

may draw sketches wherever required. Electronic devices capable of storing and retrieving are **not** allowed.

1) State the meaning of the following Admiralty Chart Abbreviations/symbols as illustrated in BA 5011:

Question number	Symbol
a)	······
b)	_100
c)	25 Owen Rk
d)	A FLY
e)	on

(04 marks each)

- 2) Answer the following questions with regards to the chart provided:
 - a) What is the IALA maritime Buoyage System Region used?
 - b) What is the correction to be applied when plotting GPS positions on the chart?
 - c) If the draught of the vessel is 16 m, what is the closest distance to the shore that the vessel can approach safely by using this chart alone in areas where largest scale charts are available?
 - d) What is the scale of the chart?
 - e) What is the chart to refer for routeing regulations, reporting requirements etc?

(04 marks each)

- 3) On 16th June, your vessel departs Dover and at 1030 hrs her position is 51⁰ 06'N, 001⁰ 25'E. She is bound for Cherbourg (49⁰ 40'N, 001⁰ 40'W). Vessel draws 12.2 m and is capable of steaming at 18 Knots. She also equipped with the equipment required for her size and the type of the vessel.
 - a) Plot the position at 1030 hrs.

(05 marks)

b) Draw up a passage plan from 1030 hrs position to the Cherbourg deep-sea pilot boarding ground giving due respect to international collision regulations, clearly giving the information as required by commonly used standards.

(25 marks)

c) Find the ETA at the destination without considering the effects of any winds or currents.

(05 marks)

d) With the aid of the following high/low water heights and times at Dover, find the set and the rate of the current at the tidal diamond "**Q**".

Time	Height (m)
0006	6.5
0733	1.1
1223	6.7
1955	1.0

(10 marks)

e) Cherbourg is in France. What are the publications to refer when entering French waters to identify the French regulations?

(05 marks)

- 4) a) Mark the following on a labeled sketch:
 - i. Charted depth
 - ii. Drying height
 - iii. Elevation of a light house

(02 marks each)

b) Find the latest time on 12th May to pass under the London Bridge, England (51° 30' N, 000° 05' W) with an air draft of 28 m. Required to have a clearance of 3.5 m beneath the bridge for safe passing. At the highest tidal level for the day the air draft between the bridge and water level is 29 m. Assume that the vessel has ample under keel clearance throughout the day.

(24 marks)

- 5) A vessel steering a course of 080⁰ (T) at a speed of 18 knots, observed the bearing of the Lizard point light (49⁰ 57'N, 005⁰ 10'W) as 060⁰ (T) at 0830 hrs. The same light bore 325⁰ (T) at 0930 hrs. If a known current was setting 120⁰ (T) at a rate of 3 knots, find,
 - a) The position at 0930 hrs

(20 marks)

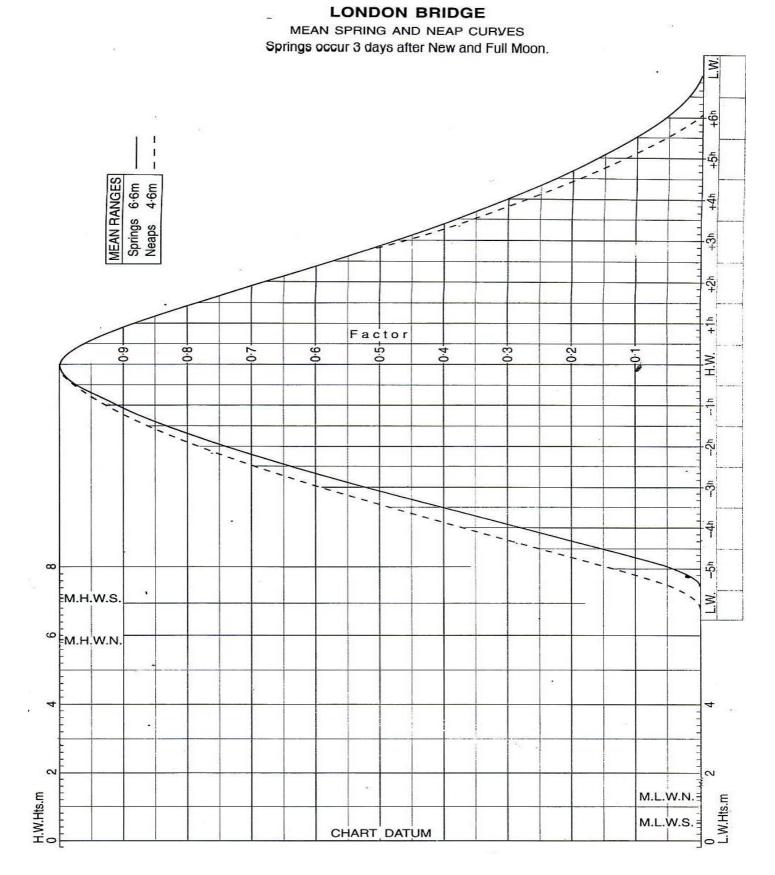
(05 marks)

