

# MERCHANT SHIPPING SECRETARIAT GOVERNMENT OF SRI LANKA CERTIFICATE OF COMPETENCY EXAMINATION

# GRADE: CHIEF MATE ON SHIPS OF 500 GT OR MORE (UNLIMITED)SUBJECT: SHIP'S STABILITYDATE: 19<sup>th</sup> July 2021

| Time allowed THREE hours | Total marks | : 180 |
|--------------------------|-------------|-------|
| ANSWER ALL QUESTIONS     | Pass marks  | : 60% |

Formulae and all intermediate steps taken in reaching your answer should be clearly shown. You may draw sketches wherever required. Electronic devices capable of storing and retrieving are **not** allowed.

- 1) Answer the following questions with regards to an inclining experiment:
  - a) Explain the purpose of the inclining experiment.

(05 marks)

b) List the occasions when the inclining experiment must be undertaken.

(05 marks)

- c) Describe the procedure and precautions to be taken before and during the inclining experiment.
- d) Explain why a vessel's lightship displacement and KG will change over a period of time.

(05 marks)

(15 marks)

2) A box shaped vessel floating on an even keel in salt water has the following particulars:

| Length  | 120 m | Breadth | 20.0 m |
|---------|-------|---------|--------|
| Draught | 4.0 m | KG      | 3.5 m  |

There is an empty forward end compartment of 10.0 m length that extends the full width of the vessel with a water tight flat 1.5 m above the keel.

Calculate the following if the compartment above the water tight flat is bilged.

a) GM<sub>T</sub> of the bilged vessel

(10 marks)

b) Final draughts forward and aft

(20 marks)

| 3) | A vessel initially upright and<br>Draught (in salt water)<br>Breadth<br>KG<br>The vessel's heavy lift derric<br>position, Kg 5.30 m. The der<br>centerline when plumbing ov | on an even keel, has the following particulars:<br>7.0 m<br>20.42 m<br>7.82 m<br>c is to be used to discharge a 58 t boiler from a centerline<br>ick head is 30.0 m above the keel and 16 m from the ship's<br>er side. With the aid of hydrostatic particulars, calculate the |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | a) Calculate the maximum l<br>maximum outreach durin                                                                                                                        | st angle when the boiler is suspended by the derrick at its g discharge.                                                                                                                                                                                                       |
|    | b) Coloulate the incurses in                                                                                                                                                | (15 marks)                                                                                                                                                                                                                                                                     |
|    | calculated in above, assur                                                                                                                                                  | ning the midship section is box shaped.                                                                                                                                                                                                                                        |
|    | c) Describe the remedial me<br>reduce the angle of heel a                                                                                                                   | (10 marks)<br>asures that could be taken prior to discharge in order to<br>t the time of discharging the boiler.<br>(05 marks)                                                                                                                                                 |
| 4) | On sailing, a vessel had a dis<br>of fuel oil, Kg 3.38 m, were o<br>Using the KN Tables, draw th<br>condition and from it find:                                             | blacement of 11,000 t and KG of 7.79 m. On passage 500 t<br>onsumed.<br>he curve of statical stability (GZ curve) for the arrival                                                                                                                                              |
|    |                                                                                                                                                                             | (15 marks)                                                                                                                                                                                                                                                                     |
|    | a) The maximum GZ and th                                                                                                                                                    | e angle it occurs. (10 marks)                                                                                                                                                                                                                                                  |
|    | b) The range of positive stat                                                                                                                                               | ility (05 marks)                                                                                                                                                                                                                                                               |
| 5) | A box shaped vessel of leng<br>water at an even keel draught                                                                                                                | th 98.0 m, breadth 14.2 m, depth 9.3 m is floating in salt of 5.6 m.                                                                                                                                                                                                           |
|    | a) Calculate the righting m<br>immersion if the KG is 5.                                                                                                                    | oment when the vessel is heeled to the angle of deck edge 50 m.                                                                                                                                                                                                                |
|    |                                                                                                                                                                             | (20 marks)                                                                                                                                                                                                                                                                     |

b) Calculate the angle of loll if the KG is 6.0 m.

(10 marks)

- 6) Answer the following questions with regards to shear forces and bending moments:
  - a) Describe the meaning of shear forces
  - b) Describe the meaning of bending moments

(05 marks each)

c) A box shaped barge 40 m long, 8 m wide floats at an even keel draught of 4.00 m in fresh water. The barge consists of 4 holds each 10 m long. Number 1 and 4 holds are empty and Number 2 and 3 holds each contain 400 t of bulk cargo trimmed level. Calculate the load, shear force and bending moment curves along the length of the barge.

