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Preface

The past 25 years have seen great advances in both Bayesian and frequentist
methods for data analysis. The most significant advance for the Bayesian approach
has been the development of Markov chain Monte Carlo methods for estimating
expectations with respect to the posterior, hence allowing flexible inference and
routine implementation for a wide range of models. In particular, this development
has led to the more widespread use of hierarchical models for dependent data. With
respect to frequentist methods, estimating functions have emerged as a unifying
approach for determining the properties of estimators. Generalized estimating
equations provide a particularly important example of this methodology that allows
inference for dependent data.

The aim of this book is to provide a modern description of Bayesian and
frequentist methods of regression analysis and to illustrate the use of these methods
on real data. Many books describe one or the other of the Bayesian or frequentist
approaches to regression modeling in different contexts, and many mathematical
statistics texts describe the theory behind Bayesian and frequentist approaches
without providing a detailed description of specific methods. References to such
texts are given at the end of Chaps. 2 and 3. Bayesian and frequentist methods are
not viewed here as competitive, but rather as complementary techniques, and in this
respect this book has some uniqueness.

In embarking on the writing of this book, I have been influenced by many current
and former colleagues. My early training was in the Mathematics Department at
the University of Nottingham and my first permanent academic teaching position
was in the Mathematics Department at Imperial College of Science, Technology
and Medicine in London. During this period I was introduced to the Bayesian
paradigm and was greatly influenced by Adrian Smith, both as a lecturer and as
a Ph.D. adviser. I have also benefited, and continue to benefit, from numerous
conversations with Dave Stephens who I have known for over 25 years. Following
my move to the University of Washington in Seattle I was exposed to a very modern
view of frequentist methods in the Department of Biostatistics. In particular, Scott
Emerson, Patrick Heagerty and Thomas Lumley have provided constant stimulation.
These interactions, among many others, have influenced the way I now think about
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viii Preface

statistics, and it is this exposure which I hope has allowed me to write a balanced
account of Bayesian and frequentist methods. There is some theory in this book and
some data analysis, but the focus is on material that lies between these endeavors
and concerns methods. At the University of Washington there is an advanced three-
course regression methods sequence and this book arose out of my teaching of the
three courses in the sequence.

If modern computers had been available a 100 years ago, the discipline of
statistics would have developed in a dramatically different fashion to the way in
which it actually evolved. In particular, there would probably be less dependence on
linear and generalized linear models, which are mathematically and computationally
convenient. While these model classes are still useful and do possess a number
of convenient mathematical and computational properties, I believe they should be
viewed as just two choices within a far wider range of models that are now available.
The approach to modeling that is encouraged in this book is to first specify the
model suggested by the background science and to then proceed to examining the
mathematical and computational aspects of the model.

As a preparation for this book, the reader is assumed to have a grasp of calculus
and linear algebra and have taken first courses in probability and statistical theory.
The content of this book is as follows. An introductory chapter describes a number
of motivating examples and discusses general issues that need consideration before
a regression analysis is carried out. This book is then broken into five parts: I, In-
ferential Approaches; II, Independent Data; III, Dependent Data; IV, Nonparametric
Modeling; V, Appendices. The first two chapters of Part I provide descriptions of the
frequentist and Bayesian approaches to inference, with a particular emphasis on the
rationale of each approach and a delineation of situations in which one or the other
approach is preferable. The third chapter in Part I discusses model selection and
hypothesis testing. Part II considers independent data and contains three chapters on
the linear model, general regression models (including generalized linear models),
and binary data models. The two chapters of Part III consider dependent data
with linear models and general regression models. Mixed models and generalized
estimating equations are the approaches to inference that are emphasized. Part IV
contains three chapters on nonparametric modeling with an emphasis on spline and
kernel methods. The examples and simulation studies of this book were almost
exclusively carried out within the freely available R programming environment. The
code for the examples and figures may be found at:

http://faculty.washington.edu/jonno/regression-methods.html

along with the inevitable errata and links to datasets. Exercises are included at
the end of all chapters but the first. Many of these exercises concern analyses of
real data. In my own experience, a full understanding of methods requires their
implementation and application to data.

In my own teaching I have based three one-quarter courses on the following.
Regression Methods for Independent Data is based on Part 11, dipping into topics in
Part I as needed and using motivating examples from Chap. 1. Regression Methods


http://faculty.washington.edu/jonno/regression-methods.html
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for Dependent Data centers on Part II, again using examples from Chap. 1, and
building on the independent data material. Finally, Nonparametric Regression and
Classification is based on the material in Part IV. The latter course is stand-alone in
the sense of not requiring the independent and dependent data courses though extra
material on a number of topics, including linear and generalized linear models and
mixed models, will need to be included if not previously encountered.

In the 2003-2004 academic year I was the Genentech Professor and received
funding specifically to work on this book. The staff at Springer have been very
helpful at all stages. John Kimmel was the editor during most of the writing of this
book and I am appreciative of his gentle prodding and advice. About 18 months
from the completion of this book, Marc Strauss stepped in and has also been very
supportive. Many of my colleagues have given comments on various chapters, but
I would like to specifically thank Lurdes Inoue, Katie Kerr, Erica Moodie, Zoe
Moodie, Ken Rice, Dave Stephens, Jon Wellner, Daniela Witten, and Simon Wood
for feedback on different parts of this book. Finally, lest we forget, I would like
to thank all of those students who suffered through initial presentations of this
material—I hope your sacrifices were not in vain. ..

Seattle, WA Jon Wakefield
June 2012
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Chapter 1
Introduction and Motivating Examples

1.1 Introduction

This book examines how a response is related to covariates using mathematical mod-
els whose unknown parameters we wish to estimate using available information—
this endeavor is known as regression analysis. In this first chapter, we will begin in
Sect. 1.2 by making some general comments about model formulation. In Sect. 1.3,
a number of examples will be described in order to motivate the material to
follow in the remainder of this book. In Sect. 1.4, we examine, in simple idealized
scenarios, how “randomness” is induced by not controlling for covariates in a
model. Section 1.5 briefly contrasts the Bayesian and frequentist approaches to
inference, and Sect. 1.7 gives references that expand on the material of this chapter.
Finally, Sect. 1.6 summarizes the overall message of this book which is that in
many instances, carefully thought out Bayesian and frequentist analyses will provide
similar conclusions; however, situations in which one or the other approach may be
preferred are also described.

1.2 Model Formulation

In a regression analysis, the following steps may be followed:

1. Formulate a model based on the nature of the data, the subject matter context,
and the aims of the data analysis.

2. Examine the mathematical properties of the initial model with respect to
candidate inference procedures. This examination will focus on whether specific
methods are suited to both the particular context under consideration and the
specific questions of interest in the analysis.

3. Consider the computational aspects of the model.

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series 1
in Statistics, DOI 10.1007/978-1-4419-0925-1_1,
© Springer Science+Business Media New York 2013
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The examination in steps 2 and 3 may suggest that we need to change the model.
Historically, the range of model forms that were available for regression modeling
was severely limited by computational and, to a lesser extent, mathematical
considerations. For example, though generalized linear models contain a flexible
range of alternatives to the linear model, a primary motivation for their formulation
was ease of fitting and mathematical tractability. Hence, step 3 in particular took
precedent over step 1.

Specific aspects of the initial model formulation will now be discussed in
more detail. When carrying out a regression analysis, careful consideration of the
following issues is vital and in many instances will outweigh in importance the
particular model chosen or estimation method used. The interpretation of parameters
also depends vitally on the following issues.

Observational Versus Experimental Data

An important first step in data analysis is to determine whether the data are
experimental or observational in nature. In an experimental study, the experimenter
has control over at least some aspects of the study. For example, units (e.g., patients)
may be randomly assigned to covariate groups of interest (e.g., treatment groups).
If this randomization is successfully implemented, any differences in response will
(in expectation) be due to group assignment only, allowing a causal interpretation
of the estimated parameters. The beauty of randomization is that the groups are
balanced with respect to all covariates, crucially including those that are unobserved.

In an observational study, we never know whether observed differences between
the responses of groups of interest are due, at least partially, to other “confounding”
variables related to group membership. If the confounders are measured, then there
is some hope for controlling for the variability in response that is not due to group
membership, but if the confounders are unobserved variables, then such control is
not possible. In the epidemiology and biostatistics literature, this type of discrepancy
between the estimate and the “true” quantity of interest is often described as bias
due to confounding. In later chapters, this issue will be examined in detail, since it
is a primary motivation for regression modeling. In observational studies, estimated
coefficients are traditionally described as associations, and causality is only alluded
to more informally via consideration of the combined evidence of different studies
and scientific plausibility. We expand upon this discussion in Sect. 1.4.

Predictive models are more straightforward to build than causal models. To
quote Freedman (1997), “For description and prediction, the numerical values of the
individual coefficients fade into the background; it is the whole linear combination
on the right-hand side of the equation that matters. For causal inference, it is the
individual coefficients that do the trick.”

To make clear, we are not suggesting refining the model based on inadequacies of fit; this is a
dangerous enterprise, as we discuss in Chap. 4.
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Study Population

Another important step is to determine the population from which the data were
collected so that the individuals to whom inferential conclusions apply may be
determined. Extrapolation of inference beyond the population providing the data
is a risky enterprise.

Throughout this book, we will take a superpopulation view in which probability
models are assumed to describe variability with respect to a hypothetical, infinite
population. The study population that exists in practice consists of N units, of which
n are sampled. To summarize:

Superpopulation (co) —  Study Population (N) —  Sample (n)

Inference for the parameters of a superpopulation may be contrasted with a survey
sampling perspective in which the focus is upon characteristics of the responses of
the N units; in the latter case, a full census (n = N) will obviate the need for
statistical analysis.

The Sampling Scheme

The data collection procedure has implications for the analysis, in terms of the
models that are appropriate, the questions that may be asked, and the inferential
approach that may be adopted. In the most straightforward case, the data arise
through random sampling from a well-defined population. In other situations, the
random samples may be drawn from within covariate-defined groups, which may
improve efficiency of estimation by concentrating the sampling in informative
groups but may limit the range of questions that can be answered by the data
due to the restrictions on the sampling scheme. In more complex situations, the
data may result from outcome-dependent sampling. For example, a case-control
study is an outcome-dependent sampling scheme in which the binary response of
interest is fixed by design, and the random variables are the covariates sampled
within each of the outcome categories (cases and controls). For such data, care is
required because the majority of conventional approaches will not produce valid
inference, and analysis is carried out most easily using logistic regression models.
Similar issues are encountered in the analysis of matched case-control studies, in
which cases and controls are matched upon additional (confounder) variables. Bias
in parameters of interest will occur if such data are analyzed using methods for
unmatched studies, again because the sampling scheme has not been acknowledged.
In the case of individually matched cases and controls (in which, for example, for
each case a control is picked with the same gender, age, and race), conventional
likelihood-based methods are flawed because the number of parameters (including
one parameter for each case-control pair) increases with the sample size (providing
an example of the importance of paying attention to the regularity conditions
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required for valid inference)—conditional likelihood provides a valid inferential
approach in this case. The analysis of data from case-control studies is described
in Chap. 7.

Missing Data

Measurements may be missing on the responses which can lead to bias in estimation,
depending on the reasons for the absence. It is clear that bias will arise when the
probability of missingness depends on the size of the response that would have been
observed. An extreme example is when the result of a chemical assay is reported
as “below the lower limit of detection”; such a variable may be reported as the
(known) lower limit, or as a zero, and analyzing the data using these values can
lead to substantial bias. Removing these observations will also lead to bias. In
the analysis of individual-level data over time (to give so-called longitudinal data)
another common mechanism for missing observations is when individuals drop out
of the study.

Aim of the Analysis

The primary aim of the analysis should always be kept in mind; in particular, is
the purpose descriptive, exploratory (e.g., for hypothesis generation), confirmatory
(with respect to an a priori hypothesis), or predictive? Regression models can be
used for each of these endeavors, but the manner of their use will vary. Large
data sets can often be succinctly described using parsimonious® regression models.
Exploratory studies are often informal in nature, and many different models may
be fitted in order to gain insights into the structure of the data. In general, however,
great care must be taken with data dredging since spurious associations may be
discovered due to chance alone.

The level of sophistication of the analysis, and the assumptions required, will
vary as the aims and abundance of data differ. For example, if one has a million
observations independently sampled from a population, and one requires inference
for the mean of the population, then inference may be based on the sample mean
and sample standard deviation alone, without recourse to more sophisticated models
and approaches—we would expect such inference to be reliable, being based on few
assumptions. Similarly, inference is straightforward if we are interested in the aver-
age response at an observed covariate value for which abundant data were recorded.