- b) The position at 0830 hrs
- c) If the true course to steer from 0930 hrs is 075^{0} (T), calculate the course to steer from 0930 hrs counteracting the above current.

(15 marks)

ENGLAND - LONDON BRIDGE

LAT 51°30'N LONG 0°05'W


TIMES AND HEIGHTS OF HIGH AND LOW WATERS

TIME ZONE UT(GMT)

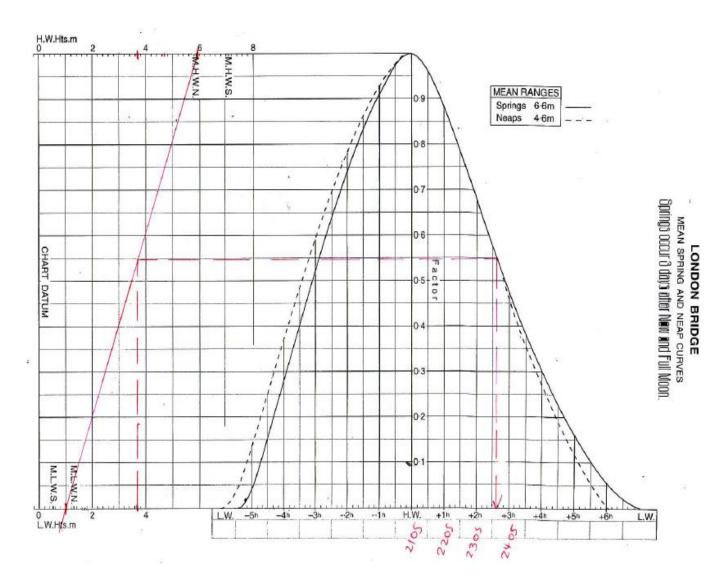
			MAY				JUNE				JULY			А	UGUST
	Time	m	Time	m	Time	m	Time	m	Time	m	Time	m	Time	m	Time
1 M	0531 1148 1800	0.9 6.4 1.1	16 0004 0645 TU 1237 1905	6.8 0.2 7.1 0.5	1 0015 0658 TH 1251 1922	6.7 0.5 7.0 0.7	16 0114 0743 F 1337 O 2009	6.8 0.4 6.9 0.6	1 0042 0729 SA 1317 1958	6.9 0.5 7.0 0.5	16 0137 0755 SU 1352 O 2026	6.7 0.7 6.8 0.7	1 0217 0900 TU 1441 2135	7.4 0.3 7.3 -0.1	16 0235 0855 W 1445 2127
2 TU	0003 0636 1238 1858	6.4 0.7 6.8 0.8	17 0053 0732 W 1322 1952	6.9 0.1 7.2 0.4	2 0107 0753 F 1340 • 2016	7.0 0.4 7.2 0.5	17 0157 0825 SA 1414 2050	6.8 0.5 6.8 0.6	2 0138 0823 SU 1408 2054	7.2 0.4 7.2 0.2	17 0218 0836 M 1428 2106	6.7 0.7 6.7 0.7	2 0308 0948 W 1527 2222	7.6 0.3 7.3 -0.2	17 0309 0930 TH 1518 2201
3 w	0051 0733 1322 1951	6.7 0.5 7.0 0.6	18 0138 0816 TH 1403 O 2036	7.0 0.1 7.1 0.4	3 0156 0842 SA 1426 2107	7.2 0.3 7.2 0.3	18 0236 0902 SU 1446 2126	6.7 0.7 6.7 0.7	3 0230 0913 M 1456 2146	7.4 0.3 7.3 0.1	18 0255 0912 TU 1502 2142	6.6 0.8 6.7 0.8	3 0356 1031 TH 1612 2305	7.6 0.3 7.3 –0.2	18 0342 1000 F 1548 2227
4 TH	0136 0822 1405 2040	6.9 0.4 7.2 0.5	19 0219 0856 F 1438 2116	6.9 0.3 6.9 0.5	4 0245 0928 SU 1512 2155	7.4 0.3 7.3 0.2	19 0311 0934 M 1517 2155	6.6 0.8 6.6 0.8	4 0322 1000 TU 1544 2233	7.5 0.3 7.3 0.0	19 0329 0942 W 1534 2210	6.6 0.9 6.6 0.9	4 0442 1110 F 1654 2342	7.5 0.4 7.2 0.0	19 0415 1030 SA 1619 2250
5 F	0219 0906 1447 2125	7.1 0.3 7.2 0.4	20 0255 0932 SA 1508 2150	6.8 0.5 6.8 0.6	5 0334 1010 M 1558 2239	7.4 0.4 7.2 0.1	20 0344 0957 TU 1549 2216	6.5 0.9 6.6 0.9	5 0412 1043 W 1631 2318	7.5 0.4 7.2 0.0	20 0402 1009 TH 1607 2235	6.5 1.0 6.5 0.9	5 0526 1145 SA 1736	7.2 0.6 7.0	20 0451 1101 su 1655 2318
