Latitude and
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Longitude change is the problem of Mercator Sailing or Middle Latitude Sailing. These
problems will be discussed in Chapter 13. The next chapter deals with the principle and the
construction of the Mercator Chart, this leading to a discussion on the problems of Mercator
and Middle Latitude Sailing.

Excercises on Chapter 11

Describe the properties of a rhumb line.

Define: Departure. What is the relationship between Departure and D. Long?

Explain clearly why the traverse table may be used for converting Departure into D.

Long.

4. Construct a traverse table for distance 652 miles and course angles at 10° intervals from

000°.

5. Devise a graphical method, suitable for all Latitudes, for converting Departures into D.

long. for distances up to 100 miles.

What is meant by Plane Sailing?

Define: D.R. Position; Estimated Position; Observed Position.

Prove that: D. Lat. = Distance . cos Course, for all distances on a spherical Earth.

A vessel travels 200 miles due East in Latitude 40° 30’ N. Find her change in Longitude.

How many miles must a vessel travel along the parallel of Latitude 56° 00’ S. in order to

change her Longitude 10° 00”?

11. A vessel travels 250 miles due West and changes her Longitude by 8° 00’. Find the
Latitude of the parallel along which she travelled.

12.  Find the length of the parallel of Latitude 35°.

13. At what speed is a point in Latitude 60° 00’ carried around the Earth’s axis?

14. A vessel travels for 12 hours at a speed of 100 knots due East along the parallel of
Latitude 50° 10’S. Her Longitude changes 03° 24’. Find the set and rate of the current.

15. A vessel leaves a position in Latitude 40° 30’ N. Long. 16° 00’ W., and makes good the
following courses and distances.

(i) due East 300 miles
(ii) due North 300 miles
Find her final position.

16. A vessel leaves a position in Lat. 30° 00’ S. Long. 178° 05’ E. and travels 200 miles due
East. Find her final Longitude.

17. A vessel left a position in Lat. 20° 00" S. Long. 18° 00’ E. and travelled due South for
120 miles, when her position was found to be in Lat. 22° 00’ S. Long. 18° 12’ E. Find the
set and drift of the current.

18.  Two vessels are 50 miles apart in latitude 35° 00’ N. They both travel due South until
they are 55 miles apart. What is their present Latitude and how far has each vessel
travelled?

19. A vessel on a course of 305° changed her Latitude by 4° 25’. Find the Departure and
distance.

20. Find the departure and the change in latitude after having travelled on a course of 163°
for a distance of 312 miles.

21.  Find the distance and change in Latitude after having made a Departure of 218 miles on
a course of 218°. i

22. A vessel steamed between South and East, and in so doing made a Departure of 59
miles and changed her Latitude by 81 miles. Find the distance and course made good.

23. A vessel took her Departure off the South West coast of Ireland with the Fastnets

W -

S0 %0~ o

(iii) due West 300 miles
(iv) due South 300 miles.
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bearing 037° distant 12-0 miles. The log was set to zero and the following courses were
steered:
205° until the log registered 82
208° until the log registered 196
220° until the log registered 326
Find the course and distance made good and the D.R. Latitude of the vessel when the log
registered 326.
24. A vessel left a position off Callao in Lat. 14° 50’ S. Long. 76° 55" W., and made the
following courses and distances:
195° for 45 miles
165° for 160 miles
170° for 82 miles
The current was estimated to have set 290° for 27 miles. Find the course and distance
made good and the vessel’s present estimated Latitude. . ‘

25. A vessel left a position off the Cape of Good Hope with the Cape bearing 090° distance
20 miles. She travelled for 265 miles on a course of 330° and for 345 miles on a course of
324°. During the interval the current was estimated to have set 020° for 25 miles. _Flnd
the estimated course and distance made good by the vessel, and her estimated Latitude
at the end of the interval.

26. How many miles are there in one degree of D. Long in Lat. 42°‘?. )

27. A vessel took her Departure from a position in the mouth of the River Plate in Lat. 34°
49’ S. Long. 54° 50’ W., and sailed along the parallel to a position off the Cape of Good
Hope in Lat. 34° 49’ S. Long. 20° 00’ E. Find the distance travelled.




CHAPTER 12
THE MERCATOR CHART
1. The Navigator’s Chart
tl"he‘ Earth is a three dimensional solid figure while the maps and charts used for
navigational purposes, are only two dimensional. This causes problems of representation and

whichever system is used some distortion is inevitable. The amount of type of distortion
depends upon the method of projection used. The Mercator projection is almost universal for

A chart or map used for navigation purposes should have four basic properties which can
be represented acurately.

1. Area

2. Direction
3. Shape

4. Scale

Thi§ means t}}at lines of latitude and longitude are required to be drawn in a continuous
way, with distortion reduced to a minimum. We also need to be able to represent a course, a
bearing and a distance with accuracy.

The Mercator Chart fulfils these requirements and, for this reason, nearly all navigational
charts for use at sea are of this type.

The principle on which the Mercator Chart is constructed was first used in the sixteenth
century by a German cartographer named Gerhard Kaufman, the latinised version of whose
name (which in English means merchant) is Mercator. There seems to be doubt that
Kaufman understood the exact mathematical principle of the chart which bears his name,
and credit is given to the famous Elizabethan scholar Edward Wright for discovering the
mathematical principle of the Mercator Chart. Wright published a description, and also a
table for facilitating the construction of Mercator Charts, in an important book first
published in the closing decade of the sixteenth century.

When the surface of a sphere is projected onto a plane surface there is bound to be
distortion. The amount and type of distortion depends upon the method of projecting the
gpherical surface onto the plane surface. The Mercator Chart is based on a projection which
IS not a perspective projection. The Mercator projection is a mathematical projection
described by.car_tographers as a Conventional or Non-Perspective Projection. In the
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In order that angles on the projection are not distorted the exaggeration of the
representation of any small area of the sphere’s surface must be equal in the North/South to
that in the East/ West direction. A projection in which angles are not distorted is known as an
Orthmorphic projection.

2. Features of a Mercator Chart

The characteristic features of a Mercator Chart are:

(1) All meridians are projected as equidistantly spaced parallel straight lines.

(2) All parallels of Latitude are projected as parallel straight lines perpendicular to the
projected meridians.

(3) All rhumb lines are projected as straight lines.

(4) All arcs of great circles, with the exceptions of arcs of the equator or any meridian,
are projected as curves which are concave to the projected equator.