(20 marks)

# HYDROSTATIC PARTICULARS

|      | Displ                                                                                      | acement<br>t   | TP(<br>t       | C              | MC<br>t        | CTC<br>m       | KMt   | кв   | LCB       | LCF       |
|------|--------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|-------|------|-----------|-----------|
| m    | SW<br>RD 1.025                                                                             | FW<br>RD 1.000 | SW<br>RD 1.025 | FW<br>RD 1.000 | SW<br>RD 1.025 | FW<br>RD 1.000 | м     | m    | foap<br>m | foap<br>m |
| 7.00 | 14576                                                                                      | 14220          | 23.13          | 22.57          | 184.6          | 180.1          | 8.34  | 3.64 | 70.03     | 67.35     |
| 6.90 | 14345                                                                                      | 13996          | 23.06          | 22.50          | 183.0          | 178.5          | 8.35  | 3.58 | 70.08     | 67.46     |
| 6.80 | 14115                                                                                      | 13771          | 22.99          | 22.43          | 181.4          | 177.0          | 8.36  | 3.53 | 70.12     | 67.57     |
| 6.70 | 13886                                                                                      | 13548          | 22.92          | 22.36          | 179.9          | 175.5          | 8.37  | 3.48 | 70.16     | 67.68     |
| 6.60 | 13657                                                                                      | 13324          | 22.85          | 22.29          | 178.3          | 174.0          | 8.38  | 3.43 | 70.20     | 67.79     |
| 6.50 | 13429                                                                                      | 13102          | 22.78          | 22.23          | 176.8          | 172.5          | 8.39  | 3.38 | 70.24     | 67.90     |
| 6.40 | 13201                                                                                      | 12879          | 22.72          | 22.17          | 175.3          | 171.0          | 8.41  | 3.33 | 70.28     | 68.00     |
| 6.30 | 12975                                                                                      | 12658          | 22.66          | 22.11          | 173.9          | 169.6          | 8.43  | 3.28 | 70.32     | 68.10     |
| 6.20 | 12748                                                                                      | 12437          | 22.60          | 22.05          | 172.5          | 168.3          | 8.46  | 3.22 | 70.35     | 68.20     |
| 6.10 | 12523                                                                                      | 12217          | 22.54          | 21.99          | 171.1          | 167.0          | 8.49  | 3.17 | 70.38     | 68.30     |
| 6.00 | 12297                                                                                      | 11997          | 22.48          | 21.93          | 169.8          | 165.7          | 8.52  | 3.11 | 70.42     | 68.39     |
| 5.90 | 12073                                                                                      | 11778          | 22.43          | 21.87          | 168.5          | 164.4          | 8.55  | 3.06 | 70.46     | 68.43     |
| 5.80 | 11848                                                                                      | 11559          | 22.37          | 21.82          | 167.3          | 163.2          | 8.59  | 3.01 | 70.50     | 68.57     |
| 5.70 | 11625                                                                                      | 11342          | 22.32          | 21.77          | 166.1          | 162.1          | 8.63  | 2.95 | 70.53     | 68.65     |
| 5.60 | 11402                                                                                      | 11124          | 22.26          | 21.72          | 165.0          | 161.0          | 8.67  | 2.90 | 70.57     | 68.73     |
| 5.50 | 11180                                                                                      | 10908          | 22.21          | 21.66          | 163.9          | 160.0          | 8.71  | 2.85 | 70.60     | 68.80     |
| 5.40 | 10958                                                                                      | 10691          | 22.15          | 21.61          | 162.9          | 158.9          | 8.76  | 2.80 | 70.64     | 68.88     |
| 5.30 | 10737                                                                                      | 10476          | 22.10          | 21.56          | 161.8          | 157.9          | 8.81  | 2.74 | 70.68     | 68.95     |
| 5.20 | 10516                                                                                      | 10260          | 22.05          | 21.51          | 160.8          | 156.9          | 8.86  | 2.69 | 70.72     | 69.02     |
| 5.10 | 10296                                                                                      | 10045          | 22.00          | 21.46          | 159.8          | 155.9          | 8.92  | 2.63 | 70.75     | 69.09     |
| 5.00 | 10076                                                                                      | 9830           | 21.95          | 21.41          | 158.8          | 154.9          | 8.98  | 2.58 | 70.79     | 69.16     |
| 4.90 | 9857                                                                                       | 9616           | 21.90          | 21.36          | 157.9          | 154.0          | 9.06  | 2.53 | 70.82     | 69.23     |
| 4.80 | 9638                                                                                       | 9403           | 21.85          | 21.32          | 156.9          | 153.1          | 9.13  | 2.48 | 70.86     | 69.29     |
| 4.70 | 9420                                                                                       | 9190           | 21.80          | 21.27          | 156.0          | 152.2          | 9.22  | 2.43 | 70.90     | 69.35     |
| 4.60 | 9202                                                                                       | 8978           | 21.75          | 21.22          | 155.1          | 151.3          | 9.30  | 2.38 | 70.93     | 69.42     |
| 4.50 | 8985                                                                                       | 8766           | 21.70          | 21.17          | 154.2          | 150.5          | 9.40  | 2.32 | 70.96     | 69.48     |
| 4.40 | 8768                                                                                       | 8554           | 21.65          | 21.12          | 153.3          | 149.6          | 9.49  | 2.27 | 71.00     | 69.55     |
| 4.30 | 8552                                                                                       | 8344           | 21.60          | 21.07          | 152.4          | 148.7          | 9.60  | 2.22 | 71.04     | 69.62     |
| 4.20 | 8336                                                                                       | 8133           | 21.55          | 21.02          | 151.5          | 147.8          | 9.71  | 2.17 | 71.08     | 69.68     |
| 4.10 | 8121                                                                                       | 7923           | 21.50          | 20.97          | 150.6          | 146.9          | 9.83  | 2.12 | 71.12     | 69.74     |
| 4.00 | 7906                                                                                       | 7713           | 21.45          | 20.93          | 149.7          | 146.0          | 9.96  | 2.07 | 71.15     | 69.81     |
| 3.90 | 7692                                                                                       | 7505           | 21.40          | 20.88          | 148.7          | 145.1          | 10.11 | 2.01 | 71.18     | 69.88     |
| 3.80 | 7478                                                                                       | 7296           | 21.35          | 20.83          | 147.8          | 144.2          | 10.25 | 1.96 | 71.22     | 69.94     |
| 3.70 | 7265                                                                                       | 7088           | 21.30          | 20.78          | 146.8          | 143.3          | 10.41 | 1.91 | 71.25     | 70.00     |
| 3.60 | 7052                                                                                       | 6880           | 21.24          | 20.72          | 145.9          | 142.3          | 10.57 | 1.86 | 71.29     | 70.07     |
| 3.50 | 6840                                                                                       | 6673           | 21.19          | 20.67          | 144.9          | 141.3          | 10.76 | 1.81 | 71.33     | 70.14     |
|      | THESE HYDROSTATIC PARTICULARS HAVE BEEN DEVELOPED WITH THE<br>VESSEL FLOATING ON EVEN KEEL |                |                |                |                |                |       |      |           |           |