2The Oxford English Dictionary describes parsimony as ... that no more causes or forces should
be assumed than are necessary to account for the facts,” which serves our purposes, though care is
required in the use of the words “causes,” “forces,” and “facts.”
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However, if such data are not available (e.g., when the number of covariates becomes
large or the sample size is small), or if interpolation is required, regression models
are beneficial, as they allow the totality of the data to estimate global parameters
and smooth across unstructured variability. To answer many statistical questions,
very simple approaches will often suffice; the art of statistical analysis is deciding
upon when a more sophisticated approach is necessary/warranted, since dependence
on assumptions usually increases with increasing sophistication.

1.3 Motivating Examples

We now introduce a number of examples to illustrate different data collection
procedures, types of data, and study aims. We highlight the distinguishing features
of the data in each example and provide a signpost to the chapter in which
appropriate methods of analysis may be found.

In general, data {Y;,x;,i = 1,...,n} will be available on n units, with Y;
representing the univariate response variable and x; = [1,2;1,..., 2] the row
vector of explanatory variables on unit ¢. Variables written as uppercase letters will
represent random variables, and those in lowercase fixed quantities, with boldface
representing vectors and matrices.

1.3.1 Prostate Cancer

We describe a dataset analyzed by Tibshirani (1996) and originally presented by
Stamey et al. (1989). The data were collected on n = 97 men before radical
prostatectomy, which is a major surgical operation that removes the entire prostate
gland along with some surrounding tissue. We take as response, Y, the log of
prostate specific antigen (PSA); PSA is a concentration and is measured in ng/ml.
In Stamey et al. (1989), PSA was proposed as a preoperative marker to predict the
clinical stage of cancer. As well as modeling the stage of cancer as a function
of PSA, the authors also examined PSA as a function of age and seven other
histological and morphometric covariates. We take as our aim the building of a
predictive model for PSA, using the eight covariates:

* log(can vol): The log of cancer volume, measured in milliliters (cc). The area
of cancer was measured from digitized images and multiplied by a thickness to
produce a volume.

* log(weight): The log of the prostate weight, measured in grams.

* Age: The age of the patient, in years.

* log(BPH): The log of the amount of benign prostatic hyperplasia (BPH), a
noncancerous enlargement of the prostate gland, as an area in a digitized image

and reported in cm?,
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e SVI: The seminal vesicle invasion, a 0/1 indicator of whether prostate cancer
cells have invaded the seminal vesicle.

* log(cap pen): The log of the capsular penetration, which represents the level of
extension of cancer into the capsule (the fibrous tissue which acts as an outer
lining of the prostate gland). Measured as the linear extent of penetration, in cm.

* Gleason: The Gleason score, a measure of the degree of aggressiveness of the
tumor. The Gleason grading system assigns a grade (1-5) to each of the two
largest areas of cancer in the tissue samples with 1 being the least aggressive
and 5 the most aggressive; the two grades are then added together to produce the
Gleason score.

* PGS45: The percentage of Gleason scores that are 4 or 5.

The BPH and capsular penetration variables originally contained zeros, and a
small number was substituted before the log transform was taken. It is not clear
from the original paper why the log transform was taken though PSA varies over a
wide range, and so linearity of the mean model may be aided by the log transform.
It is also not clear why the variable PGS45 was constructed. If initial analyses were
carried out to find variables that were associated with PSA, then significance levels
of hypothesis tests will not be accurate (since they are not based on an a priori
hypotheses but rather are the result of data dredging).

Carrying out exploratory data analysis (EDA) is a vital step in any data analysis.
Such an enterprise includes the graphical and tabular examination of variables, the
checking of the data for errors (for example, to see if variables are within their
admissible ranges), and the identification of outlying (unusual) observations or
influential observations that when perturbed lead to large changes in inference. This
book is primarily concerned with methods, and the level of EDA that is performed
will be less than would be desirable in a serious data analysis.

Figure 1.1 displays the response plotted against each of the covariates and
indicates a number of associations. The association between Y and log(can vol)
appears particularly strong. In observational settings such as this, there are often
strong dependencies between the covariates. We may investigate these dependencies
using scatterplots (or tables, if both variables are discrete). Figure 1.2 gives an
indication of the dependencies between those variables that exhibit the strongest
associations; log(can vol) is strongly associated with a number of other covariates.
Consequently, we might expect that adding log(can vol) to a model for log(PSA) that
contains other covariates will change the estimated associations between log(PSA)
and the other variables.

We define Y; as the log of PSA and ; = [1,1,...,%;s] as the 1 x 9 row
vector associated with patienti, ¢ = 1,...,n = 97. We may write a general mean
model as E[Y; | ;] = f(a;,3) where f(-,-) represents the functional form and
3 unknown regression parameters. The most straightforward form is the multiple
linear regression

f@i,B) = Bo+ > i, (1.1)

jecC
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Fig. 1.1 The response y = log(PSA) plotted versus each of the eight explanatory variables, x, in
the prostate cancer study, with local smoothers superimposed for continuous covariates

where C corresponds to the subset of elements of {1,2,...,8} whose associated
covariates we wish to include in the model and 8 = [Bo,{5;,7 € C}]". The
interpretation of each of the coefficients 3; depends crucially on knowing the scaling
and units of measurement of the associated variables ;.

Most of the x variables in this study are measured with error (as is clear from
their derivation, e.g., log(BPH) is derived from a digitized image), and if we are
interested in estimating causal effects, then this aspect needs to be acknowledged
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Fig. 1.2 Associations between selected explanatory variables in the prostate cancer study, with
local smoothers superimposed for continuous covariates

in the models that are fitted, since inference is affected in this situation, which is
known as errors-in-variables.

Distinguishing Features. Inference for multiple linear regression models is de-
scribed in Chap. 5, including a discussion of parameter interpretation. Chapter 4
discusses the difficult but important topics of model formulation and selection.



1.3 Motivating Examples 9

Table 1.1 Outcome after head injury as a function of four covariates: pupils, hematoma present,
coma score, and age

Pupils Good Poor
Hematoma present No Yes No Yes
Coma score  Low High Low High Low High Low High
1-25 Dead 9 5 5 7 58 11 32 12
Alive 47 77 11 24 29 24 13 16
Age 26-54 Dead 19 6 21 14 45 7 61 15
(years) Alive 15 44 18 38 11 16 11 21
>55 Dead 7 12 19 25 20 7 42 17
Alive 1 6 2 15 0 2 7 7

1.3.2 OQutcome After Head Injury

Table 1.1 reports data presented by Titterington et al. (1981) in a study initiated
by the Institute of Neurological Sciences in Glasgow. These data were collected
prospectively by neurosurgeons between 1968 and 1976. The original aim was to
predict recovery for individual patients on the basis of data collected shortly after
the injury. The data that we consider contain information on a binary outcome,
Y = 0/1, corresponding to dead/alive after head injury, and the covariates: pupils
(with good corresponding to a reaction to light and poor to no reaction), coma
score (representing depth of coma, low or high), hematoma present (no/yes), and
age (categorized as 1-25, 26-54, >55).

The response of interest here is p(x) = Pr(Y = 1 | «); the probability that a
patient with covariates  is alive. This quantity must lie in the range [0,1], and so, at
least in this respect, linear models are unappealing. To illustrate, suppose we have a
univariate continuous covariate x and the model

p(z) = Bo + P

While probabilities not close to zero or one may change at least approximately
linearly with z, it is extremely unlikely that this behavior will extend to the extremes,
where the probability—covariate relationship must flatten out in order to remain
in the correct range. An additional, important, consideration is that linear models
commonly assume that the variance is constant and, in particular, does not depend
on the mean. For a binary outcome with probability of response p(z), the Bernoulli
variance is p(z)[1 — p(x)] and so depends on the mean. As we will see, accurate
inference depends crucially on having modeled the mean—variance relationship
appropriately.

A common model for binary data is the logistic regression model, in which the
odds of death, p(x)/[1 — p(x)], is modeled as a function of x. For example, the
linear logistic regression model is

p(z)
=) exp(fo + p1x).
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This form is mathematically appealing, since the modeled probabilities are con-
strained to lie within [0,1], though the interpretation of the parameters 3y and j3; is
not straightforward.

Distinguishing Features. Chapter 7 is dedicated to the modeling of binary data. In
this chapter, logistic regression models are covered in detail, along with alternatives.
Formulating predictive models and assessing the predictive power of such models
is considered in Chaps. 10—12.

1.3.3 Lung Cancer and Radon

We now describe an example in which the data arise from a spatial ecological study.
In an ecological study, the unit of analysis is the group rather than the individual. In
spatial epidemiological studies, due primarily to reasons of confidentiality, data on
disease, population, and exposure are often available as aggregates across area. It is
these areas that constitute the (ecological) group level at which the data are analyzed.
In this example, we examine the association between lung cancer incidence (over
the years 1998-2002) and residential radon at the level of the county, in Minnesota.
Radon is a naturally occurring radioactive gas produced by the breakdown of
uranium in soil, rock, and water and is a known carcinogen for lung cancer (Darby
et al. 2001). However, in many ecological studies, when the association between
lung cancer incidence and residential radon is estimated, radon appears protective.
Ecological bias is an umbrella term that refers to the distortion of individual-level
associations due to the process of aggregation. There are many facets to ecological
bias (Wakefield 2008), but an important issue in the lung cancer/radon context is the
lack of control for confounding, a primary source being smoking.

Let Y; denote the lung cancer incidence count and x; the average radon in county
t = 1,...,n = 87. Age and gender are strongly associated with lung cancer
incidence, and a standard approach to controlling these factors is to form expected
counts F; = ijl Nijq; in which we multiply the population in stratum j and
county ¢, IV;;, by a “reference” probability of lung cancer in stratum j, ¢;, to obtain
the expected count in stratum j. Summing over all J stratum gives the total expected
count. Intuitively, these counts are what we would expect if the disease rates in
county ¢ conform with the reference. A summary response measure in county ¢
is the standardized morbidity ratio (SMR), given by Y;/E;. Counties with SMRs
greater than 1 have an excess of cases, when compared to that expected.

Figure 1.3 maps the SMRs in counties of Minnesota, and we observe more
than twofold variability with areas of high incidence in the northeast of the state.
Figure 1.4 maps the average radon by county, with low radon in the counties to the
northeast. This negative association is confirmed in Fig. 1.5 in which we plot the
SMRs versus average radon, with a smoother indicating the local trend.
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A simple model that constrains the mean to be positive is the loglinear regression

lEYi
ogE | =

K2

ivi] = Bo + fiz;

1 = 1,...,n. We might combine this form with a Poisson model for the counts.
However, in a Poisson model, the variance is constrained to equal the mean,
which is often too restrictive in practice, since excess-Poisson variability is often
encountered. Hence, we would prefer to fit a more flexible model. We might also be
concerned with residual spatial dependence between disease counts in counties that
are close to each other. Information on confounder variables, especially smoking,
would also be desirable.

Distinguishing Features. Poisson regression models for independent data, and
extensions to allow for excess-Poisson variation, are described in Chap. 6. Such
models are explicitly designed for nonnegative response variables. Accounting for
residual spatial dependence is considered in Chap. 9.

1.3.4 Pharmacokinetic Data

Pharmacokinetics is the study of the time course of a drug and its metabolites after
introduction into the body. A typical experiment consists of a known dose of drug
being administered via a particular route (e.g., orally or via an injection) at a known
time. Subsequently, blood samples are taken, and the concentration of the drug is
measured. The data are in the form of n pairs of points [z;, y;], where z; denotes the
sampling time at which the ith blood sample is taken and y; denotes the ith measured
concentration, ¢ = 1,...,n. We describe in some detail some of the contextual
scientific background in order to motivate a particular regression model.

A typical dataset, taken from Upton et al. (1982), is tabulated in Table 1.2 and
plotted in Fig. 1.6. These data were collected after a subject was given an oral dose
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Table 1.2 Concentration (y) of the drug theophylline as a function of time (x), obtained from a
subject who was administered an oral dose of size 4.53 mg/kg

Observation Time Concentration
number (hours) (mg/liter)
i T Yi
1 0.27 4.40
2 0.58 6.90
3 1.02 8.20
4 2.02 7.80
5 3.62 7.50
6 5.08 6.20
7 7.07 5.30
8 9.00 4.90
9 12.15 3.70
10 24.17 1.05
Fig. 1.6 Concentration of o 0O
theophylline plotted versus — ] o
time for the data of Table 1.2 g Oo
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of 4.53 mg/kg of the antiasthmatic agent theophylline. The concentration of drug
was determined in subsequent blood samples using a chemical assay (a method for
determining the amount of a specific substance in a sample). Data were collected
over a period slightly greater than 24 h following drug administration.