(5) Angles, such as course and bearing angles are easily and accurately determined.

Because meridians are projected as parallel straight lines, whereas on the globe they
converge towards the poles, it follows that the exaggeration of arcs of parallels of latitude
increases polewards. In order for the map to be orthomorphic the distances between
successive parallels of latitude must also increase polewards in the same ratio.

3. The Defects of a Mercator Chart

Although the Mercator Chart satisfies the principal needs of the navigator it does have
defects. The principal defects of the Mercator Chart are:

(1) Every Latitude has a different scale of distance.

(2) Great circle arcs, except those of the equator or meridians, are projected as curves.
This makes for difficulty in the practice of Great Circle Sailing.

The variation in the Latitude scale causes areas to be exaggerated proportional to their
Latitudes. It will be noticed that on a Mercator map of the world, Greenland appears larger
than the continent of South America, and yet the range of Latitude of Greenland is no more
than about a quarter of that of South America.

4. Distortion of the Mercator Projection

The degree of exaggeration of lengths along parallels and meridians will now be
examined. In doing so it will be convenient to think of the Earth reduced in size to a model
globe from which the chart is to be projected. Let the radius of the globe be R.

Exaggeration of the Parallels of Latitude

On the Globe:
Length of the Equator = 2zR
Length of the Pole = 0 (Pole is a point)
Therefore
Length of any Parallel of Latitude 6 = 27 R cos 6




——

78 THE ELEMENTS OF NAVIGATION AND NAUTICAL ASTRONOMY

On the chart:
Length of the Equator = 2z R
Length of any Parallel = 2zR

Now:
Exaggeration = Length on Chart
Length on Globe
Therefore: N .
Exaggeration =

2nR cos 6

1

cos Lat.
= sec Lat.

A parallel of Latitude, therefore, is projected with exaggeration which is proportional to
the secant of the Latitude of the parallel.

Now the trigonometrical ratio of the secant, changes from unity when the angle is 0°, to
infinity when the angle is 90°. It is impossible to represent a line that has been exaggerated to
an infinite extent. Therefore, the poles of the Earth, whose Latitudes are 90°, cannot be
represented on a Mercator Chart. Not only is it impossible to project the poles, but it is
impracticable to project areas of very high Latitude. But this does not concern surface
mariners, the vessels of whom trade in more temperate climes than those of very high
Latitudes. The parallel of Latitude 60° is exaggerated two-fold because the secant of 60° is 2:

the parallel of Latitude 70%4° is exaggerated three-fold, because the secant of 7014° is 3, and
O on.

Exaggeration of the Meridians
Y d.long. z’
Consider the rhumb line, illustrated in fig. 12-1, which cuts
l the meridians at an angle 6. A part XY of this thumb line, if
| sufficiently small, may be regarded as forming the hypotenuse
| of a right-angled plane triangle containing the Course Angle
6. Again, if the length of this hypotenuse is sufficiently small
it e, | the side opposite the course angle in the right-angled triangle
| may be considered to be equal to the Departure between the
| end points of the rhumb line XY. The side coinciding with the
| x' meridian through X then represents the D. Lat. between the
' end points.
|
I

I If the point x is projected at point X! on a Mercator Chart;

Equator ], then, because the chart is orthomorphic, the angle. 9 is
represented without distortion. This applies equally to the

angles at Y and Z, so that these points are projected at ¥! and Z! respectively, such that the
triangle X' Y1Z! on the chart is similar to the triangle XYZ on the globe. This is strictly true
only when the triangle XYZ is infinitely small. For this reason the term orthomorphism,

when applied to a map projection, has a special meaning: shape is preserved only Sfor
infinitely small areas.

Fig. 12-1 A
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Because meridians are projected on a Mercator chart as parallel straight lines, the
Departure between X and Y is represented by Y1Z!. This length also represents the D. Long.
between X and Y.

_ Length on Chart
Length on Globe
VA
XZ

Exaggeration of Arc XZ of Meridian

The triangles XYZ and X' Y'Z!, are similar, so that the ratio between corresponding sides
is constant.

Xzt _ Nz
Therefore: X7~ V7
., . _ D. Long.
That is: Exaggeration = ——Dep.
By the Parallel Sailing Formula:
D. Long.
Tiep, = sec Lat.

Therefore:
Exaggeration of Arc XZ of Meridian = sec Lat.

The exaggeration of the projection of an arc of a meridian is proportional to the secant of
the latitude. This is to the same extent as the exaggeration of the projection of an arc of a
parallel of Latitude. The Mercator projection is, therefore, orthomorphic.

5. Meridional Parts

The Longitude scale on a Mercator Chart is constant. On the other hand the Latitude
scale is variable: it increases proportionally to the secant of the Latitude. Thus the unit of the
Longitude scale is a convenient unit for certain purposes which we shall now discuss.

The number of minute-of-arc units of the Longitude scale contained in a projected piece
of a meridian on a Mercator Chart between the projected equator and the projection of any
given parallel of Latitude 6, is called the Meridional Parts for Latitude 6. One Meridional
Part (m.pt.), therefore, is equivalent to a minute of arc of the Longitude scale.

The length of any piece of a projected meridian on a Mercator Chart between two given
projected parallels of Latitude, expressed in m.pts., is called the Difference of Meridional
Parts (D.M.P.) between the latitudes of the two parallels.

Meridional Parts are useful in two applications:
(1) in constructing Mercator Charts
(2) in Mercator Sailing.
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Fig. 12-2 illustrates a part of a Mercator Chart with
the rhumb line connecting projected positions X! and
Y.

Y dlong. 4

Y I l.aw  The number of units of the constant Longitude scale
contained in arcs X!'Z! and Z'Y" are the D.M.P. and D.
Long. respectively between X! and Y.

dlat.

4 Provided that the correct part of the Latitude scale is |
used, the number of units of the variable Latitude scale
contained in arcs X'Z! and Z!'Y! are D. Lat. and
Departure, respectively, between X! and Y. |

Fig. 12-:2

It follows that:

D.M.P. _ D. Long.
D. Lat. Dep.

By the Parallel Sailing Formula:

D. Long.

Dep. = cos A

where A is an angle known as the Middle Latitude (see Chapter 13).
Therefore:

D.M.P.

= A
D. Lat. Sec sec

This relationship is known as the Mercator Principle.