6 5A	0302 0946 1529 2206	7.3 0.4 7.2 0.3	21 0328 1001 SU 1537 2215	6.7 0.7 6.7 0.8	6 0423 1049 TU 1644 2323	7.4 0.5 7.0 0.2	21 0418 1020 W 1624 2241	6.5 1.0 6.5 0.9	6 0501 1123 TH 1717	7.4 0.6 7.0	21 0437 1040 F 1642 2305	6.5 1.0 6.5 0.8	6 0016 0610 SU 1219 1817	0.3 6.8 0.9 6.7	21 0530 1136 M 1736 2351
1	0346 1022 1612 2245	7.3 0.4 7.1 0.3	22 0400 1020 M 1608 2230	6.6 0.9 6.6 0.8	7 0513 1129 W 1732	7.2 0.7 6.8	22 0456 1052 TH 1702 2315	6.4 1.0 6.4 0.8	7 0000 0551 F 1203 1804	0.1 7.1 0.8 6.8	22 0516 1117 SA 1720 2340	6.5 0.9 6.5 0.8	7 0050 0655 M 1256 1903	0.6 6.4 1.1 6.3	22 0613 1214 TU 1823
8 м	0432 1055 1655 2322	7.2 0.6 6.9 0.4	23 0435 1038 TU 1644 2252	6.5 0.9 6.6 0.8	8 0007 0607 TH 1212 1824	0.4 6.9 1.0 6.5	23 0538 1131 F 1744 2357	6.4 1.0 6.3 0.9	8 0042 0643 SA 1245 1856	0.3 6.8 1.0 6.5	23 0558 1157 SU 1803	6.5 1.0 6.4	8 0130 0747 TU 1340 2003	0.9 6.1 1.4 6.0	23 0030 0703 W 1301 1918
9 TU	0520 1131 1741	7.0 0.8 6.6	24 0514 1107 W 1723 2326	6.4 1.0 6.4 0.9	9 0056 0707 F 1303 1927	0.6 6.6 1.2 6.2	24 0624 1216 SA 1832	6.3 1.1 6.2	9 0126 0740 su 1332 1955	0.6 6.5 1.2 6.3	24 0020 0645 M 1242 1852	0.8 6.4 1.1 6.3	9 0220 0851 W 1436 2118	1.2 5.8 1.6 5.7	24 0122 0804 TH 1407 2025
10 w	0004 0613 1215 1834	0.6 6.7 1.1 6.2	25 0558 1146 TH 1808	6.2 1.1 6.2	10 0154 0814 SA 1406 2036	0.8 6.4 1.4 6.1	25 0046 0716 SU 1310 1926	0.9 6.2 1.3 6.1	10 0216 0842 M 1427 2100	0.8 6.3 1.4 6.1	25 0108 0739 TU 1337 1950	0.9 6.2 1.3 6.2	10 0320 0958 TH 1540 2230	1.4 5.8 1.6 5.8	25 0239 0918 F 1540 2144
HTH	0056 0717 1312 1944	0.9 6.3 1.5 5.9	26 0010 0647 F 1236 1859	1.0 6.0 1.3 6.0	11 0302 0920 SU 1517 2140	0.8 6.4 1.5 6.2	26 0147 0815 M 1417 2029	1.0 6.1 1.4 6.1	11 0313 0942 TU 1528 2203	1.0 6.2 1.5 6.1	26 0208 0841 W 1447 2057	1.1 6.1 1.4 6.1	11 0427 1100 F 1650 2332	1.4 5.9 1.5 6.1	26 0432 1037 SA 1717 2305
	0209 0837 1433 2105	1.1 6.2 1.7 5.9	27 0110 0745 SA 1342 2000	1.2 5.9 1.5 5.8	12 0412 1019 M 1630 2239	0.8 6.5 1.3 6.4	27 0258 0919 TU 1530 2135	1.0 6.2 1.4 6.2	12 0417 1040 W 1638 2303	1.1 6.2 1.4 6.2	27 0325 0949 TH 1606 2208	1.2 6.1 1.4 6.2	12 0537 1155 SA 1816	1.2 6.2 1.2	27 0556 1145 SU 1835