Pharmacokinetic experiments are important as they help in understanding the
absorption, distribution, and elimination processes of drugs. Such an understanding
provides information that may be used to decide upon the sizes and timings of
doses that should be administered in order to achieve concentrations falling within
a desired therapeutic window. Often the concentration of drug acts as a surrogate
for the therapeutic response. The aim of a pharmacokinetic trial may be dose
recommendation for a specific population, for example, to determine a dose size
for the packaging, or recommendations for a particular patient based on covariates,
which is known as individualization. A typical question is, for the patient who
produced the data in Table 1.2, what dose could we give at 25h to achieve a
concentration of 10 mg/1 at 37h?
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Fig. 1.7 Representation of a
one-compartment system
with oral dosing.
Concentrations are measured
in compartment 1 A

Compartment 0 Compartment 1
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The processes determining drug concentrations are very complicated, but sim-
ple compartmental models (e.g., Godfrey 1983) have been found to mimic the
concentrations observed in patients. The basic idea is to model the body as a
system of compartments within each of which the kinetics of the drug flow is
assumed to be similar. We consider the simplest possible model for modeling
drug concentrations following the administration of an oral dose. The model is
represented in Fig. 1.7 and assumes that the body consists of a compartment into
which the drug is introduced and from which absorption occurs into a second “blood
compartment.” The compartments are labeled retrospectively as 0 and 1 in Fig. 1.7.
Subsequently, elimination from compartment 1 occurs with blood samples taken
from this compartment.

We now describe in some detail the one-compartment model with first-order
absorption and elimination. Let wy, () represent the amount of drug in compartment
k at time ¢, k = 0, 1. The drug flow between the compartments is described by the
differential equations

d’wo
_— —ka y 1.2
7 wo (1.2)
dw
d—tl = kaqwo — kewr, (1.3)

where k, > 0 is the absorption rate constant associated with the flow from
compartment 0 to compartment 1 and k. > 0 is the elimination rate constant
(see Fig. 1.7). At time zero, the initial dose is wo(0) = D, and solving the pair
of differential equations (1.2) and (1.3), subject to this condition, gives the amount
of drug in the body at time x as

wy(z) = ——— [exp(—kex) — exp(—kaz)]. (1.4)
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We do not measure the amount of total drug but drug concentration, and so we
need to normalize (1.4) by dividing wq(z) by the volume V' > 0 of the blood
compartment to give

[exp(—kex) — exp(—kqx)]. (1.5)

so that p(x) is the drug concentration in the blood compartment at time z.
Equation (1.5) describes a model that is nonlinear in the parameters V, k, and k;
for reasons that will be examined in detail in Chap. 6, inference for such models is
more difficult than for their linear counterparts.

We have so far ignored the stochastic element of the model. An obvious error
model is

yi = p(xi) + e,

with E[¢;] = 0, var(e;) = 02,0 = 1,...,n, and cov(e;, ¢;) = 0,4 # j. We may
go one stage further and assume ¢; | 052 ~iid N(0, af) where ~;;4 is shorthand
for “is independent and identically distributed as.” There are a number of potential
difficulties with this error model, beyond the distributional choice of normality.
Concentrations must be nonnegative, and so we might expect the magnitude of
errors to decrease with decreasing “true” concentration ;(x), a phenomenon that
is often confirmed by examination of assay validation data. The error terms are
likely to reflect not only assay precision, however, but also model misspecification,
and given the simple one-compartment system we have assumed, this could be
substantial. We might therefore expect the error terms to display correlation across
time. In this example, the scientific context therefore provides not only a mean
function but also information on how the variance of the data changes with the
mean.

One simple solution, to at least some of these difficulties, is to take the logarithm
of (1.5) and fit the model:

logy; = log pu(w;) + 0;.

We may further assume E[d;] = 0, var(d;) = crg, i=1,...,n,and cov(d;,d;) = 0,
1 # j, multiplicative errors on the original scale and additive errors on the log scale
give

var(Y) = p(x)?var(e®) ~ u(x)?o?
for small 4.

There are two other issues that are relevant to modeling in this example. The first
is that in pharmacokinetic analyses, interest often focuses on derived parameters
of interest, which are functions of [V, k,, k.. In particular, we may wish to make
inference for the time to maximum concentration, the maximum concentration, the
clearance (initial dose divided by the area under the concentration curve), and the
elimination half-life, which are given by

B 1 o ka
LTmax — ka — ke g ke
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D ke ke/(kafkc)
Cmax — H(Inlax) = |

V \ ka
Cl=V x k.
log 2
tl/QZ kg .

A second issue is that model (1.5) is unidentifiable in the sense that the parameters
[V, kq, ke give the same curve as the parameters [V k. /kq, ke, kq|. This identifiabil-
ity problem can be overcome via a restriction such as constraining the absorption
rate to exceed the elimination rate, k, > k. > 0, though this complicates inference.
Often the data available for individualization will be sparse. For example,
suppose we only observed the first two observations in Table 1.2. In this situation,
inference is impossible without additional information (since there are more
parameters than data points), which suggests a Bayesian approach in which prior
information on the unknown parameters is incorporated into the analysis.

Distinguishing Features. Model (1.5) is nonlinear in the parameters. Such models
will be considered in Chap. 6, including their use in situations in which additional
information on the parameters is incorporated via the specification of a prior
distribution. The data in Table 1.2 are from a single subject. In the original study,
data were available for 12 subjects, and ideally we would like to analyze the
totality of data; hierarchical models provide one framework for such an analysis.
Hierarchical nonlinear models are considered in Chap. 9.

1.3.5 Dental Growth

Table 1.3 gives dental measurements of the distance in millimeters from the center
of the pituitary gland to the pteryo-maxillary fissure in 11 girls and 16 boys recorded
at the ages of 8, 10, 12, and 14 years. These data were originally analyzed in Potthoff
and Roy (1964).

Figure 1.8 plots these data, and we see that dental growth for each child increases
in an approximately linear fashion. Three inferential situations are:

1. Summarization. For each of the boy and girl populations, estimate the mean and
standard deviation of pituitary gland measurements at each of the four ages.

2. Population inference. For each of the populations of boys and girls from which
these data were sampled, estimate the average linear growth over the age range
8—14 years. Additionally, estimate the average dental distance, with an associated
interval estimate, at an age of 9 years.

3. Individual inference. For a specific boy or girl in the study, estimate the rate
of growth over the age range 8—14 years and predict the growth at 15 years.
Additionally, for an unobserved girl, from the same population that produced the
sampled girls, obtain a predictive growth curve, along with an interval envelope.
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Table 1.3 Dental growth data for boys and girls

Age (years) Age (years)
Girl 8 10 12 14 Boy 8 10 12 14
1 21.0 20.0 21.5 23.0 1 26.0 25.0 29.0 31.0
2 21.0 21.5 24.0 25.5 2 21.5 22.5 23.0 26.5
3 20.5 24.0 24.5 26.0 3 23.0 22.5 24.0 27.5
4 23.5 24.5 25.0 26.5 4 25.5 27.5 26.5 27.0
5 21.5 23.0 22.5 23.5 5 20.0 23.5 22.5 26.0
6 20.0 21.0 21.0 22.5 6 24.5 25.5 27.0 28.5
7 21.5 22.5 23.0 25.0 7 22.0 22.0 24.5 26.5
8 23.0 23.0 23.5 24.0 8 24.0 21.5 24.5 25.5
9 20.0 21.0 22.0 21.5 9 23.0 20.5 31.0 26.0
10 16.5 19.0 19.0 19.5 10 27.5 28.0 31.0 31.5
11 24.5 25.0 28.0 28.0 11 23.0 23.0 23.5 25.0
12 21.5 23.5 24.0 28.0
13 17.0 24.5 26.0 29.5
14 22.5 25.5 25.5 26.0
15 23.0 24.5 26.0 30.0
16 22.0 21.5 23.5 25.0

Fig. 1.8 Dental growth data
for boys and girls: distance
plotted versus age
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With 16 boys and 11 girls, inference for situation 1 can be achieved by simply
evaluating the sample mean and standard deviation at each time point; these
quantities are given in Table 1.4. These simple summaries are straightforward to
construct and are based on independence of individuals. To obtain interval estimates
for the means and standard deviations, one must be prepared to make assumptions
(such as approximate normality of the measurements), since for these data the
sample sizes are not large and we might be wary of appealing to large sample
(asymptotic) arguments.
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Table 1.4 Sample means and standard deviations (SDs) for girls and boys, by age group

Age Girls Boys

(years) Mean (mm) SD (mm) Mean (mm) SD (mm)
8 21.2 2.1 22.9 2.5

10 222 1.9 23.8 2.1

12 23.1 2.4 25.7 2.7

14 24.1 2.4 27.5 2.1

For situation 2, we may fit a linear model relating distance to age. Since there
are no data at 9 years, to obtain an estimate of the dental distance, we again require
a model relating distance to age. In situation 3, we may wish to use the totality of
data as an aid to providing inference for a specific child. For a new girl from the
same population, we clearly need to use the existing data and a model describing
between-girl differences.

For longitudinal (repeated measures) data such as these, we cannot simply fit
models to the totality of the data on boys or girls and assume independence of
measurements; we need to adjust for the correlation between measurements on the
same child. There is clearly dependence between such measurements. For example,
boy 10 has consistently higher measurements than the majority of boys. There are
two distinct approaches to modeling longitudinal data. In the marginal approach,
the average response is modeled as a function of covariates (including time),
and standard errors are empirically adjusted for dependence. In the conditional
approach, the response of each individual is modeled as a function of individual-
specific parameters that are assumed to arise from a distribution, so that the overall
variability is partitioned into within- and between-child components. The marginal
approach is designed for estimating population-level questions (as posed in situation
2) based on minimal assumptions. Conditional approaches can answer a greater
number of inferential questions but require an increased number of assumptions
which decreases their robustness to model misspecification.

Distinguishing Features. Chapter 8 describes linear models for dependent data such
as these.

1.3.6 Spinal Bone Mineral Density

Bachrach et al. (1999) analyze longitudinal data on spinal bone mineral density
(SBMD) measurements on 230 women aged between 8 and 27 years and of one of
four ethnic groups: Asian, Black, Hispanic, and White. The aim of this study was to
examine ethnic differences in SBMD.

Figure 1.9 displays the SBMD measurements by individual, with one panel for
each of the four races. The relationship between SBMD and age is clearly nonlinear,
and there are also woman-specific differences in overall level so that observations
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Fig. 1.9 Spinal bone mineral density measurements as a function of age and ethnicity. Points that
are connected represent measurements from the same woman

on the same woman are correlated. Letting Y;; represent the SBMD measurement
on woman ¢ at age age; ;, we might propose a mean model of the form

E[Y}; | ageij] =z;B+ f(ageij) +b;

where x; is a 1 x 4 row vector with a single one and three zeroes that represents
the ethnicity of woman ¢ (coded in the order Hispanic, White, Asian, Black), with
B = [Bu,Bw,Ba,Bs]" the 4 x 1 vector of associated regression coefficients,
f (ageij) is a function that varies smoothly with age, and b; is a woman-specific
intercept which is included to account for dependencies of measurements on the
same individual. The relationship between SBMD and age is not linear and not of
primary interest. Consequently, we would like to use a flexible model form, and we
may not be concerned if this model does not contain easily interpretable parameters.
Nonparametric regression is the term we use to refer to flexible mean modeling.

Distinguishing Features. The analysis of these data requires both a flexible mean
model for the age effect and acknowledgement of the dependence of measure-
ments on the same woman. Chapters 10—12 describe models that allow for these
possibilities.
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1.4 Nature of Randomness

Regression models consist of both deterministic and stochastic (random) compo-
nents, and a consideration of the sources of the randomness is worthwhile, both
to interpret parameters contained in the deterministic component and to model
the stochastic component. We initially consider an idealized situation in which a
response is completely deterministic, given sufficient information, and randomness
is only induced by missing information.> Let y denote a variable with values
Y1, ..., yn within a population. We begin with a very simple deterministic model

Yi = Bo + Pra; + vz (1.6)

fori = 1,..., N, so that, given x; and z; (and knowing Sy, 51 and =), y; is
completely determined. Suppose we only measure y; and x; and assume the model

Y =85+ Bz + €.

To interpret 33 and 3}, we need to understand the relationship between x; and z;,
i=1,..., N. To this end, write

¢t = 1,..., N. This form does not in any sense assume that a linear association is
appropriate or “correct”, rather it is the linear approximation to E[Z |z]. In (1.7),
we may take a and b as the least squares estimates from fitting a linear model to the
data [z;, z;],i = 1,..., N. Substitution of (1.7) into (1.6) yields

¥ = Bo+ Brxi +y(a+ bz +6;)
= By + Biwi + €

where
By = Bo + ay
Bf = b1+ by
61':’751‘, izl,...,N, (18)

3When simulations are performed, pseudorandom numbers are generated via deterministic se-
quences. For example, consider the sequence generated by the congruential generator

Xi = aXifl, mod(m)

along with initial value (or “seed”) X¢. Then X; takes values in 0, 1, ..., m—1, and pseudorandom
numbers are obtained as U; = X;/m, where Xy, a, and m are chosen so that the U;’s have
(approximately) the properties of uniform U(0, 1) random variables. However, if X, a, and m are
known, the randomness disappears! Ripley (1987, Chap. 2) provides a discussion of pseudorandom
variable generation and specifically “good” choices of a and m.
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so that 87 is a combination of the direct effect of x; on y;, and the effect of z;,
through the linear association between z; and z;. This development illustrates the
problems in nonrandomized situations of estimating the causal effect of z; on y;,
that is, 81. Turning to the stochastic component (1.8) illustrates that properties of
¢; are inherited from §;. Hence, assumptions such as constancy of variance of ¢;
depend on the nature of z; and, in particular, on the joint distribution of z; and z;.
Increasing slightly the realism, we extend the original deterministic model to

P q
vi=Bo+ Y Biwij + Y Wik (1.9)
=1 k=1
Suppose we only measure z;1, . . ., Z;, and assume the simple model
P
Y, =85+ Bimij +e, (1.10)
j=1

where the errors, €;, now correspond to the totality of scaled versions of the z;x’s
that remain after extracting the linear associations with the x;;’s by analogy with
(1.7) and (1.8).