A B o
e - il 7 Fig. 12-3 illustrates a part of a Mercator chart. The D. Lat.
L _ between A and C is 4’. If the Middle latitude is taken as 60°00’, the
N D.M.P. between 4 and C, by the Mercator principle, is:
N s L D.M.P. = D. Lat. sec 60°00"

i h = 4 sec 60°00’
- 1 = 442
I— f— 8

. [s)s'so' 3

pr v =] Therefore, the piece of the meridian cointained between A and

Fig. 123 C has been doubly magnified.

The D.M.P. between two Latitudes may be measured direct from a Mercator Chart
simply by finding the number of minutes of the Longitude scale in the piece of any meridian
contained between the parallels of the two Latitudes.
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Before a Mercator Chart can be constructed, a table of meridional parts must be
available. We shall now discuss how Edward Wright devised his table of m.pts. from which
the first mathematically correct chart was constructed.

After explaining the Mercator principle of orthomorphism and expressing it in
mathematical terms, viz. D.M.P./D. Lat = sec Middle Latitude, Wright divided the part of
a meridian between the equator and a given parallel of Latitude into a number of equal
pieces. He then multiplied the number of Latitude minutes in each piece by the secant of the
MEAN Latitude of each piece. This gave a value for the Meridional parts in each piece. By
adding the m.pts. of the pieces together, a value for the m.pts. for the given Latitude was
obtained. When computing in m.pts. in this way the degree of accuracy of the results depends
upon the number of pieces into which the part of the meridian between the equator and the
given parallel is divided. The greater the number of pieces the more accurate is the result. The
inaccuracy of a result arising through not taking a sufficiently large number of pieces, is due
to the Mean Latitude not being equivalent to the Middle Latitude of the piece. In order to
compute the exact number of m.pts. for any given Latitude it is required to take an infinite
number of pieces. The precise computation, therefore, requires the use of the integral
calculus. In the calculus notation the number of m.pts. (M) in any Latitude 0 is given by:

B =
M:fsec 06.deo
8=0

Edward Wright computed his table of m.pts. before the integral calculus had been
invented. Wright’s table, which was based on the assumption that the Earth is a perfect
sphere, was computed by dividing the meridian into 1’ arc lengths.

The following example illustrates the principle of Wright’s method of computing
meridional parts.

Example 12:-1—Compute the approximate Meridional Parts for Latitude 30°00’ assuming
the Earth to be a perfect sphere.

Method—Divide the arc of the meridian contained between the equator and the parallel of
Latitude of 30° into (say) six equal pieces. Each piece is, therefore, 5° or 300’ in length.

The piece between Lat. 0° and Lat. 5° is represented, approximately, on a Mercator
Chart, by a length proportional to 300 sec 214°.

The piece between Lat. 5° and Lat. 10° is représented by a length proportional to 300 sec
75°.

The piece between Lat. 10° and Lat. 15° is represented by a length proportional to 300 sec
1214° and so on.
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Thus:
M.pts. for lat. 30° = 300 sec 21%°+ 300 sec 7°+
300 sec 1214°+ 300 sec 1715°+
300 sec 2214°+ 300 sec 2714°
= 300 (sec 214°+sec 7H°+ sec 1214°+
sec 1714° +sec 22145°+ sec 2714°)

sec 21° = 1-00095
sec 7%° = 1-00863
sec 1215° = 1-02428
sec 1714° = 1-04853
sec 2215° = 1-08239
sec 2715° = 1-12738
sum = 6:29216
X300

1887-64800

Answer—M.pts. Lat. 30° = 188765 approximately.

Note—Had the arc of the meridian been divided into a number of parts greater than six,
the result would have been more accurate than that obtained above.

6. Meridional Parts for the Terrestrial Spheroid

The m.pts. table given in nautical tables such as Norie’s and Burton’s, are computed for a
terrestrial spheroid having an ellipticity of about 1/300. Admiralty charts on the Mercator
projection are constructed using these tables.

7. Constructing Mercator Charts

The Graticule, or network of projected parallels and meridians, of a Mercator Chart is
drawn to a convenient scale using a straightedge. The first thing to do is to choose a suitable
scale of Longitude. Given the range of Longitude of the proposed chart, the East/ West
extent of the chart may then be found. A straight line of this length is then drawn across the
lower part of the sheet on which the graticule is to be constructed. This line is the projection
of one of the limiting parallels of Latitude of the area to be portrayed. Straight lines, to
represent the projected meridians, are then erected perpendicularly from this projected
parallel. The range of Latitude is divided into a number of equal arcs. The D.M.P. between
the limiting Latitudes of each of these arcs is found using the m.pts. table, and the spacing of
the projected parallels is then computed. The following example illustrates this method.

Example 12-:2—Construct a Mercator Chart between the limits of Latitudes 10° and 50°N.,
and between the meridians of 90° and 150°W. Project parallels and meridians every 10°.

Range of Longitude = 60°
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Let the scale of Longitude be 1 unit to represent 10° or 600’ of Longitude.

Width of chart = 6l 6 units

10

m.pts Lat. 10° = 599-01
m.pts Lat. 20° = 1217-14
D.MP. = 61813 _ .
.M.P. = 61813 represented by 600 1-030 units
m.pts Lat. 20° = 1217-14
m.pts Lat. 30° = 1876-67
D.M.P. = 569-53 represented by 6—2(9W53 = 1-099 units
m.pts Lat. 30° = 187667
m.pts Lat. 40° = 2607-64
_ 130:97 -
D.M.P. = 73097 represented by 600 1218 units
m.pts Lat. 40° = 2607-64
m.pts Lat. 50° = 3456-53
D.M.P. = 84889 represented by &23—089 = 1-415 units

Range of Latitude 40° will be represented by:

1-030+ 1-099+ 1-218+ 1:415 = 4:762 units

150"

140°

1307 120° 10° 100° 90°
Long. W.- from Greenwich.

Fig. 12-4

Fig. 12-4 illustrates the required graticule.

An alternative method of constructing a
Mercator Chart, which is suitable only when
the range of Latitude is small, is shown in fig.
12-5 which illustrates Example 12-3. In this
method, after having chosen a longitude scale
and projected one of the limiting parallels from
which the projected meridians are erected, an
angle equal to the Middle Latitude of the
limiting latitudes is constructed as shown in fig.
12:5. The hypotenuse of the triangle, by the
Mercator Principle, is proportional in length to
the D.M.P. between the two limiting parallels.
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Example 12-:3—Construct a Mercator Chart for the area contained between parallels of

52° and 55°N. and the meridians 06° and 10°W. Insert parallels and meridians at one-degree
intervals.