# TABULATED KN VALUES

|         | ,      |        | ANC  | GLE OF HEE | L - DEGI | REES |        | 1      |
|---------|--------|--------|------|------------|----------|------|--------|--------|
| Γ       |        | 12     | 20   | . 30       | 40       | 50   | 60     | 75     |
|         | 15000  | 1.72   | 2.98 | 4.48       | 5.72     | 6.48 | 6.91   | 7.05   |
| Ţ       | 14500  | 1.73   | 2.98 | 4.51       | 5.79     | 6.58 | 6.95   | 7.08   |
| T       | 14000  | 1.74   | 2.98 | 4.55       | 5.85     | 6.68 | 7.00   | 7.10   |
|         | 13 500 | 1:75   | 2.99 | 4.58.      | 5.90     | 6.73 | 7.08   | 7.13   |
| Ī       | :13000 | 1.77   | 3.00 | 4.62       | 5.93     | 6.78 | 7.14   | 7.16   |
| I       | 12500  | 1.78   | 3.03 | 4.63       | 5.98     | 6.83 | 7.18   | .7.18  |
| Ì       | 12000  | 1.78   | 3.05 | 4.65       | 6.04     | 6.88 | 7.20   | 7.20   |
| ſ       | 11500  | 1.80   | 3.12 | 4.70       | 6.10     | 6.93 | 7.25   | 7.22   |
| UZ<br>Z | 11000  | 1.82   | 3.15 | 4.75       | 6,15     | 6.98 | 7.30   | 7.24   |
| 5       | 10 500 | 1.83   | 3.19 | 4.79       | 6.18     | 7.02 | 7.35   | 7.27   |
| 1       | 10000  | 1.86   | 3.23 | 4.83       | 6.22     | 7.07 | 7.40.  | , 7.30 |
| -       | 9500   | 1.93   | 3.28 | 4.91       | 6.25     | 7.11 | 7.45   | 7.35   |
| ME      | 9000   | 2.00   | 3.36 | 5.00       | 6.28     | 7.18 | 7.50   | 7.40   |
|         | 8 500  | 2.05   | 3.43 | 5.04       | 6.32     | 7.20 | 7.55   | 7.41   |
| AL      | 8000   | 2.10   | 3.52 | 5.10       | 6.36     | 7.22 | 7.60   | 7,42   |
|         | 7 500  | • 2.17 | 3.62 | 5,18       | 6.38     | 7.24 | . 7.65 | 7.46   |
|         | 7000   | 2.22   | 3.70 | 5.25       | 6.40     | 7.26 | 7.70   | 7.50   |
| ſ       | 6500   | 2.32   | 3.85 | 5.35       | 6.43     | 7.27 | 7.70   | 7.51   |
| T       | 6000   | 2.42   | 4.00 | 5.45       | 6.48     | 7.28 | 7.70   | 7.52   |
|         | 5 500  | 2.57   | 4.15 | . 5.55     | 6.53     | 7.29 | 7.68   | 7.51   |
| T       | 5000   | 2.72   | 4.32 | 5.65       | 6.58     | 7.30 | 7.66   | 7.50   |