Viewing the error terms as sums of random variables and considering the central
limit theorem (Appendix G) naturally leads to the normal distribution as a plausible
error distribution. There is no compelling reason to believe that the variance of this
normal distribution will be constant across the space of the x variables, however.

We have distinguished between the regression coefficients in the assumed model
(1.10), denoted by ﬁ* and those in the original model (1.9), denoted ;. In general,
B; # B, because of the possible effects of confounding which occurs due to
dependencies between z;; and elements of z; = [2;1,. .., 2i4]. In the example just
considered, only if x;; is linearly independent of the z;, will the coefficients j3;
and 37 coincide. For nonlinear models, the relationship between the two sets of
coefﬁc1ents is even more complex.

This development illustrates that an aim of regression modeling is often to
“explain” the error terms using observed covariates. In general, error terms represent
not only unmeasured variables but also data anomalies, such as inaccurate recording
of responses and covariates, and model misspecification. Clearly the nature of the
randomness, and the probabilities we attach to different events, is conditional upon
the information that we have available and, specifically, the variables we measure.

Similar considerations can be given to other types of random variables. For
example, suppose we wish to model a binary random variable Y taking values coded
as 0 and 1. Sometimes it will be possible to link Y to an underlying continuous
latent variable and use similar arguments to that above. To illustrate, Y could be an
indicator of low birth weight and is a simple function of the true birth weight, U,
which is itself associated with many covariates. We may then model the probability
of low birth weight as a function of covariates x, via

px)=Pr(Y =1|2x) =Pr(U <wuy | x) =E[Y | ],
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where ug is the threshold value that determines whether a child is classified as low
birth weight or not. This development is taken further in Sects. 7.6.1 and 9.13.

The above gives one a way of thinking about where the random terms in models
arise from, namely as unmeasured covariates. In terms of distributional assumptions,
some distributions arise naturally as a consequence of simple physical models. For
example, suppose we are interested in modeling the number of events occurring over
time. The process we now describe has been found empirically to model a number of
phenomena, for example the arrival of calls at a telephone exchange or the emission
of particles from a radioactive source. Let the rate of occurrences be denoted by
p > 0and N(t,t+ At) be the number of events in the interval (¢,t + At]. Suppose
that, informally speaking, At tends to zero from above and that

Pr[N(t,t+ At) = 0] = 1 — pAt + o(At),
1] = pAt + o(At),

so that Pr[N(¢,t + At) > 1] = o(At). The notation o(At) represents a function
that tends to zero more rapidly than At. Finally, suppose that N (¢, ¢t + At) is
independent of occurrences in (0,¢]. Then we have a Poisson process, and the
number of events occurring in the fixed interval (¢,¢ + h| is a Poisson random
variable with mean ph.

Other distributions are “artificial.” For example, a number of distributions arise
as functions of normal random variables (such as Student’s t, Snedecor’s F, and
chi-squared random variables) or may be dreamt up for flexible and convenient
modeling (as is the case for the so-called Pearson family of distributions).

Models can arise from idealized views of the phenomenon under study, but then
we might ask: “If we could measure absolutely everything we wanted to, would
there be any randomness left?” In all but the simplest experiments, this question is
probably not that practically interesting, but the central idea of quantum mechanics
tells us that probability is still needed, because some experimental outcomes are
fundamentally unpredictable (e.g., Feynman 1951).

1.5 Bayesian and Frequentist Inference

What distinguishes the field of statistics from the use of statistical techniques in a
particular discipline is a principled approach to inference in the face of uncertainty.
There are two dominant approaches to inference, which we label as Bayesian and
frequentist, and each produces inferential procedures that are optimal with respect
to different criteria.

In Chaps.2 and 3, we describe, respectively, the frequentist and Bayesian
approaches to statistical inference. Central to the philosophy of each approach
is the interpretation of probability that is taken. In the frequentist approach, as
the name suggests, probabilities are viewed as limiting frequencies under infinite
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hypothetical replications of the situation under consideration. Inferential recipes,
such as specific estimators, are assessed with respect to their performance under
repeated sampling of the data, with model parameters viewed as fixed, albeit
unknown, constants. By contrast, in the Bayesian approach that is described in
this book, probabilities are viewed as subjective and are interpreted conditional on
the available information. As a consequence, assigned probabilities concerning the
same event may differ between individuals. In this sense probabilities do not exist
as they vary as a function of the available information. All unknown parameters in
a model are treated as random variables, and inference is based upon the (posterior)
probability distribution of these parameters, given the data and other available
information. Practically speaking, the interpretation of probability is less relevant
than the number of assumptions that are required for valid inference (which has
implications for the robustness of analysis) and the breadth of inferential questions
that can be answered using a particular approach.

It should be stressed that many issues arising in the analysis of regression
data (such as the nature of the sampling scheme, parameter interpretation, and
misspecification of the mean model) are independent of philosophy and in practice
are usually of far greater importance than the inferential approach taken to analysis.

Each of the frequentist and Bayesian approaches have their merits and can often
be used in tandem, an approach we follow and advocate throughout this book. If
substantive conclusions differ between different approaches, then discovering the
reasons for the discrepancies can be informative as it may reveal that a particular
analysis is leaning on inappropriate assumptions or that relevant information is
being ignored by one of the approaches. Those situations in which one of the
approaches is more or less suitable will also be distinguished throughout this book,
with a short summary being given in the next section.

1.6 The Executive Summary

I would like to briefly summarize my view on when to take Bayesian or frequentist
approaches to estimation. As the examples throughout this book show, on many
occasions, if one is careful in execution, both approaches to analysis will yield
essentially equivalent inference. For small samples, the Bayesian approach with
thoughtfully specified priors is often the only way to go because of the difficulty
in obtaining well-calibrated frequentist intervals. An example of such a sparse
data occasion is given at the end of Sect.6.16. For medium to large samples,
unless there is strong prior information that one wishes to incorporate, a robust
frequentist approach using sandwich estimation (or quasi-likelihood if one has faith
in the variance model) is very appealing since consistency is guaranteed under
relatively mild conditions. For highly complex models (e.g., with many random
effects), a Bayesian approach is often the most convenient way to formulate the
model, and computation under the Bayesian approach is the most straightforward.
The modeling of spatial dependence in Sect.9.7 provides one such example in
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which the Bayesian approach is the simplest to implement. The caveat to complex
modeling is that in most cases consistency of inference is only available if all
stages of the model are correctly specified. Consequently, if one really cares about
interval estimates, then extensive model checking will be necessary. If formal
inference is not required but rather one is in an exploratory phase, then there is far
greater freedom to experiment with the approaches that one is most familiar with,
including nonparametric regression. In this setting, using procedures that are less
well-developed statistically is less dangerous.

In contrast to estimation, hypothesis testing using frequentist and Bayesian
methods can often produce starkly differing results, even in large samples. As
discussed in Chap. 4, I think that hypothesis testing is a very difficult endeavor, and
tests applied using the frequentist approach, as currently practiced (with « levels
being fixed regardless of sample size), can be very difficult to interpret. In general,
I prefer estimation to hypothesis testing.

As a final comment, as noted, in many instances carefully conducted frequentist
and Bayesian approaches will lead to similar substantive conclusions; hence, the
choice between these approaches can often be based on that which is most natural
(i.e., based on training and experience) to the analyst. Consequently, throughout this
book, methods are discussed in terms of their advantages and shortcomings, but a
strong recommendation of one method over another is usually not given as there is
often no reason for stating a preference.

1.7 Bibliographic Notes

Rosenbaum (2002) provides an in-depth discussion of the analysis of data from
observational studies, and an in-depth treatment of causality is the subject of
Pearl (2009). A classic text on survey sampling is Cochran (1977) with Korn
and Graubard (1999) and Lumley (2010) providing more recent presentations.
Regression from a survey sampling viewpoint is discussed in the edited volume of
Chambers and Skinner (2003). Errors-in-variables is discussed in detail by Carroll
et al. (2006) and missing data by Little and Rubin (2002). Johnson et al. (1994,
1995, 1997); Kotz et al. (2000), and Johnson et al. (2005) provide a thorough
discussion of the genesis of univariate and multivariate discrete and continuous
probability distributions and, in particular, their relationships to naturally occurring
phenomena. Barnett (2009) provides a discussion of the mechanics and relative
merits of Bayesian and frequentist approaches to inference; see also Cox (20006).
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Chapter 2
Frequentist Inference

2.1 Introduction

Inference from data can take many forms, but primary inferential aims will often be
point estimation, to provide a “best guess” of an unknown parameter, and interval
estimation, to produce ranges for unknown parameters that are supported by the
data. Under the frequentist approach, parameters and hypotheses are viewed as
unknown but fixed (nonrandom) quantities, and consequently there is no possibility
of making probability statements about these unknowns.! As the name suggests,
the frequentist approach is characterized by a frequency view of probability, and the
behavior of inferential procedures is evaluated under hypothetical repeated sampling
of the data.

Frequentist procedures are not typically universally applicable to all models/
sample sizes and often require “fixes.” For example, a number of variants of
likelihood have been developed for use in particular situations (Sect.2.4.2). In
contrast, the Bayesian approach, described in Chap. 3, is completely prescriptive,
though there are significant practical hurdles to overcome (such as likelihood
and prior specification) in pursuing that prescription. In addition, in situations in
which frequentist procedures encounter difficulties, Bayesian approaches typically
require very careful prior specification to avoid posterior distributions that exhibit
anomalous behavior.

The outline of this chapter is as follows. We begin our discussion in Sect.2.2
with an overview of criteria by which frequentist procedures may be evaluated. In
Sect. 2.3 we present a general development of estimating functions which provide
a unifying framework for defining and establishing the properties of commonly
used frequentist procedures. Two important classes of estimating functions are then

' Random effects models provide one example in which parameters are viewed as random from a
frequentist perspective and are regarded as arising from a population of such effects. Frequentist
inference for such models is described in Part III of this book.

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series 27
in Statistics, DOI 10.1007/978-1-4419-0925-1_2,
© Springer Science+Business Media New York 2013
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Fig. 2.1 Exploratory plot of
log SMR for lung cancer
versus average residential
radon, with a local smoother
superimposed, for 85 counties
in Minnesota

Average Radon (pCilliter)

introduced: those arising from the specification of a likelihood function, in Sect. 2.4,
and those from a quasi-likelihood function, in Sect.2.5. A recurring theme is the
assessment of frequentist procedures under model misspecification. In Sect. 2.6
we discuss the sandwich estimation technique which provides estimation of the
standard error of estimators in more general circumstances than were assumed in
deriving the estimator. Section 2.7 introduces the bootstrap, which is a simulation-
based method for making inference with reduced assumptions. Section 2.8 discusses
the choice of an estimating function. Hypothesis testing is considered in Sect.2.9,
and the chapter ends with concluding remarks in Sect.2.10. To provide some
numerical relief to the mostly methodological development of this chapter, we
provide one running example.

Example: Lung Cancer and Radon

We consider the data introduced in Sect. 1.3.3 and examine the association between
counts of lung cancer incidence, Y;, and the average residential radon, x;, in county
twithi =1, ..., 85, indexing the counties within which radon measurements were
available (in two counties no radon data were reported). We examine the association
using the loglinear model

log E[SMR; | z;] = o + B1;. (2.1)

where SMR; = Y;/E; (with F; the expected count) is the standardized mortality
ratio in county 7 (Sect.1.3.3) and is a summary measure that controls for the
differing age and gender populations across counties. We take as our parameter of
interest exp(1) which is the multiplicative change in risk associated with a 1 pCi/l
increase in radon. In the epidemiological literature this parameter is referred to as
the relative risk; here it corresponds to the risk ratio for two areas whose radon
exposures x differ by one unit.