55°

| s

Fig. 12-5

5414531

Range of Longitude = 4°
Let the Scale of Longitude be 1 unit to 1°.
f Width of chart = 4 units

i The construction is illustrated in fig. 12-5 which is the required projection.

| Exercises on Chapter 12

1. What are the main requirements of a navigational chart?
‘ 2. Describe the features of a Mercator Chart. State the advantages and disadvantages of a
\‘ Mercator Chart to a navigator.
. Explain carefully the mathematical principle of the Mercator projection.
. What is the meaning of the term Orthomorphism as it applies to a map projection?
. Define: Meridian Parts for Lat. 0; Difference of Meridional Parts.
. Explain how Edward Wright constructed his table of meridion parts.
i . Explain carefully how the graticule of a Mercator Chart of a small area, such as a
; harbour or estuary, may be constructed.

NN bW

i 8. Describe how a small circle of diameter 600 miles lying on the equator appears on a
n, | Mercator Chart.
- ‘I 9. How many units of the Longitude scale of a Mercator Chart are contained in a part of a
‘ meridian between the parallels of 53°20’N. and 53°40'N.?

i ‘ 10. If the scale of Longitude on a Mercator Chart is 1 cms. to 1°, find the scale of Latitude in
ey | Latitude 65°15'N.
FAl 11. If 1’ of Longitude on a Mercator Chart is represented by 2:52 cms., what length

i represents 1” of Latitude in Lat. 42°10'S.?

“ 12. If 1’ of Latitude on a Mercator Chart is represented by 2:30 cms. in Lat. 32°20’N., find
' the scale of Longitude.

13.

14.

THE MERCATOR CHART 85

If 1" of Latitude on a Mercator Chart is represented by 3-25 cms. in Latitude 47°30’, find
the scale of Latitude in Lat. 40°00’.

Construct a Mercator Chart for the area between the limits of Latitude 50°00’N. and
58°N., and between the meridians of 4°00'W. and 20°W., using a Longitude scale of 2-5
cms. to 1°. Insert parallels and meridians at one-degree intervals.
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To solve the first of these problems, using Mercator Sailing, the procedure is as follows:
(1) Find D. Lat. and D. Long.
(2) Using m.pts. table find D.M.P.

‘ (3) In the Chart Triangle, using D. Long. and D.M.P. find rhumb line Course Angle.

} (4) In the Plane Sailing Triangle, using Course Angle and D. Lat., find the rhumb line

P CHAPTER 13 Distance.
: MERCATOR SAILING AND MIDDLE LATITUDE SAILING An example will make this clear.
1. Introduction Example 13:1—Find the rhumb line Course and Distance using Mercator Sailing, from A in

Lat. 49° 50" N. Long. 05° 30" W. to Bin Lat. 37° 50" N. Long. 25° 40’ W.
When a vessel has travelled a given distance along a meridian her Departure is zero and

her change in Latitude, in minutes of arc, is numerically equal to the number of miles she has Lat. 4 = 49° 50" N. m.pts. = 3441-05 Long. 4 = 05° 30" W.
sailed. Lat. B = 37° 50" N. m.pts. = 2441-23 Long. B = 25° 40" W.
' D. Lat. = 12° 00’ S. D.M.P. = 999-82 D. Long. = 20° 10’ W.

When a vessel has travelled a given distance along a parallel of Latitude her change in . _ —
Latitude is zero and her Departure in miles is equal to the distance she has sailed. If the D. = 720’S. = 12100 W.
Long. corresponding to an unknown distance sailed along a parallel is known the distance

may be found by means of the parallel Sailing Formula. Referring to fig. 13-2:
|

In the Chart Triangle:

In both cases, of travelling along a meridian and along a parallel of Latitude, the sailing
problems of finding position or course and distance present no difficulty.

" v tan Co — D. Long.
2' }t now remains to examine the general sailing problems in. which a vessel changes both Co D-M.P.
i Latitude AND Longitude by travelling on an oblique rhumb line path. ey d s log D. Long. = 3-08279
L There are two methods of solving the general sailing problem: . a log D.M.P. = 2:99991
‘ : (1) by Mercator Sailing oo — log tan Co = 0-08288
(2) by Middle Latitude Sailing : Co = S., 50° 26’ W.
Fig. 13-2

i : 2. Mercator Sailing

In the Plane Sailing Triangle:
“' If a rthumb line path is drawn between two places 4; and B; on a Mercator Chart, the

Distance = D. Lat. sec Co

i plane right-angled triangle having the rhumb line path as its hypotenuse and containing the log D. Lat. = 2-85733

i Course Angle, may conveniently be called the Chart Triangle. The two sides which meet to log sec Co = 0-19588

‘ form the right angle in the Chart Triangle, when measured on the constant scale of . _

l Longitude, give the D.Long. and D.M.P. respectively between A; and B. log Distance = 3-05321

| Distance = 1130 miles

!" The Chart Triangle is geometrically similar to the Plane Sailing Triangle corresponding _ .

A to the rhumb line path 4B which is projected onto the Mercator Chart as 4;B). Answers—Course = 2305°

n“ ¢ e o Distance = 1130 miles.

il Fig 13-1 (a) and (b) illustrate corresponding Plane . . .

1 Sailing and Chart Triangles. . It should be noted that the answers are found by solving two right-angled plane triangles.
| c dep B The two general rhumb line sailing problems are: The traverse table, therefore, may be used to check the calculated answers.
' " (I) Finding the rhumb line course and distance The second general rhumb line sailing problem is solved thus:

20 i from one given position to another. ' (1) In the Plane Sailing Triangle, using Course Angle and Distance find D. Lat.

il dlat — (2) Finding the position of arrival after having (2) Find the final Latitude and thence the D.M.P.