#### Answers

#### Answer 2(a)

Increased draught =  $2.5 \times 10 \times 20 / (120 \times 20 - 10 \times 20)$  = 0.227 m

Bilged hydraft = 4.227 m

Take moments of volumes around keel to calculate bilged KB

| Remarks            | Volumes           | KB              | Moments  |
|--------------------|-------------------|-----------------|----------|
| Bilged v/l         | 4.227 x 120 x 20  | 4.227 / 2       | 21441    |
| Bilged compartment | - 2.727 x 10 x 20 | 2.727 / 2 + 1.5 | - 1561.8 |
| Final v/l          | 9600              |                 | 19879.2  |

Bilged KB = 19879.2 / 9600 = 2.07 m BM<sub>T</sub> =  $(LB^3 - lb^3) / 12V$  =  $(120 \times 20^3 - 10 \times 20^3) / (12 \times 9600)$  = 7.639 m KM<sub>T</sub> = 2.07 + 7.64 = 9.71 m Bilged GM<sub>T</sub> = 9.71 - 3.5 = 6.21 m

#### Answer 2(b)

Take moments of volumes around aft perpendicular to calculate LCB<sub>foap</sub>

| Remarks            | Volume            | <b>LCB</b> foap | Moments |
|--------------------|-------------------|-----------------|---------|
| Bilged vessel      | 4.227 x 120 x 20  | 120 / 2         | 608688  |
| Bilged compartment | - 2.727 x 10 x 20 | 115             | - 62721 |
|                    | 9600              |                 | 545967  |

Bilged LCB<sub>foap</sub> = 545967 / 9600 = 56.87 m Trimming lever = 60 - 56,87 = 3.13 m BM<sub>L</sub> = B x  $(L - 1)^3 / 12V$  =  $20 x (120 - 10)^3 / (12 x 9600)$  = 231.08 m KM<sub>L</sub> = KB + BM<sub>L</sub> = 2.07 + 231.08 = 233.15 m GM<sub>L</sub> = KM<sub>L</sub> - KG = 233.15 - 3.5 = 229.65 m MCTC = W x GM<sub>L</sub> / (100 x LBP) = 9600 x 1.025 x 229.65 / (100 x 120) = 188.31 m

| COT | = disp. X Trimming 1  | ever / MCTC | = 9600 x 1.025 x 3.13 / 188.31 | = 1.64 m |
|-----|-----------------------|-------------|--------------------------------|----------|
| Та  | = 1.64 x 55 / 120     | = 0.752 m   |                                |          |
| Tf  | = 1.64 - 0.752 = 0.88 | 8 m         |                                |          |
| FWD | =4.227+0.888          | = 5.115 m   |                                |          |
| AFT | =4.227-0.752          | = 3.475 m   |                                |          |

#### Answer 3(a)

For 7.0 m draught, from tables;

Dispplacement = 14576 t

KM = 8.34 m

When the derrick head is in it's maximum outreach;

 $GG_{1} = w \ x \ d \ / W = 58 \ x \ (30 - 5.3) \ / \ 14576 = 0.098 \ m$ KG at the maximum outreach = 7.82 + 0.098 = 7.918 m GM at the maximum outreach = 8.34 - 7.918 = 0.422 m Tan (list) = listing moment \ (GM x W) = 16 x 58 \ (0.422 x 14576) = 0.151 Therefore, maximum list = 8.58<sup>0</sup>