To first order, E[log SMR | 2] ~ log E[SMR | z], and so if (2.1) is an appropriate
model, a plot of log SMR; versus x; should display an approximately linear trend;
Fig. 2.1 shows this plot with a local smoother superimposed and indicates a negative
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association. This example is illustrative, and so distracting issues, such as the effect
of additional covariates (including smoking, the major confounder) and residual
spatial dependence in the counts, will be conveniently ignored.

2.2 Frequentist Criteria

In this section we describe frequentist criteria by which competing estimators may
be compared and discuss conditions under which optimal estimators exist under
these criteria. Under the frequentist approach to inference, the fundamental outlook
is that statistical procedures are assessed with respect to their performance under
hypothetical, repeated sampling of the data, under fixed values of the parameters.
In this section, for simplicity, we consider the estimation of a univariate parameter
fandlet Y = [Y7,...,Y,]" represent a vector of n random variables and y =
[y1,--.,yn]" arealization. Often inference will be summarized via a 100(1 — )%
confidence interval for 6, which is an interval [ a(Y),b(Y") | such that

Pr{fc[a(Y),b(Y)]}=1—a, 2.2)

for all #, where the probability statement is with respect to the distribution of Y
and 1 — « is known as the coverage probability. For interpretation it is crucial
to recognize that the random quantities in (2.2) are the endpoints of the interval
[ a(Y),b(Y) ], so that we are not assigning a probability statement to 6. The
correct interpretation of a confidence interval is that, under hypothetical repeated
sampling, a proportion 1 — « of the intervals created will contain the true value 6.
We emphasize that we cannot say that the specific interval | a(y), b(y) ] contains 6
with probability 1 — a.

Ideally, we would like to determine the shortest possible confidence interval for
a given a. The search for such intervals is closely linked to the determination of
optimal point estimators of 6. The point estimator 6(Y") of 0 represents a random

variable, with an associated sampling distribution, while the point estimate g(y) isa
specific value. In any given situation a host of potential estimators are available, and
we require criteria by which to judge competing choices. Heuristically speaking, a
good estimator will have a sampling distribution that is concentrated “close” to the
true value ¢, where “close” depends on the distance measure that we apply to the
distribution of 8(Y").

One natural measure of closeness is the mean squared error (MSE) of §(Y)
which arises from a quadratic loss function for estimation and is defined as

MSE {é(Y)} = Eyy {(é(y) - 9) 1

~ ~

= vary|g [H(Y)} + bias {G(Y)}2
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where the bias of the estimator is
bias [é(Y)} = Eyjo [é(Y)} —.

This notation stresses that all expectations are with respect to the sampling
distribution of the estimator, given the true value of the parameter; this is a crucial
aspect but the notation is cumbersome and so will be suppressed. Finding estimators
with minimum MSE for all values of 6 is not possible. For example, #(Y') = 3 has
zero MSE for § = 3 (and so is optimal for this #!) but is, in general, a disastrous
estimator.

An elegant theory, which is briefly summarized in Appendix G, has been
developed to characterize uniformly minimum-variance unbiased estimators
(UMVUESs). The theory depends first on writing down a full probability model
for the data, p(y | #). We assume conditional independence so that p(y | §) =
IT;-, p(y; | 6). The Cramér-Rao lower bound for any unbiased estimator ¢ ofa
scalar function of interest ¢ = ¢(6) is

[¢'(0)]”

var(g) > — 1, 2.3)
E [55]

where [() = Y. logp(y; | 0) is the log of the joint distribution of the data,
viewed as a function of 6. If T'(Y') is a sufficient statistic of dimension 1, then, under
suitable regularity conditions, there is a unique function ¢(#) for which a UMVUE
exists and its variance attains the Cramér—Rao lower bound. Further, a UMVUE only
exists when the data are independently sampled from a one-parameter exponential
family. Specifically, suppose that p(y; | 0) is of one-parameter exponential family
form, so that its distribution may be written, for suitably defined functions, as

Py | ) = exp[0T(y) — b(6) + c(y)] - (2.4)

In this situation, there is a unique function of 6 for which a UMVUE exists.
Unfortunately, this theory only covers a narrow range of circumstances. There are
methods available for constructing estimators with the minimal attainable variance
in additional situations but even this wider class of models does not come close to
covering the range of models that we would like to consider for practical application.
UMVUEs are also not always sensible; see Exercise 2.2.

As discussed in Sect. 1.2, model formulation should begin with a model that we
would like to fit, before proceeding to examine its mathematical properties. As we
will see, exponential family models can provide robust inference, in the sense of
performing well even if certain aspects of the assumed model are wrong, but to only
consider these models is unnecessarily restrictive.

We now discuss how estimators may be compared in general circumstances
asymptotically, that is, as n — oo. There are two hypothetical situations that are
being considered here. The first is the repeated sampling aspect for fixed n, and the
second is allowing n — oo. The asymptotic properties of frequentist procedures
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may be used in two respects. The first is to justify particular procedures, and the
second is to carry out inference, for example, to construct confidence intervals. We
might question the relevance of asymptotic criteria, since in any practical situation n
is finite, and an inconsistent or asymptotically inefficient estimator may have better
finite sample properties (a reduced MSE for instance) than a consistent alternative.
On the other hand, for many commonly used models, asymptotic inference is often
accurate for relatively small sample sizes (as we will see in later chapters).

While unbiasedness of estimators, per se, is of debatable value, a fundamentally
important frequentist criterion for assessing an estimator is consistency. Weak
consistency states that as n — oo, 8, —, 6 (Appendix F), that is,

Pr(|§n—9|>e)—>0 as n — oo forany e > 0.

Intuitively, the distribution of a consistent estimator concentrates more and more
around the true value as the sample size increases. In all but pathological cases,
a consistent estimator is asymptotically unbiased, though the contrary is not true.
For example, consider the model with E[Y; | 6] = 6,i =1, ..., n, and the estimator
9 = Y1, this estimator is unbiased but inconsistent.

When assessing an estimator, once consistency has been established, asymptotic
normality of the estimator is then typically sought, and interest focuses on the
variance of the estimator. In particular, the asymptotic relative efficiency, or more
simply the efficiency, allows an estimator ¢, to be compared to the estimator with
the smallest variance 6,, via

var(6,)

=

var(6,,)
The 100(1 — )% asymptotic confidence interval associated with an estimator é\n is

~

O % 2102 x \/var(6y,) (2.5)

where Z ~ N(0,1) and Pr(Z < z1_4/2) = 1 —a/2. If 8, is asymptotically
efficient, then interval (2.5) is (asymptotically) the shortest available. Maximum
likelihood estimation (Sect. 2.4) provides a method for finding efficient estimators.

A difficulty with the interpretation of frequentist inferential summaries is that all
probability statements refer to hypothetical data replications and to the estimator,
and not to the estimate from a specific realization of data. This can lead to intervals
with poor properties. Exercise 2.1 describes an instance in which the confidence
coverage is correct on average, but for some realizations of the data, the interval has
100% coverage.

We summarize this section and provide a road map to the remainder of the
chapter. A fundamental, desirable criterion is to produce confidence intervals that
are the shortest possible. Only in stylized situations may estimators with minimum
variance be found in non-asymptotic situations. Asymptotically, the picture is rosier,
however. In the next section we describe a general class of estimators and give
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results concerning consistency and asymptotic normality. Subsequently, we show
that maximum likelihood estimators attain the smallest asymptotic variance (subject
to regularity conditions) if the model is correctly specified. We then consider quasi-
likelihood, sandwich estimation, and the bootstrap, each of which is designed to
reduce the reliance of inference on a full probability model specification.

2.3 Estimating Functions

In the last section we saw that optimal estimators can be found when a full
probability model is assumed. The need to specify a full probability model for
the data is undesirable. While a practical context may suggest a mean model and
perhaps an appropriate mean—variance relationship, it is rare to have faith in a choice
for the distribution of the data. In this section we give a framework within which the
asymptotic properties of a broad range of estimation recipes may be evaluated.

LetY = [Y3,...,Y,] represent n observations from a distribution indexed by a
p-dimensional parameter 8, with cov(Y;,Y; | ) = 0, ¢ # j. In the following we
will not rigorously derive asymptotic results and only informally discuss regularity
conditions under which the results hold. The models discussed subsequently will,
unless otherwise stated, obey the necessary conditions.

In the following, for ease of presentation, we assume that Y;, 7 = 1,...,n, are
independent and identically distributed (iid).> An estimating function is a function,

n

1
Gn(0) =~ G(6.Y), (2.6)

i=1
of the same dimension as @ for which

E[G,,(0)] =0 2.7)

for all 8. The estimating function G,,(0) is a random variable because it is a function

of Y. The corresponding estimating equation that defines the estimator én has
the form

G.(6,) =

S|

> G,.v:) =o. 2.8)
=1

For inference the asymptotic properties of the estimating function are derived
(which is why we index the estimating function by 7n), and these are transferred
to the resultant estimator. The estimator §n that solves (2.8) will often be unavailable
in closed form and so deriving its distribution from that of the estimating function

2In a regression setting we have independently distributed observations only, because the distribu-
tion of the outcome changes as a function of covariates.
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is an ingenious step, because the estimating function may be constructed to be a
simple (e.g., linear) function of the data. The estimating function defined in (2.6) is a
sum of random variables, which provides the opportunity to evaluate its asymptotic
properties via a central limit theorem since the first two moments will often be
straightforward to calculate. The art of constructing estimating functions is to make
them dependent on distribution-free quantities, for example, the first two moments
of the data; robustness of inference to misspecification of higher moments often
follows.

We now state an important result that will be used repeatedly in the context of
frequentist inference.

Result 2.1. Suppose that én is a solution to the estimating equation

Gn(0) =

S|

S o) =o,
=1

that is, Gn(gn) = 0. Then §n —p 0 (consistency) and
Vi (8, —8) =4 N, [0,A"'B(A")™!] (2.9)
(asymptotic normality), where

0
o7

A=A6)=E [ G(8, Y)]

and

B = B(0) =E[G(0,Y)G(0,Y)"] = var[G(8,Y)] .

Outline Derivation

We refer the interested reader to van der Vaart (1998, Sect.5.2) for a proof of
consistency and present an outline derivation of asymptotic normality, based on
van der Vaart (1998, Sect. 5.3). For simplicity we assume that 6§ is univariate.

We expand G, (0) in a Taylor series around the true value 6:

. ~ dG 1~ d*G
=Gn(0,) =Gn(0) + (0, —0) —= —(0,, — 0)? L 2.1
0= GalBu) = Gn(0) + (B = 0) 2| +30n =0 Tt 210)
where 4 is a point between é\n and 6. We rewrite (2.10) as
Vn (0, —0) = —vn Gn(0) 2.11)

dG., 1/ d2G,
do le + 5(‘9” - 9) doz
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and determine the asymptotic distribution of the right-hand side, beginning with the
distribution of G,,(6). To apply a central limit theorem, note that E[G,,(6)] = 0 and

n x var[Gy,(0)] = var[G(0,Y)] =E[G(0,Y)?] =B

(which we assume is finite). Consequently, by the central limit theorem
(Appendix G),

Vi Gn(8) —q N[0, B(0)]. (2.12)

We now transfer the properties of the estimating function to the estimator @\n via
(2.11). The first term of the denominator of (2.11),

dGp,| 1<~ d
70 9—5; 250 Y)

is an average and so converges to its expectation, provided this expectation exists,
by the weak law of large numbers (Appendix G)

3

dGgy,
do

—, EL;IQG(Q Y)] A(0).

Due to consistency, @\n —p 0, and the second term in the denominator of (2.11)
includes the average

d>G,,
462 - Z d6’2
which, by the law of large numbers, tends to its expectation, that is,

£2G, P2
0,y
ag |, " E {dezG( )}

provided this average exists. Hence, the second term in the denominator of (2.11)
converges in probability to zero and so, by Slutsky’s theorem (Appendix G)

NXCS —0)—>dN< 52>

as required, where we have suppressed the dependence of A(#) and B(6) on 6.
O

In practice, A = A(0) and B = B(8) are replaced by A, (6,,) and B,,(6,,),
respectively, with asymptotic normality continuing to hold due to Slutsky’s theorem.

In the sections that follow we describe a number of approaches for constructing
and using estimating functions. These approaches differ in the number of assump-
tions that are required for both specifying the estimating function and making
inference. At one extreme, in a fully model-based approach, a full probability
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distribution is specified for the data and is used to both specify the estimating
function and to evaluate the expectations required in the calculation of A and B.
At the other extreme, minimal assumptions are made on the datg to construct the
estimating function, and the expectations required to evaluate var(6,,) are calculated
empirically from the observed data (see Sect.2.6).

In the independent but not identically distributed case

(A B, (A1) "] (8, — 0) =4 N,(0,1,), (2.13)
where
A, =E [%Gn(é})]

B, = E[Gn(0)G,(0)"] = var[G..(0)].

The previous independent and identically distributed situation is a special case, with
A, =nAand B,, = nB, in which case (2.13) simplifies to (2.9).