: travelled on a given rhumb line course for a (3) In the Chart Triangle, using D.M.P. and Course Angle, find the D. Long.

bl | given distance from a given position. (4) Find the final Longitude. ‘
, | % > Fig. 13-1 86 f
] (a) A (b)

i

I
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The following example illustrates the method of solution. line Distance in problems in which the Course Angle is large, instead of working as we have

done in Example 13-1, it is better to use the formula:
Example 13-2—A vessel leaves a position in lat. 32° 00’ S. Long. 116° 05’ E. and sails for

a distance of 1243 miles on a course of 322°. Find her D.R. position after making this run. )
Distance = D. Lat. . tan Co . cosec Co

Referring to fig. 13-3:

The tangent of the course angle is found from the formula:

ian Co. = D. Long.
In the Plane Sailing Triangle: D. Lat. = distance cos Co D.M.P.
log Distance = 3-09447
log cos Co = T1-:89050
log D. Lat. = 2-98497 and the cosecant of the course angle may be lifted from the tables without difficulty. When an
angle is large, the change in its cosecant as the angle increases, is small.
D. Lat. = 966-0’ N.
Lat. from = 16° 06’ N. The following example illustrates a case in which the course angle is large.
Lat to = 32° 00" S.
= 15° 54’ S. Example 13-:3—A vessel sails from A in Lat. 40° 00’ S. Long. 149° 00’ E. to B in Lat. 37°00’
i 5 : . . .
| dlat m.pts. Lat. from = 2015-98 S. Long. 173° 00" E. Find the Course and Distance using Mercator Sailing.
I Fig. 13-3 mLpts: Lat. o = 96008 Lat. 4 = 40° 00’ S. m.pts. Lat. 4 = 2607-6 Long. A = 149° 00’ E.
| D.M.P. = 105590 Lat. B = 37° 00’ S. m.pts. Lat. B = 23785 Long. B = 173° 00’ E.
A’ D.Lat. = 03° 00" N. D.M.P. = 2291 D. Long = 24° 00’ E.
| —— e .
il = 3 = ’
{ In the Chart Triangle: D. Long. = D.M.P. tan Co M _@i
' log D.M.P. = 3-02362
l log tan Co = 1-89281 Referring to fig. 13-4:
log . Loug, = 291643 In the Chart Triangle:
D. Long. = 825 W. atona. _ D. Long.
| = 13° 45" W. : . B CE = 75 MP,
1 Long. from = 116° 05" E. y log D. Long. = 3:15836
t Long. to = 102° 20’ E. B dist. log D.M.P. = 2-:36003
'| log tan co = 0:79833
F Answer—Lat. to = 15° 54’ S. Co = N. 81° E.
; Long. to = 102° 20’ E.
iﬁ‘ In the Plane Sailing Triangle:
i distance = D. Lat. . tan Co . cosec Co
. poF . log D. Lat. = 2:25527
‘ . R S h
n ‘: 3 humb Line Sailing when Course Angle is Large log tan Co = 0-79833
| . ot .
'j When the Course Angle is large—more than about 60°—the change in the secant of the oF; wosse U = U0
i course angle is large for a small change in the angle. Examination of the secant table will log Distance = 3-05902

Y TEved, Hs, Distance = 1146 miles
' It will be noticed that when finding the rhumb line Distance in example 13-1, the Course
was found using the tangent table, and then, for finding the Distance, the secant table was Answers—Course 081°

I
‘ ( - used. Now sec 6 is equivalent to tan 6 . cosec . Therefore, to facilitate finding the rhumb Distance 1146 miles.
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4. Middle Latitude Sailing

Fig. 13-5 illustrates a portion of the Earth’s surface with the rhumb line connecting the
points 4 and B.

The D. Lat. between 4 and B, in fig. 135, is equal to the arc of the
meridian AC or BD. The Departure between 4 and B, however, is
greater than arc BC and less than arc AD. The actual Departure
between 4 and B may be represented by the arc EF. The Latitude of
the parallel on which this arc lies is referred to as the Middle Latitude.

Considering the Earth to be a perfect sphere the Middle Latitude is
always greater than the average or Mean Latitude between any two
points in the same hemisphere on the Earth. This is not always the
case, however, on a spheroidal Earth.

Middle Latitude may be defined as the angle the cosine of which is equal to the ratio
between Departure and D. Long. Thus:
Cos Middle Latitude = DEPATHITE

D. Long.
This relationship is known as the Middle Latitude Sailing Formula.

The magnitude of the difference of the Middle and Mean Latitudes between two places
depends upon the D. Lat. and the Mean Latitude of the two places. A table giving differences
between Middle and Mean Latitudes for all convenient values of D. Lat. and Mean Latitude
is given in the earlier edition of nautical tables such as Norie’s and Burton’s. Middle latitude
is not longer in common use, hence the tables of corrections contained in Norie’s and
Burton’s have now been omitted.

5. Crossing the Equator

. Wheg it is necessary to find the rhumb line Course and Distance between two places which
lie on dlfferept sides of the equator, it is more convenient to use Mercator Sailing. In this case
the D.M.P. is found by adding together the m.pts. for the two latitudes.

Example 13-4—Find, by Mercator Sailing, the course and distance from A4 in Lat. 10° 00’ S.
Long. 90° 00" W. to B in Lat. 08°30” N. Long. 60° 00’ W.

Lat. A = 10° 00’ S. m.pts. Lat. A = 599-0 Long. 4 = 90° 00" W.
Lat. B = 08° 30" N. m.pts. Lat. B = 5084 Long. B = 60° 00" W.
D. Lat. = 18° 30’ N. D.M.P. = 11074 D. Long. = 30° 00" E.

= 1110’ N. = 1800" E.
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Referring to fig. 13-6:
In the Chart Triangle:

_ D. Long.
- tan Co = 5 M.P,
¥ = log D. Long. = 3:25527
log D.M.P. = 3-:04430

log tan Co = 0-21097
Co = N. 58° 24’ E.

mdlat|

dist.

dlat.

Distance = D. Lat. . sec Co
log D. Lat. = 3-04532
log sec Co = 0-28068
+ log Distance = 3-32600
Fig. 13-6 Distance = 2118 miles

Answers—Course = 05814°
Distance = 2118 miles.

6. The Day’s Run

In merchant vessels it is customary to determine the ship’s position as accurately as
possible at each noon. The distance travelled over the ground between successive noons is
known as the Day’s Run. This distance divided by the Steaming Time gives the average speed
of the vessel for the day. When coasting, the Day’s Run is measured direct from the chart,
and the difference between the measured distance and the distance recorded by the patent log
is usually regarded as Favourable or Adverse Current.

When navigating out of sight of land, the distance made good is found by calculation.
Measuring the distance accurately from a chart is not possible in this case, because the ocean
chart used has too small a scale of distance.

If, during the day, the vessel has made one course only, the distance made good is
calculated by Mercator sailing. If, however, the vessel has made more than one course, the
distance on each leg is estimated as accurately as possible, and the several distances are then
summed to give the total run for the day.