## Answer 3(b)

Draught when healed = upright draught x Cos  $\theta$  + ½ x beam x Sin  $\theta$ 

$$= 7 \text{ x Cos } 8.58 + \frac{1}{2} \text{ x } 20.42 \text{ x Sin } 8.58$$

= 8.44 mTherefore, increase in draught = 8.44 - 7.0 = 1.44 m

### Answer 4

Arrival displacement = 11,000 - 500 = 10,500 tGG1 = w x d / (W - w) = 500 x (7.79 - 3.38) / (11,000 - 500) = 0.21 mArrival KG = 7.79 + 0.21 = 8.0 m

For 10,500 t displacement, from hydrostatic tables;

 $KM_T = 8.864 \ m$ 

Arrival  $GM_T = 8.864 - 8.0 = 0.864 m$ 

| θ  | KN   | KG x Sinθ | GZ      |
|----|------|-----------|---------|
| 12 | 1.83 | 1.663     | 0.167   |
| 20 | 3.19 | 2.736     | 0.454   |
| 30 | 4.79 | 4.000     | 0.79    |
| 40 | 6.18 | 5.142     | 1.038   |
| 50 | 7.02 | 6.128     | 0.892   |
| 60 | 7.35 | 6.928     | 0.422   |
| 75 | 7.27 | 7.727     | - 0.457 |

Max GZ 1.05 m at  $42^{\circ}$ 

Range of positive stability  $0^0$  to  $67^0$ 

#### Answer 5 (a)

Free board = 9.3 - 5.6 = 3.7 mTan (DEI) = free board / half breadth = 3.7 / 7.1DEI  $= 27.5^{0}$ KB = half draught = 5.6 / 2 = 2.8 mBM  $= I / V = LB^{3} / (12 \text{ x V}) = 98 \text{ x } 14.2^{3} / (12 \text{ x } 5.6 \text{ x } 14.2 \text{ x } 98) = 3.0 \text{ m}$ KM = 2.8 + 3 = 5.8 mGM = 5.8 - 5.5 = 0.3 mAt the angle of DEI;

$$GZ = (GM + \frac{1}{2} \times BM \operatorname{Tan}^{2} DEI) \times \operatorname{Sin} DEI$$
  
= (0.3 + 1.5 x Tan<sup>2</sup> 27.5<sup>0</sup>) Sin 27.5<sup>0</sup>  
= 0.326 m  
Righting moment at DEI = 0.326 x (5.6 x 14.2 x 98 x 1.025)  
= 2604 tm

## Answer 5 (b)

$$GZ = (GM + \frac{1}{2} \times BM \operatorname{Tan}^2 \theta) \times \operatorname{Sin} \theta$$

When the GM is negative

$$0 = (GM + \frac{1}{2} \times BM \operatorname{Tan}^{2} \theta) \times \operatorname{Sin} \theta$$
  

$$= \operatorname{angle of loll} = \operatorname{Tan}^{-1} [\operatorname{square root of} (2 \times GM / BM)]$$
  

$$= \operatorname{Tan}^{-1} [\operatorname{square root of} (2 \times 0.2 / 3)]$$
  

$$= 20.1^{0}$$

## Answer 6(c)

Light displacement =  $40 \times 8 \times 4 \times 1$  = 1280 t Total weight of cargo = 400 + 400 =800 t Total displ. = 800 + 1280 = 2080 t Buoyancy = 2080 t Buoyancy per m run = 2080 / 40 = 52 t/m Light disp. Per m run = 1280 / 40 = 32 t/m Cargo weight per m run = 400 / 10 = 40 t/m

|                            | Hold 1 & 4 | Holds 2 & 3 |
|----------------------------|------------|-------------|
| Light v/l weight per m run | - 32       | - 32        |
| Cargo weight per m run     | 00         | - 40        |
| Total weight per m run     | - 32       | - 72        |
| Buoyancy m run             | + 52       | + 52        |
| Load per m run             | + 20       | - 20        |

Shear forces and mending moments at 5 m intervals

| Position | SF    | BM   |
|----------|-------|------|
| А        | 0     | 0    |
| В        | 100   | 250  |
| С        | 200   | 1000 |
| D        | 100   | 1750 |
| E        | 0     | 2000 |
| F        | - 100 | 1750 |
| G        | - 200 | 1000 |
| Н        | - 100 | 250  |
| Ι        | 0     | 0    |