The sandwich form of the variance of 6,, in (2.9) and (2.13)—the covariance of
the estimating function, flanked by the expectation of the inverse of the Jacobian
matrix of the transformation from the estimating function to the parameter—is one
that will appear repeatedly.

Estimators derived from an estimating function are invariant in the sense that
if we are interested in a function, ¢ = ¢(0), then the estimator is ¢,, = ¢(6,,).
The delta method (Appendix G) allows the transfer of inference from the parameters
of the model to quantities of interest. Specifically, suppose

Vn (8, —8) =4 N,[0,V(8)].
Then, by the delta method,
Vit [9(8,) = 9(0)] »a N[0,9'(0)V (8)'(8)].

where ¢’(0) is the 1 X p vector of derivatives of g(-) with respect to elements of 6.

For example, for p = 2
) e ()
S ) Ve (| )
9) ((992 o 692 0

where Vjj, denotes the (7, k)th element of V, j,k = 1,2. Again in practice, §n
replaces 0 in var [g(0)]. The accuracy of the asymptotic distribution depends on the
parameterization adopted. A rule of thumb is to obtain the asymptotic distribution
for a reparameterized parameter defined on the real line; one may then transform
back to the parameter of interest, to construct confidence intervals, for example.

2
0
4

_ 99
varlg()] = Vi 5 L

00,
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The implementation of a frequentist approach usually requires a maximization or
root-finding algorithm, but most statistical software packages now contain reliable
routines for such endeavors in the majority of situations encountered in practice;
hence, we will rarely discuss computational details (in contrast to the Bayesian
approach for which computation is typically more challenging).

2.4 Likelihood

For reasons that will become evident, likelihood provides a popular approach to
statistical inference and our coverage reflects this. Let p(y | @) be a full probability
model for the observed data given a p dimensional vector of parameters, 6.
The probability model for the full data is based upon the context and all relevant
accumulated knowledge. The level of belief in this model will clearly be context
specific, and in many situations, there will be insufficient information available
to confidently specify all components of the model. Depending on the confidence
in the likelihood, which in turn depends on the sample size (since large n allows
more reliable examination of the assumptions of the model), the likelihood may be
effectively viewed as approximately “correct,” in which case inference proceeds as
if the true model were known. Alternatively the likelihood may be seen as an initial
working model from which an estimating function is derived; the properties of the
subsequent estimator may then be determined under a more general model.

Definition. Viewing p(y | 0) as a function of 8 gives the likelihood function,
denoted L ().

A key point is that L(0) is nor a probability distribution in 8, hence the name
likelihood.?

2.4.1 Maximum Likelihood Estimation

The value of @ that maximizes L(0) and hence gives the highest probability

(density) to the observed data, denoted §, is known as the maximum likelihood
estimator (MLE).

In Part IT of this book, we consider models that are appropriate when the data are
conditionally independent given 6 so that

p(y|6) = Hp(yz- 1 9).

3We use the label “likelihood” in this section, but strictly speaking we are considering frequentist
likelihood, since we will evaluate the frequentist properties of an estimator derived from the likeli-
hood. This contrasts with a pure likelihood view, as described in Royall (1997), in which properties
are derived from the likelihood function alone, without resorting to frequentist arguments.
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For the remainder of this chapter, we assume such conditional independence holds.
For both computation and analysis, it is convenient to consider the log-likelihood
function

1(0) =log L(6) =} logp(Yi | 6)

and the score function

_ole)  [oue) ol16)]"
5) = 00 _[891 aep}

= [Sl (0)7 R S;D(o)]Tv

which is the p x 1 vector of derivatives of the log-likelihood. As we now illustrate,
the score satisfies the requirements of an estimating function.

Definition. Fisher’s expected information in a sample of size n is the p X p matrix

Lo - s [, 2 0] - 6 [250]

Result. Under suitable regularity conditions,

Els(60)] = | 75| =0, o

and

0S(0)
o007

Proof. For simplicity we give a prove for the situation in which 6 is univariate,

and the observations are independent and identically distributed. Under these
circumstances

1,(0) = —E [ ] —E[S(6)S(6)7]. (2.15)

1,(0) = nI,(6),
where
() = -E [ﬁ

15 logp(Y | 9)}

The expectation of the score is

E[S(6)] = EE [ 1ogp(v: 0)] =nB [ 10850 1)

and, under regularity conditions that allow the interchange of differentiation and
integration,
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E[%logp(ﬂ@)} Z/(dilogpyW) (y | 0)dy
/ 6

08y = 2 ot |61y =0,
(2.16)

which proves (2.14).
From (2.16),

0= % U <%10gp(y | 9)> p(y | 9)6@}
~ [ 45 (Groentv 10wty 1)) a
= [ (sz1080019)) st 1 0as+ [ (108019 (f5ot010))

/<j; logp(y | 9)) p(y | 9)dy+/ <d%10gp(y | 9))2 ply | O)dy

(5510800 e)ﬂ

which proves (2.15). ]

[jez log p(Y" | 9)]

Viewing the score as an estimating function,
n

G.(0) = 5(0) = - jelogpw 10).

shows that the MLE satisfies Gn(OAn) = 0. We have already seen that

E[G..(6)] = ~E[S(6)] = 0,

n

and to apply Result 2.1 of Sect. 2.3, we require

0

A(6) = EL%T

G0, Y)} [aj;m logp(Y | 9)]

and

B(0) =E[G(0,Y)G(,Y)"] =E [(8% log p(Y | e)) (a% log p(Y | e)ﬂ .
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Equation (2.15) shows that

and, from (2.12)
n~Y28(8) =4 N[0,1,(0)]. (2.17)
From Result 2.1, the asymptotic distribution of the MLE is therefore
Vi (6, —8) =4 N, [0,1,(6)7"]. (2.18)
For independent, but not necessarily identically distributed, random variables
Ylu ceey Yn,
I, (0) = —An(0) = B.(6),
and
1,(8)/%(6, — 0) —4 N,(0,1,), (2.19)

The information is scaling the statistic and should be growing with n for the
asymptotic distribution to be appropriate. Intuitively, the curvature of the log-
likelihood, as measured by the second derivative, determines the variability of the
estimator; the greater the curvature, the smaller the variance of the estimator. The
distribution of 0,, is sometimes written as

6, —a N, [6,1,(6)7"],

but this is a little sloppy since the limiting distribution should be independent of n.
The variance of the score-based estimating function has the property that A = A"
because the matrix of second derivatives is symmetric, that is,

0% o
90,00, 00,00,

forj,k=1,...,p.

If there is a unique maximum, then the MLE is consistent and asymptotically
normal. The Cramér-Rao bound was given in (2.3). In the present terminology, for
any unbiased estimator, 8, the bound is var(8) > I,,(6)~' so that the MLE is
asymptotically efficient. Asymptotic efficiency under correct model specification is
a primary motivation for the widespread use of MLE:s.

For inference via (2.18), we may also replace the expected information by the
observed information,

32
I =———>I(0).
" 00007 (©)
Asymptotically, their use is equivalent since I; —,, I,, as n — oo by the weak law
of large numbers (Appendix G).

*
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The regularity conditions required to derive the asymptotic distribution of the
MLE include identifiability so that each element of the parameter space 6 should
correspond to a different model p(y | @), otherwise there would be no unique
value of 6 to which 8 would converge. We require the interchange of differentiation
and integration, and so the range of the data cannot depend on an unknown
parameter. Additionally, the true parameter value must lie in the interior of the
parameter space, and the Taylor series expansion that was used to determine the
asymptotic distribution of @ requires a well-behaved derivative and so the amount
of information must increase with sample size. One situation in which one must be
wary is when the number of parameters increases with sample size—this number
cannot increase too quickly—see Exercise 2.6 for a model in which this condition
is violated.

In Sect.2.4.3, we examine the effects on inference based on the MLE of
model misspecification and, in Sects. 2.6 and 2.7, describe methods for determining
properties of the estimator that do not depend on correct specification of the full
probability model.

Example: Binomial Likelihood

For a single observation from a binomial distribution, Y | p ~ Binomial(n, p), the
log-likelihood is

l(p) =Y logp+ (n—Y)log(1l - p),

where we omit the term log ( > because it is constant with respect to p. The

score is

dl Y n-Y
Sp = —_—= — —
®) dp. p 1l-p

and setting S(p) = 0 gives p = Y/n. In addition

3

2l Y n-Y

T
and
d?l n
=[] -
dp*|  p(1—p)
We therefore see that the amount of information in the data for p is greater if p is
closer to 0 or 1. This is intuitively reasonable since the variance of Y is np(1 — p)

and so there is less variability in the data (and hence less uncertainty) if p is close to
0 or 1. The asymptotic distribution of the MLE is

Vn(—p) —a Np,p(1—p)],
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so that an asymptotic 95% confidence interval for p is

[ﬁ—l.%x JELZP) 5 06 ¢ @/p—(l_p)] .
n n

Unfortunately, the endpoints of this interval are not guaranteed to lie in (0,1).
To rectify this shortcoming, we may parameterize in terms of the logit of p,
6 = log[p/(1 — p)]. We could derive the asymptotic distribution using the delta
method, but instead we reparameterize the model to give

1(0) =Y0 —nlog[l + exp()],

and, proceeding as in the previous parameterization,

~ Y
9=10g( Y)
n —

and

to give

> exp(6)
vnl=6) 2 N (9’ i exp<o>12> |

An asymptotic 95% confidence interval for p follows from transforming the
endpoints of the interval for 6:

exp (5— 1.96 x Var(é\)/n) exp <§+ 1.96 x \/var(a)/n>
1+exp (5— 1.96 x \/Var(é\)/n) 1+exp (54— 1.96 x Var(é\)/n)

The endpoints will be contained in (0,1), though 0 is undefined if Y = 0 or Y = n.

Example: Lung Cancer and Radon

Consider the model
Y | B ~ina Poisson(y;),

with i = Eiexp(wl-,@), r;, = [in], 1 = 1,...,n, and ,3 = [ﬁo,ﬂl]T.
The probability distribution of y is

p(y | B) = exp (Z yilog i — Y 1 — Zlogyz-!>
i=1 i=1 i=1
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to give log-likelihood
1(B)=8">_ Y — > Eiexp(zif)
i=1 i=1

and 2 x 1 score vector (estimating function)

n

S(8) = 55 = Dol Vi~ Brexplaif)
=1

=a'[Y — p(B)], (2.20)
wherex = [2],..., 2}, Y = [V1,..., Y, and p = [p1, . . ., un]". The equation
S(B) = 0 does not, in general, have a closed-form solution, but, pathological

datasets aside, numerical solution is straightforward. Asymptotic inference is
based on

L(B.)2(Bn — B) —a Na(0, 1),
where the information matrix is

~

I,(B,) = var(S) = Zw?var(Yi)wi =z'Va,
i=1

with V the diagonal matrix with elements var(Y;) = E; exp(x;3),i = 1,...,n.
In this case, the expected and observed information coincide. In practice, the
information is estimated by replacing 3 by 3,,. An important observation is that
if the mean is correctly specified the score, (2.20) is a consistent estimator of zero,
and 3,, is a consistent estimator of 3. In particular, if the data do not conform to
var(Y;) = p;, we still have a consistent estimator, but the standard errors will be
incorrect. R

For the lung cancer data, we have n = 85, and the MLE is 3 = [0.17, —0.036]"
with

I(B)fl . 0.0272 —0.95 x 0.027 x 0.0054
~ [ —0.95 x 0.027 x 0.0054 0.00542

The estimated standard errors of BO and Bl are 0.027 and 0.0054, respectively,
and an asymptotic 95% confidence interval for 3 is [—0.047, —0.026]. Leaning
on asymptotic normality is appropriate with the large sample size here. A useful
inferential summary is an asymptotic 95% confidence interval for the area-level
relative risk associated with a one-unit increase in residential radon, which is

exp(—0.036 = 1.96 x 0.0054) = [0.954,0.975].

This interval suggests that the decrease in lung cancer incidence associated with a
one-unit increase in residential radon is between 2.5% and 4.6%, though we stress
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that this is an ecological (area-level) analysis, and we would not transfer inference
from the level of the area to the level of the individuals within the areas (as discussed
in Sect. 1.3.3).