	0342 0949 1606 2212	1.0 6.3 1.5 6.2	28 0230 0851 su 1503 2110	1.2 5.9 1.5 5.9	13 0515 1115 TU 1736 2334	0.7 6.7 1.1 6.6	28 0409 1024 W 1641 2240	0.9 6.3 1.2 6.3	13 0523 1134 TH 1752 2359	1.0 6.4 1.2 6.4	28 0452 1058 F 1727 2319	1.1 6.3 1.2 6.4	13 0027 0637 SU 1245 1915	6.4 1.0 6.5 0.9	28 0014 0659 M 1244 1935
	0456 1050 1716 2310	0.7 6.6 1.1 6.5	29 0343 1000 M 1614 2218	1.1 6.1 1.4 6.1	14 0609 1207 W 1833	0.5 6.8 0.8	29 0522 1126 TH 1751 2343	0.8 6.6 1.0 6.6	14 0620 1225 F 1852	0.8 6.6 1.0	29 0609 1202 SA 1843	0.9 6.6 0.9	14 0115 0728 M 1330 2003	6.6 0.8 6.7 0.7	29 0112 0754 TU 1335 • 2029
	0555 1146 1813	0.4 6.9 0.8	30 0450 1103 TU 1719 2319	0.9 6.4 1.1 6.4	15 0026 0658 TH 1254 1923	6.7 0.4 6.9 0.7	30 0630 1224 F 1858	0.7 6.8 0.8	15 0050 0710 SA 1311 1941	6.6 0.7 6.7 0.8	30 0025 0712 su 1259 1947	6.8 0.6 6.9 0.5	15 0157 0814 TU 1409 O 2048	6.8 0.7 6.8 0.7	30 0203 0844 W 1423 2119
			A								A 4	121020			-

Page **4** of **7**

YEAR 20

Answers

Answer 1


Question number	Symbol	Answers
a)	m	Submarine cable
b)	100	Depth contour with 100 m depth
c)	25) Owen Rk	Rock with 25 m depth. Name of the rock is Owen rock
d)	A FLY	Yellow colour pilar buoy with a yellow flash
e)	on	Deep water route

Answer 2

- a) IALA Region A
- b) Latitude no corrections. Longitudes to be moved 0.1 minutes Eastward
- c) 06 nautical miles
- d) 1:500 000
- e) BA 5500

Answer -4(b)

Total air draught required = 3.5 + 28 = 31.5 m Elevation of the bridge from the highest tide for the day = 29 m The highest tide for the day = 6.2 m Therefore, height between bridge and the chart datum = 29 + 6.2 = 35.2 m Therefore, the highest tide that the vessel can sail = 35.2 - 31.5 = 3.7 m

A tide of 3.7 m occurs at 2340 hrs.

Therefore, the latest time the vessel may sail is 2400 hrs.

Answer 5

- a) 49⁰ 50.5' N, 005⁰ 04.2' W
- b) 49⁰ 48.6' N, 005⁰ 36' W
- c) $067^{0}(T)$