In days of sail, when a vessel was forced to make a zig-zag course towards her destination,
it was usual to ascertain the direct course and distance made good for the day. This has no
value to a navigator on a power-driven vessel: he is interested only in the actual distance his
vessel has steamed over the ground.

The vessel’s D.R. Noon Position, reckoned from the observed position of the previous
noon, is compared with the Observed Noon Position, to give the set and drift of the current
experienced during the day.

An estimation of the distance travelled by a vessel may be found by means of a knowledge
of the propeller revolutions. The engineer officer, at each noon, records the reading of the
Counter which registers the number of revolutions of the propeller. From successive noon
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recordings, the revolutions made by the propeller during the day may be found. If the Pitch
of the propeller is known the distance which should have been covered may be found.

Engine Distance = Wh miles
Because of several factors including:
(a) current
(b) hull resistance

(¢) faulty propeller

the engine distance is not generally the same as the Vessel’s Distance as found from

observations. The Engine Distance is usually greater than the Vessel’s Distance by an amount
called Slip.

Slip is usually calculated as a percentage of the Engine Distance from the formula:
. _ Engine Distance — Vessel’s Distance
Ship (%) = Engine Distance X 100

If the slip is estimated and the Engine Distance is known, the Vessel’s Distance may
readily be computed.

Example 13-5—1If the Engine Distance is found to be 240-0 miles, and the slip is estimated to
be 4%, find the Vessel’s Distance.

Engine Distance = 240-0 miles
Slip = 4%
_ Engine Dist. — Vessel’s Dist.

N, Slip Engine Dist. X 100
_ 240-0 — Vessel’s Dist.
Therefore, 4 = 400 X 100
and Vessel’s Distance = 240—01#)

= 230-4 miles

Answer—Vessel’s Distance = 2304 miles.

7. The Day’s Work

The process of finding a vessel’s course and distance made good between successive noon
positions, finding the average speed, and finding the set and rate of the current experienced

during the day, is known as the Day’s Work. An example of a typical Day’s Work is as
follows.

Example 13-6—At noon on 2nd January, Malin Head (Lat. 55° 22’ N. Long. 07° 24’ W.) was
observed to bear 170° Distance 10-0 miles. The log was set to zero and the course was set to
330°. At the following noon the log registered 302-0 and the observed position was Lat. 59°
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50-0" N. Long. 11° 54-0’ W. The steaming time was 24 hrs. 00 mins. Find the Day’s Run, the
average speed and the set and drift of the current experienced during the day.

Departure Brg. = 170°
Departure Co and Distance = 350° by 10-0 miles
D. Lat. = 10’ N Dep. = 1'7 W. D. Long. = 30’ W.
Lat. point = 55° 22’ N. Long. Point = 07° 24’ W.
D. Lat. = 10’ N. D. Long. = 3¥W.
lat. Ship = 55° 32’ N. Long. Ship = = 07° 27" W.
Co = 330° Distance = 302 miles
From Traverse Table:
D. Lat. = 261-5" N.
= 4° 21'5’N.
Lat. ship 2nd = 55° 32:0’ N.
D.R. Lat. 3rd = 59° 53-5' N.
m. pts. Lat. from = 4004-8
m.pts. lat. to = 4494-1
D.M.P. = 489-3
Referring to fig. 13-7:
d long
D. Long. = D.M.P. tan Co
log D.M.P. = 2-68958
log tan Co = 1-76144
log D. Long. = 2-45102
mdlat.
D. Long. = 282-5' W.
. = 04° 42-5 W.
Fig. 13-7 Long. ship 2nd = 07° 27-0’ W.
+ D.R. Long. 3rd = 12° 095’ W.
D.R. Lat. 3rd = 59° 53-5'N. D.R. Long. = 12° 09-5' W.
Obs. Lat. 3rd = 59° 50-0" N. Obs. Long. = 11° 54-0’ W.
D. Lat. = 3-5"S. D. Long. = 15-5" E.
Dep. = 7-8' E.
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From Traverse Table: 4. A vessel travelled 820 miles on a course of 060°, from Lat. 40° 00’ N. Long. 40° 00" W.
1 Set = S. 66° E. Drift = 8:6 miles Find her present position.

' 5. A vessel left a position off the Lizard in Lat. 49° 50’ N. Long. 05° 10’ W. and travelled
— &£g0 29 — ; — (70 97 for a distance of 800 miles on a Course of 230°. What was the bearing and distance of

| 85:' f:tt ‘231;3 — 23 §§ ﬁ mopts. — 322‘71,3 25:' iggg- — (I)Z gz & Fayal in Lat. 38° 32’ N. Long. 28° 40’ W. after making this run?
‘ T _— " P, = Aanre ' il 6. A vessel sailed from a position in Lat. 40° 00’ N. Long. 60° 00’ W. and arrived in a

D. Lat. = 4° 18’ N. D.M.P. = 4824 D. Long. = 4° 27" W. position Lat. 42° 00" N. Long. 20° 00’ W. Find the Course and Distance.
f _ W T o _26—7_’_\5 7. A vessel left a position in Lat. 00° 50 S. Long. 91° 00" W. (off Galapagos Islands) and
. ST i B travelled on a course of 136° until her Latitude was 12° 30’ S. What distance did she
travel and what is her present Longitude assuming that the current set 316° throughout.
_ D. Long. 8. Find the present Latitude and the distance travelled since leaving a position in Lat. 26°
tan Co = DM.P. 00" S. Long. 109° 30" W., if the course had been 040° and the present Longitude is 90°
log D. Long. = 2:42651 30" W.

log D.M.P. = 2:68341 9. Find the course and distance from a position in Lat. 05° 30’ S. Long. 32° 06’ W. to a

position in lat. 08° 14’ N. Long. 25° 00’ W.

log tan Co = 1-74310 10. A vessel left a position in Lat. 385 40’ N. Long. 09° 00’ E. and travelled a distance of 120