Example: Weibull Model

The Weibull distribution is useful for the modeling of survival and reliability data
and is of the form

p(y | 0) = 0105 y" ' exp [~ (621)" ],

where y > 0, 8 = [61,605]" and 01,62 > 0. The mean and variance of the Weibull
distribution are

E[Y | 6] = I'(1/6, +1)/6s
var(Y | 8) = [1(2/6: + 1) — I(1/6, +1))/63,

where
F(a):/ 2z Lexp(—z)dx
0

is the gamma function. Therefore, the first two moments are not simple functions
of #; and 6. With independent and identically distributed observations Y;, i =
1,...,n, from a Weibull distribution the log-likelihood is

n

1(6) =nlogy +nbylogfy + (61 — 1) > log; — 05" > ¥,

i=1 i=1
with score equations

S1(0) = ol +nlog9 —|—ZlogY-—991iY91 log(62Y;)

1 20, 91 2 - i f 2Y;

which have no closed-form solution and are not a function of a sufficient statistic
of dimension less than n. Hence, consistency of 8,,, where S(6,,) = 0, cannot be
determined from consideration of the first moment (or even the first two moments)
of the data only, unlike the Poisson example. In particular, consistency under model
misspecification cannot easily be determined.
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2.4.2 Variants on Likelihood

Estimation via the likelihood, as defined by L(0) = p(y | 0), is not always univer-
sally applied. In some situations, such as when regularity conditions are violated,
alternative versions are required to provide procedures that produce estimators with
desirable properties. In other situations, alternative likelihoods provide estimators
with better small sample properties, perhaps because nuisance parameters are dealt
with more efficiently. Unfortunately, the construction of these likelihoods is not
prescriptive and can require a great deal of ingenuity. We describe conditional,
marginal, and profile likelihoods.

Conditional Likelihood

Suppose A represent parameters of interest, with ¢ being nuisance parameters.
Suppose the distribution for y can be factorized as

where t; and ¢, are statistics, that is, functions of y. Then inference for A may be
based on the conditional likelihood

Le(X) =p(t1 | t2,A). (2.22)

The conditional likelihood has similar properties to a regular likelihood. Conditional
likelihoods may be used in situations in which we wish to eliminate nuisance
parameters. The conditioning statistic, t2, is not ancillary (Appendix F), so that it
does depend on A, and so some information may be lost in the act of conditioning,
but the benefits of elimination are assumed to outweigh this loss. Conditional
likelihoods will be used in Sect.7.7 in the context of Fisher’s exact test and
individually matched case-control studies (in which the number of parameters
increases with sample size) and in Sects. 9.5 and 9.13.4 to eliminate random effects
in mixed effects models.

Marginal Likelihood

Let Sy, S, A be a minimal sufficient statistic where A is ancillary (Appendix F),
and suppose we have the factorization

p(y | )‘7¢) o8 p(817827a | )‘7¢)
= p(a)p(31 | aaA)p(SQ | Sluau)‘7¢))
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where A\ are parameters of interest and ¢ are the remaining (nuisance) parameters. In
contrast to conditional likelihood, marginal likelihoods are based on averaging over
parts of the data to obtain p(s; | a, \), though operationally marginal likelihoods
are often derived without the need for explicit averaging.

Inference for A may be based on the marginal likelihood

LX) =p(s1 ] a,\)

and is desirable if inference is simplified or if problems with standard likelihood
methods are to be avoided.

These advantages may outweigh the loss of efficiency in ignoring the term p(ss |
81, a, A, ¢). If there is no ancillary statistic, then the marginal likelihood is

Lin(A) =p(s1 | A).

The marginal likelihood has similar properties to a regular likelihood. We will make
use of marginal likelihoods for variance component estimation in mixed effects
models in Sect. 8.5.3.

Example: Normal Linear Model

Assume Y | B,0% ~ N, (zB,0°1,) where x is the n x (k + 1) design matrix
and dim(3) = k + 1. Suppose the parameter of interest is \ = o2, with remaining
parameters ¢ = 3. The MLE for o2 is

~2 1 ~ 1 3y _ RSS
= (y-2B)(y-2B) =~

with 8 = (x'z) '@'Y. It is well known that & has finite sample bias, because
the estimation of 3 is not taken into account. The minimal sufficient statistics are
s1 =82 =RSS/(n —k — 1) and sy = 3. We write the probability density for ¥ in
terms of s1 and so:

| 72.8) = (2n0%) 2 exp |-y - 2] (y - 20|

1 1 -~ ~

xo e | (n— k= 05 exp |52 (B - prate(B - p)
=p(s1 | 0®)p(s2 | B,0?)

where going between the first and second line is straightforward if we recognize that

(y—z8)'(y —28) = (y — 2B + B — x8)"(y — 28 + 23 — 23)
= (y—=2B)"(y—xB)+ (B-B)z'=(B-0), (223)



46 2 Frequentist Inference

with the cross term disappearing because of independence between ﬁ and the vector
of residuals y — 3. Consequently, the marginal likelihood is

Lm(0®) = p(s* | o%).

Since the data are normal

(n—k—1)s? 9 n—k—11

T =@ (TG )
and so

n—k—1)/2 (n—k—-1)/2—1
p(s? | 0?) = n—k—1\" )/ (s%) exp _(n—k—l)s2
202 T (—”*’2“*1) 202 ’
to give
(n—k—1)s

lyp =log Ly = —(n—k—1)1 — )
og (n )logo 552

and marginal likelihood estimator 02 = s2, the usual unbiased estimator.

Profile Likelihood

Profile likelihood provides a method of examining the behavior of a subset of the
parameters. If & = [\, @], where X\ again represents a vector of parameters of
interest and ¢ the remaining parameters, then the profile likelihood L,(A) for A
is defined as

L,y(A) = max L(X, ¢). (2.24)

¢

If X denotes the maximum of L,(A) and 6 = [X, qg} is the MLE, then A = A.

Profile likelihoods will be encountered in Sect. 8.5, in the context of the estimation
of variance components in linear mixed effects models.

2.4.3 Model Misspecification

In the following, we begin by assuming independent observations. We have seen
that if the assumed model is correct then the MLE, 6, has asymptotic distribution

Vi (8, —8) —q N, [0,1,(6)7"].
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In this section we examine the effects of model misspecification. We first determine
exactly what quantity the MLE is estimating under misspecification and then
examine the asymptotic distribution of the MLE. Let p(y | 0) and p;(y) denote
the assumed and true densities, respectively.

The average of the log-likelihood is such that

1 n
~ > 1ogp(Yi | 0) —a.. Exllogp(Y | 0)), (2.25)

=1

by the strong law of large numbers. Hence, asymptotically the MLE maximizes the
expectation of the assumed log-likelihood under the true model and 8,, —, 6,. We
now investigate what 8, represents when we have assumed an incorrect model. We
write

E:llogp(Y | 8)] = E; [logp:(Y) — logp:(Y) + log p(Y" | 9)]

= Eiflog p:(Y)] — KL(pr, p), (2.26)
where
KL(f,9) = /log %f(y) dy >0,

is the Kullback—Leibler measure of the “distance” between the densities f and g
(the measure is not symmetric so is not a conventional distance measure). The first
term of (2.26) does not depend on 0, and so the MLE minimizes KL(p;, p), and is
therefore that value of @ which makes the assumed model closest, in a Kullback—
Leibler sense, to the true model.

We let S,,(0) denote the score under the assumed model and state the following
result, along with a heuristic derivation.

Result. Suppose §n is a solution to the estimating equation S,,(#) = O, that
is, S5,(0,,) = 0. Then

Vi (8, —0:) —q N, [0,J LK (J") Y] (2.27)
where
62
J= J(GT) =E; [W Ing(Y | 0T):| )
and

K = K(6:) =E; [(%logp(Y | 0T)> ((%bgp(Y | 0T))T] :
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Outline Derivation

The derivation closely follows that of Result 2.1, and for simplicity we again assume
6 is one-dimensional. We first obtain the expectation and variance of

1 1<
=—Z—10gpyz 0),
n =1

in order to derive the asymptotic distribution of S,,(#). Subsequently, we obtain the
distribution of 6,,.

Recall that 6, is that value which minimizes the Kullback—Leibler distance,
that is,

0= joKL(@)LT = [% / log p](g;%)my)dy}

= | [ s oenmn — [ Siozpty |0 (an]

0-— [/ (d%logp(y | 9)) pT(y)dy}

and so E;[S(0;)] = 0 (and we have assumed that we can interchange the order of
differentiation and integration).
For the second moment,

- Z < log p(y; | 9)>2 —p Er l<%1ogp(Y | 9&)1 =K,

which we assume exists. Hence, by the central limit theorem

ot

o1

)

or

%S(@T) —a N(0, K).

Expanding S,,(#) in a Taylor series around 6;:

1 ~ 1 ~ 1 dS,
__non—_neT on_e'r__
0 nS( ) nS( )+ )n do

ot
where 0 is between @\n and 6, and

2

1« d
==Y =1 6
- ;:1 g2 losp(y 1 6)

—p E [d92 logp(Y | 6 )} J.

or
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Following the outline derivation of Result 2.1 gives

_ K
vn (0, —0:) —4 N <0, ﬁ) )

as required.

Example: Exponential Assumed Model, Gamma True Model

Suppose that the assumed model is exponential with mean 6 but that the true model
is gamma Ga(c, ). Minimizing the Kullback-Leibler distance with respect to 6
corresponds to maximizing (2.25), that is

Y1 _, ., a8
ET[—logH—g} = log 0

so that 6, = «a//f is the quantity that is being estimated by the MLE. Hence, the
closest exponential distribution to the gamma distribution, in a Kullback—Leibler
sense, is the one that possesses the same mean.

2.5 Quasi-likelihood

2.5.1 Maximum Quasi-likelihood Estimation

In this section we describe an estimating function that is based upon the mean and
variance of the data only. Specifically, we assume that the first two moments are of
the form

E[Y | 8] = n(B)
var(Y | B) = aV [u(B8)]

where u(B3) = [p1(8),...,un(B)]" represents the regression function, V' is a
diagonal matrix (so the observations are assumed uncorrelated), with

var(Yi | B) = aV [i(B)],

and o > 0 is a scalar that does not depend upon 3. We assume 3 = [y, . .., S|
so that the dimension of 3 is k£ + 1. The aim is to obtain the asymptotic properties
of an estimator of 3 based on these first two moments only. The specification of the
mean function in a parametric regression setting is unavoidable, and efficiency will
clearly depend on the form of the variance model.
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To motivate an estimating function, consider the sum of squares
Y - @)V Y - p)/a, (2.28)

where u = p(8) and V- = V(3). To minimize this sum of squares, there are two
ways to proceed. Perhaps the more obvious route is to acknowledge that both g and
V are functions of 3 and differentiate with respect to 3 to give

ov—1
—2D'V Y —p)/a+ (Y —p)' o ¥ —w/e, (2.29)
where D is the n X p matrix of derivatives with elements O, /08,1 =1,...,n,j =

1, ..., p. Unfortunately, (2.29) is not ideal as an estimating function because it does
not necessarily have expectation zero when we only assume E[Y | 3] = u, because
of the presence of the second term. If the expectation of the estimating function is
not zero, then an inconsistent estimator of 3 results.

Alternatively, we may temporarily forget that V' is a function of 3 when we
differentiate (2.28) and solve the estimating equation

D@V (@) [Y —uB)] Ja=o.
As shorthand we write this estimating function as

UB) =DV (Y —p)/a (2.30)

This estimating function is linear in the data and so its properties are straightforward
to evaluate. In particular,

1. E[U(B)] = 0, assuming E[Y | 8] = u(B).
2. var[U(B)] = D"V ~'D/a, assuming var(Y | 3) = V.

3. —E [g—g} =D'V~'D/a = var[U(B)], assuming E[Y | 8] = u(B).

The similarity of these properties with those of the score function (Sect.2.4.1) is
apparent and has led to (2.30) being referred to as a quasi-score function. Let 3,
represent the root of (2.30), that is, U(3,,) = 0. We can apply Result 2.1 directly
to obtain the asymptotic distribution of the maximum quasi-likelihood estimator
(MQLE) as

(D'V'D)*(B, — B) —a Nit1(0, algsa),
where we have assumed that « is known. Using (B.4) in Appendix B
E[(Y — )’V ()Y —p)]/a=n,

and so if ;1 were known, an unbiased estimator of « would be

an = (Y =)'V () (Y —p)/n.
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A degree of freedom corrected (but not in general unbiased) estimate is given by the
Pearson statistic divided by its degrees of freedom:

n

_ 1 Z(Yi—ﬁi)Q
n — PN y 2.31
@ n—k—1 V() (2.31)

=1

-~

where [1; = [1;(3). This estimator of the scale parameter is consistent so long as
the assumed variance model is correct. The asymptotic distribution that is used in
practice is therefore

(D'V'D/@,)"?(Bn — B) —a Nps1(0,1511).

The inclusion of an estimate for « is justified by applying Slutsky’s theorem
(Appendix G) to @, x U(B,). As usual in such asymptotic calculations, the
uncertainty in @, is not reflected in the variance for Bn This development reveals
a mixing of inferential approaches with 3,, a MQLE and &, a method of moments
estimator. A justification for the latter estimator is that it is likely to be consistent
in a wider range of circumstances than a likelihood-based estimator. A crucial
observation is that if the mean function is correctly specified, the estimator 3,
is consistent also. Asymptotically appropriate standard errors result if the mean—
variance relationship is correctly specified. McCullagh (1983) and Godambe and
Heyde (1987) discuss the close links between consistency, the quasi-score function
(2.30), and membership of the exponential family; see also Chap. 6.