Co = N. 28° 58’ W. miles on course of 130°. What was the bearing and distance of Cape Bon in Lat. 37° 06’
“‘ N. Long. 11° 05’ E. at the end of the run?
. 11. A vessel left a position in Lat. 42° 40’ N. Long. 170° 20’ E. and travelled 705 miles on a
| Distance = D. Lat. sec Co. course of 112°. Find her position at the end of this run.
il log D. Lat. = 2-41162 12. At noon, Tuskar Rock in Lat. 52° 12’ N. Long. 06° 12" W. bore 042° at a distance of
I‘ log sec Co = 0-05804 12+0 miles. The log was set to zero and the course was set to 200°. At 1430 hours, log 25,
i o dict = 2-46966 the course was alte.red to 242°. At 2000 hours, log 79, the course was again altered to
i| “a ?s e - 260°. Find the Estimated Position of the vessel for midnight when the log registered
I Distance = 295 miles 117, allowing for a current the average set and rate of which was estimated to be 100°,
. 1:2 knots.
I Diissanice 13. A vessel found her position to be Lat. 31° 10’ N. Long. 72° 22’ W. She travelled 120
Average Speed = Stme. Time miles on a course of 340°, and then for 32 miles on a course of 320°, when her position
M Tog Diistange = 2:6156 6 ime _ was found to be Lat. 33° 15’ N. Long. 73° 25’ W. Find the set and rate of the current
[ - experienced.
1 log Stmg. Time = 1-38021 14. A vessel took Departure with Cape St. Mary in Lat. 25° 39’S. Long. 45° 06’ E., bearing

log Speed = 1:08945 328° distance 12:0 miles. Course was set to 142°. What was the ship’s E.P. when the log
“ P registered 498, assuming that the current had set 090° for 28 miles during the interval.
‘ Average Speed = 12-29 knots 15. A vessel found that she was in Lat. 42° 06’ S. Long. 50° 15’ W. at noon. The log was set
:! to zero and the course was set to 042°. At the following noon, when the log registered

Answers—Course Made Good = 331° 345, the position was found to be in Lat. 37° 54’ S. Long. 45° 12’ W. Find the set and
;‘, Speed Made Good = 12-29 knots rate of the current.
Set = 114°

Drift = 86 miles.

ﬂ { Exercises on Chapter 13

1. Explain how the Engine Distance as found from Counter readings may be used to
estimate the ship’s position.

|
1
] ! 2. If the slip is estimated to be 2:5% and the Engine Distance is 346 miles, find the Vessel’s
' Distance. '

3. Find the Course and Distance from a position off the North Andaman, in Lat. 13° 05’

N. Long. 92° 10" E. to a position off Trincomalee in lat. 08° 20’ N. Long. 82° 00’ E.
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CHAPTER 14
GREAT CIRCLE SAILING
1. Introduction

The advantage of rhumb line sailing is that the Course Angle is constant. To travel along
a rhumb line path, the navigator simply joins the points of departure and destination with a
straight line on the Mercator Chart. He then measures the Course Angle: this being the
inclination of the parallel rulers with the projected meridians. The course is set and, if it is
maintained during the voyage, the vessel will fetch up at her desired destination. The
principal disadvantage of employing rhumb line sailing is that the path does not coincide
with the shortest route between the points of departure and destination.

The shortest route over the Earth’s surface between two terrestrial points is along the
shorter arc of the great circle on which the two points lie. Now the angle which is a great
circle track makes with the meridians constantly changes, except in those special cases when
the great circle track is also a rhumb line track. Thus, if it is desired to travel along the
shortest route from one place to another, the great circle path must be followed. In this event
the course must be constantly changed as the voyage proceeds. For long ocean voyages the
great circle path should be followed, when- it is safe and practicable to do so, in the interests
of economy.

The differences between the distances along the rhumb line and great circle arc between
any two places depend upon the:

(1) distance between the places
(2) D. Long. between the places
(3) Latitudes of the places.

A considerable difference results when the D. Long. between the two places is great and
the Latitudes of the places are high. If the D. Long. is small the rhumb line path, which lies
almost due North or South, almost coincides with the great circle path. If the Latitudes of the
two places are low the rhumb line path lies almost along the equator in which case it
approximates to the great circle path.

In order to measure courses along a great circle route it is necessary to plot the route on a
Mercator Chart. Because of the distortion of the Mercator Chart, the great circle track
between any two places not on the equator or on the same meridian, is projected as a curved
line concave to the equator. The rhumb line track appears as a straight line, and the two
tracks together give the false impression that the rhumb line distance is shorter than that of
the great circle. On a terrrestrial globe, however, it is readily seen that great circle tracks are
shorter than corresponding rhumb line tracks.

Notice in figs. 14-1 and 14-2 that the rhumb line makes a constant angle 6 with every
meridian it crosses, whereas the direction of the great circle changes constantly.
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On the globe, as depicted in fig. 141, the rhumb line appears as a curved line. The great
circle arc, in contrast, appears as a straight line when viewed in its plane.

It will be noticed in fig. 14-1 that the rhumb line A B and the great circle arc 4B intersect
at the equator. This is the case only when the Latitudes.of 4 and B have the same magnitude
but opposite signs.

On a Mercator Chart, as depicted in fig. 14:2, the rhumb line AB appears as a stralght
line, whereas the great circle arc between 4 and B appears as a curved line.

Great sailing routes may be used to great advantage for many ocean passages, and for
some coastal passages too. A good example of a suitable great circle coastal track is the route
along the eastern seaboard of North America between Long Island and Florida. To ascertain
which is the better route to choose when a choice presents itself, a Gnomonic Chart will be
found to be of great use. A gnomonic chart is constructed on the Gnomonic Projection. Its
most important feature is that great circle arcs are projected as straight lines.

2. The Gnomonic Chart

In the gnomonic projection, the sphere’s surface is projected outwards from the sphere’s
centre onto a plane which is tangential to the sphere. The tangential point may be at the
North or South Pole of the globe, in which case the resulting projection is called a Polar
Gnomonic; or it may be at a point on the equator of the globe, in which case the projéction is
called a Transverse or Equatorial Gnomonic. If the tangential point is at a position other
than the pole or a point on the equator (and this is generally the case with gnomonic charts
used on board ship), the projection is called an Oblique Gnomonic.

) s —1 .

<ﬂc(d

On a polar gnomonic projection all meridians
appear as straight lines which- intersect, like the
spokes of a bicycle wheel, at ‘the- projection of the
Earth’s Pole. Parallels of Latitude apppear as
concentric circles centred at the projection of the
pole. The radius of any parallel is proportional to
the cotangent of the Latitude of the parallel. A
polar gnomonic projection is easily constructed as
Fig. 14-3 illustrated in figs. 14:3 and 14-4.

la
plane of ‘d°
equator
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In fig. 14-3, the plane of a polar gnomonic projection is tangential to the globe at P.
Points a, b, ¢ and d, are projected from the centre of the globe onto the plane of the
projection at 4, B, C and D, respectively. Note that the radius of the parallel of Latitude on
which d lies is equal to R cot lat. d. It should be evident from fig. 14-3 that it is impossible to
represent as much as a hemisphere on a gnomonic projection.

The following example, which is illustrated by fig. 14-4, indicates how a polar gnomonic
chart is constructed.

Example—Construct a polar gnomonic chart of the North polar regions showing every tenth
parallel North of Latitude 60°N., and every 45th meridian from the meridian of Greenwich.

3,06
o4,

> s

Let the radius of the model globe
from which the projection is made = 1 unit

Then:

Lé 25 .
Radius of projected parallel of Lat. 60° = 1 . cot 60°
= 0-577 units
Radius of projected parallel of Lat. 70° = 1 . cot 70°
+ Y, = 0-346 units
. 90w Radius of projected parallel of Lat. 80° = 1 . cot 80°
Fig. 14-4 = 0-176 units

Fig. 14-4 illustrates the required projection.

A gnomonic chart having the tangential point at any position other than the Earth’s Pole,
is more difficult to construct than the polar gnomonic. In such a case the parallels of latitude,
except the equator, are projected as hyperbolae.

A gnomonic chart is not suitable for measuring distances and courses. Position, however,
may be lifted with ease.

3. Practical Great Circle Sailing

A gnomonic chart has great value in the practice of Great Circle Sailing as an auxiliary to
a Mercator Chart. When it is desired to lay down a great circle track on a Mercator Chart,
the track is first laid down on a gnomonic chart which is merely a straight line connecting the
points of departure and destination. Positions of several points on this line are then lifted,
and these are transferred to the Mercator Chart. A fair curve is then drawn through these
plotted points: this being the required great circle track. The procedure is quite simple and is
illustrated in figs. 14-5 and 14-6.
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It will be noticed in figs, 14:5 and 14-6 that the nearest approach to the pole of the great

circle track AB is at position d. At this point the track cuts the meridian at an angle of 90°.

To the eastwards of the point d, the course at any point on the track is South-Easterly, and to

the westwards of point d the course is North-Easterly. At the point of highest Latitude on a
great circle track the course is due East or due West.

The point on a great circle track at which the course changes from Northerly to
Southerly, or from Southerly to Northerly, is known as a Vertex of the great circle. The
course at the vertex is due East or due West. Every great circle has two vertices, one in the
northern hemisphere and the other in the southern hemisphere. The vertices of a great circle
are antipodal points.

Fig. 14-7 illustrates two views of a great
circle which crosses the equator at the points X
and Y. The vertices of this great circle are at V
and V,.

Because the meridian of the vertex crosses
the great circle track and the equator at an
angle of 90°, the triangle XV, Q is isosceles, and
the arc XV is, therefore, equal to the arc XQ.

But arc XV,= arc VY = 90°
Therefore: arc XQ = 90°
Also, arc VQ = angle VXQ

It follows that the Latitude of either vertex is equal to the angle at which the great circle
track crosses the equator. The angle is equal to the complement of the Course Angle at the
equator.

Latitude of Vertex = Complement of Course Angle at Equator

It is also evident from fig. 14-7 that the Longitude of the vertex differs by 90° from the
Longitude of either of the two points where the greater circle track crosses the equator.

To steer along a great circle would render it necessary for the course to be continually
altered. This is impracticable, if not impossible. In practice, when employing Great Circle
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Sailing, the course is altered frequently, and the ship, therefore, is steered along a series of
short rhumb line tracks which, collectively, approximate to the great circle track. This
method of sailing is sometimes called Approximate Great Circle Sailing.

In fig. 14-8, which illustrates part of a Mercator Chart, the
straight lines AB, BC, CD, etc., represent thumb line tracks
which approximate to the great circle track from A4 to H.
Where the curve of the great circle track is most pronounced,
as at arc CG, the course is altered more frequently than at
other parts of the track.

The general practice in great circle sailing is to find, from a
gnomonic chart or otherwise, the new initial course every time
Fig. 14-8 the ship’s position is found, and to alter heading if necessary,
to this course.

In the event of a gnomonic chart not being available the positions of points on the great
circle track, which are needed for plotting the track on the Mercator Chart, may be found by
means of Azimuth or 4 B C tables. Short Method navigation tables may also be employed
for this purpose; and, in the last resort, the positions may be computed using spherical
trigonometry. The trigonmetrical method of solution, although providing useful practice at
computation, is seldom used at sea. The method is:

(1) Find the Great Circle Distance using the Haversine Formula for a side.

(2) Find the initial course using the Haversine Formula for an angle.

(3) Find the position of the vertex by means of Napier’s Rules.

(4) Calculate the Latitudes of points whose Longitudes differ by regular amounts from
the Longitude of the vertex.

The following example illustrates the method.

Example 14-2—Find the Great Circle Distance and the Initial Course from a position in Lat.
51°10'N. Long. 10°00"W. (off S.W. Ireland) to a position off Belle Isle in Lat. 52°00'N. Long.
55°00"W. Calculate the Latitudes of points on the path whose Longitudes differ by multiples
of 10° from the Longitude of the initial position.

In Fig. 14-9:

A represents the Initial Position
B represents the Destination
P represents the Earth’s North Pole

Fig. 14-9 Equator V represents the Northern Vertex

Given:
a = co. Lat. B = 38° 00’
b = co. Lat. A = 38° 50’
P = D. Long. AB = 45° 00’
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To find p, the Great Circle Distance:
hav p = hav P sin a sin b+ hav (a~ b)
log hav P = 1-16568

log sin a = 1-78934
log sin b = 1-79731

log hav 6 = 2-75233

nat hav 6 = 0:05654
nat hav (a~b) = 0-00005

nat hav p = 0:05659 p = 27°30

Distance = 1650 miles

To find A, the Initial Course:

hav A = fhav a — hav (b~ p)} cosec b cosec p
nat hav a = 0-10599
nat hav (b p) = 0-00975

nat hav 0 = 0:09624

log hav 6 = 2-98336
log cosec b = 0-20269
log cosec p = 0:33559

log hav A = 1-52164 A = 70° 24-8'

Initial Course = 28914°

To find x, the co-Lat of the vertex:

(refer to fig. 14-10) sin x

PV

cos co b cos co 4
sin x = sin b sin A

log sin.b = T1-79731

log sin 4 = 1-97412

log sin x = 1-77143 x = 36° 13’

Fig. 14-10 » Lat VV = 53° 47