As an aside, in the above, the mean model does not need to be “correct” since
we are simply estimating a specified form of association, and estimation will be
performed regardless of whether this model is appropriate. Of course, the usefulness
of inference does depend on an appropriate mean model.

As a function of u, we have the quasi-score

O (2.32)

~—

and integration of this quantity gives

_ Myt
Z(Naa)—/y mdt,

which, if it exists, behaves like a log-likelihood. As an example, for the model
E[Y] = pand var(Y) = au

o
y—t 1

l(u,a):/ ——dt = —[ylogp — p+d,
gy ot «

where ¢ = —ylogy — y and y log x — p is the log-likelihood of a Poisson random
variable. Table 2.1 lists some distributions that correspond to particular choices of
variance function.
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Table 2.1 Variance functions and quasi log-likelihoods

Variance V() Quasi log likelihood Distribution

1 T NG )

1 L (ylogp — p) Poisson (1)

I L ( 4 10gu) Ga(1/a, p/e)

np(l — p) é [y log < ) + nlog(1 ,u)} Binomial(n, )

4 p2/b L [y log <b+u) +blog (%ﬂ)} NegBin(u, b), b known
2 (1 — )2 1 [(2y —1)log (H) - % - L;ﬂ] No distribution

In all cases E[Y] = u. The parameterizations of the distributional forms are as in

Appendix D. For the Poisson, binomial, and negative binomial distributions, these are
the forms that the quasi-score corresponds to when o = 1

The word “quasi” refers to the fact that the score may or not correspond to a
probability function. For example, in Table 2.1, the variance function p?(1 — )2
does not correspond to a probability distribution. In most cases, there is an implied
distributional kernel, but the addition of the variance multiplier « often produces a
mean—variance relationship that is not present in the implied distribution.

We emphasize that the first two moments do not uniquely define a distribution.
For example, the negative binomial distribution may be derived as the marginal
distribution of

Y | u, 6 ~ Poisson(10) (2.33)
6 ~ Ga(b,b) (2.34)
so that E[Y] = p and
2
var(Y') = E[var(Y | 0)] + var(E[Y | 6]) = pn + % (2.35)

These latter two moments are also recovered if we replace the gamma distribution
with a lognormal distribution. Specifically, assume the model

Y | 6* ~ Poisson(6*)
6* ~ LogNorm(n, o%)
and let u = E[f] = exp(n + 02/2). Then,
var(*) = E[0*]* [exp(0?) — 1] = pi* [exp(c®) — 1] .
Under this model, E[Y] = p and

var(Y) = E[var(Y | )] +var[E(Y | 0*)] = u+ i* [exp(0?) — 1]
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which, on writing b* = [exp(c?) — 1] 71, gives the same form of quadratic variance
function, (2.35), as with the gamma model.

If the estimating function (2.30) corresponds to the score function for a particular
probability distribution, then the subsequent estimator corresponds to the MLE
(because « does not influence the estimation of 3), though the variance of the
estimator will usually differ. A great advantage of the use of quasi-likelihood is
its computational simplicity.

A prediction interval for an observable, Y, is not possible with quasi-likelihood
since there is no probabilistic mechanism with which to reflect the stochastic
component of the prediction.

Example: Lung Cancer and Radon

We return to the lung cancer example and now assume the quasi-likelihood model
E[Y; | B] = Ei exp(xiB), var(Y;|B)=E[Y;|B].

Fitting this model yields identical point estimates to the MLEs and & = 2.81 so that
the quasi-likelihood standard errors are Va = 1.68 times larger than the Poisson
model-based standard errors. The variance—covariance matrix is

(5P 1D 14 = 0.0452 —0.95 x 0.045 x 0.0090
—0.95 x 0.045 x 0.0090 0.00902

An asymptotic 95% confidence interval for the relative risk associated with a one-
unit increase in radon is [0.947,0.982] which is V& = 1.68 wider than the Poisson
interval evaluated previously.

2.5.2 A More Complex Mean-Variance Model

For comparison, we now describe a more general model than considered under the
quasi-likelihood approach. Suppose we specify the first two moments of the data as

E[Y; | B] = 1:(B) (2.36)
var(Y; | B) = Vi(a, B), (2.37)
where a is an r X 1 vector of parameters that appear only in the variance model. Let

a, be a consistent estimator of «e. We state without proof the following result. The
estimator [3,, that satisfies the estimating equation
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G (B, @n) = D(Ba)V (@, B) [Y - ()] (2.38)
has asymptotic distribution
(D'V D)8y~ B) —a Nix1(0,Ti41)

where D = D(Bn) and V = V(&n,ﬁn).

The difference between this model and that in the quasi-likelihood approach is
that V' may now depend on additional variance—covariance parameters ¢ in a more
complex way. Under quasi-likelihood it is assumed that var(Y;) = o'V;(p;), so that
the estimating function does not depend on . Consequently, ﬁ also does not depend
on «, though the standard errors are proportional to y/c. This is a motivating factor
in the development of quasi-likelihood, since standard software may be used for
implementation and, perhaps more importantly, consistency of 3 is guaranteed if
the mean model is correctly specified.

The form of the mean—variance relationship given by (2.36) and (2.36) suggests
an iterative scheme for estimation of 3 and a. Set ¢t = 0 and let &(?) be an initial
estimate for ce. Now iterate between

1. Solve G(B,a") = 0 to give B+,
2. Estimate &("*) with fi; = ; (B(Hl)). Sett — ¢t + 1 and return to 1.

The model given by (2.36) and (2.36) is more flexible than that provided by quasi-
likelihood but requires the correct specification of mean and variance for a consistent
estimator of 3.

Example: Lung Cancer and Radon

As an example of the mean—variance model discussed in the previous section, we
fit a negative binomial model to the lung cancer data. This model is motivated via
the random effects formulation given by (2.33) and (2.34) with loglinear model
wi = wi(B) = E;exp(Bo + f1x:), ¢ = 1,...,n. In the lung cancer context, the
random effects are area-specific perturbations from the mean ;. The introduction of
the random effects may be seen as a device for inducing overdispersion. Integrating
over 6;, we obtain the negative binomial distribution

I(yi+b)  pl'tb

B0 = 0y G by

fory; =0,1,2, ..., with
E[Y; | B] = 1:(B)

var(Y; | B,5) = 1:(8) [1 n

M} , (2.39)

b
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so that smaller values of b correspond to greater degrees of overdispersion and
as b — oo we recover the Poisson model. For consistency with later chapters
we use b rather than « for the parameter occurring in the variance model. Care
is required with the negative binomial distribution since a number of different
parameterizations are available; see Exercise 2.4. The log-likelihood is

Zl + yilog p1; + blogb — (y; + b) log(u; +b) (2.40)

giving the score function for 3 as
ol - 8,u1-

pnd D) [V; — ()]

) Yi — M
i + 3 /b

which corresponds to (2.38). HAence, for fixed b, we can solve this estimating

equation to obtain an estimator 3. Usually we will also wish to estimate b (as op-

posed to assuming a fixed value). One possibility is maximum likelihood though

a quick glance at (2.40) reveals that no closed-form estimator will be available

and numerical maximization will be required (which is not a great impediment).

We describe an alternative method of moments estimator which may be more robust.
For the quadratic variance model (2.39), the variance is

var(Y; | 8,0) = E[(Y; — 1i)?] = pi(1 + pi /),

so that
Y — pi)? — g
b_l —E |:( /’LQ) o :| 7
i
fori =1,...,n, leading to the method of moments estimator
1 ) -]
o i Mi)” — g
b= 2.41
= s 4

with £ = 1 in the lung cancer example. If we have a consistent estimator b (which
follows if the quadratic variance model is correct) and the mean correctly specified,
then valid inference follows from

(D'V(b)"'D)"*(8 — B) —+a N2(0,1).

We fit this model to the lung cancer data. The estimates (standard errors) are [30 =
0.090 (0.047) and By = —0.030 (0.0085). The latter point estimate differs a little



56 2 Frequentist Inference

Fig. 2.2 Linear and
quadratic variance functions —— Linear .
for the lung cancer data - - - Quadratic .

Log Variance
5000
|

500
|

W00 OO0 (@] (@]
I I I I I I I
20 50 200 500 2000

Log Mean

from the MLE (and MQLE) of —0.036, reflecting the different variance weighting
in the estimating function. The moment-based estimator was b = 57.8 (the MLE
is 61.3 and so close to this value). An asymptotic 95% confidence interval for the
relative risk exp(/31) is [0.955,0.987], so that the upper limit is closer to unity than
the intervals we have seen previously.

In terms of the first two moments, the difference between quasi-likelihood
and the negative binomial model is that the variances are, respectively, linear and
quadratic functions of the mean. In Fig.2.2, we plot the estimated linear and
quadratic variance functions over the range of the mean for these data. To produce a
clearer plot, the log of the variance is plotted against the log of the mean, and the log
of the observed counts, y;, 7 = 1,...,85, is added to the plot (with a small amount
of jitter). Over the majority of the data, the two variance functions are similar, but
for large values of the mean in particular, the variance functions are considerably
different which leads to the differences in inference, since large observations are
being weighted very differently by the two variance functions. Based on this plot,
we might expect even greater differences. However, closer examination of the data
reveals that the x’s associated with the large y values are all in the midrange, and
consequently, these points are not influential.

Examination of the residuals gives some indication that the quadratic mean—
variance model is more appropriate for these data (see Sect. 6.9). It is typically very
difficult to distinguish between the two models, unless there are sufficient points
across a large spread of mean values.

2.6 Sandwich Estimation

A general method of avoiding stringent modeling conditions when the variance of
an estimator is calculated is provided by sandwich estimation. Recall from Sect. 2.3
the estimating function
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n

G.(0) = % 3 G0, Y).

i=1
Based on independent and identically distributed observations, we have the sand-
wich form for the variance

. -1 T\—1
var(6,,) = AT BA)T (2.42)
n
where
A=E 2G(H Y)
- 00 ’
and

B =E[G(0,Y)G(8,Y)"].

For (2.42) to be asymptotically appropriate, the expectations need to be evaluated
under the true model (as discussed in Sect. 2.4.3).

So far we have used an assumed model to calculate the expectations. An
alternative is to evaluate A and B empirically via

and

By the weak law of large numbers, Xn —p A and ﬁn —p B, and

A\flﬁ(A\T)fl

vaI(OAn) =
n

(2.43)
is a consistent estimator of the variance. The great advantage of sandwich estimation
is that it provides a consistent estimator of the variance in very broad situations. An
important assumption is that the observations are uncorrelated (this will be relaxed
in Part IIT of the book when generalized estimating equations are described).

We now consider the situation in which the estimating function arises from the
score and suppose we have independent and identically distributed data. In this
situation
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and
B- %Z:E Ka%z(e)) ((%z(e)ﬂ
where 1(8) = log p(Y | 8). Then, under the model,
1,(6) = —A(6) = B(6), (2.44)
so that
AIB(AY)1 1,(6)!

var(8,,) = =
n n

The sandwich estimator (2.43) is based on

1 e 82
=N — (0
n £ 000" (©)

o

and

p- 13 (30) (3540 |

=1

The sandwich method can be applied to general estimating functions, not just those
arising from a score equation (in Sect.2.4.3, we considered the latter in the context
of model misspecification).

Suppose we assume E[Y;] = p; and var(Y;) = oV (y;), and cov(Y;,Y;) = 0,
i,j=1,...,n,17# j, as a working covariance model. Under this specification, it is
natural to take the quasi-score function (2.30) as an estimating function, and in this
case, the variance of the resultant estimator is

varg(8,) = (D'V'D)"' D'V var(Y)V ' D(D'V D).

The appropriate variance is obtained by substituting in the correct form for var(Y").
The latter is, of course, unknown but a simple “sandwich” estimator of the variance
is given by

var(8,) = (D'V'D)"'D'V~'diag(RR" )V 'D(D'V'D)"',

where R = [Ry,..., Ry,]"is the n x 1 vector of (unstandardized) residuals

-~

R; =Y; — 1i(B),

12
so that diag( RR") is the nxn diagonal matrix with diagonal elements [YZ— — (ﬁ)}

fori = 1,...,n. This estimator is consistent for the variance of 3, under correct
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Table 2.2 Components of estimation under the assumption of independent outcomes and for
one-dimensional 3

Likelihood Quasi-likelihood
G(8) = X2, Gi(#) 5, 95 log L Ly, (%) Bge
a=5B[%] Z.E[—logL-] —1 .(aﬂi)Qi
i op 262 i o 2vi \ 9B , V;
A= 9G Y, 2 log Li ~1 i(%’g .S
2 2
B = ZiE[Gi(6)2} ZZE [(%hﬁLi) ] %Zz (%%) V%
~ ~ 2 N2 (v, —p:)2
B =32, Gi(B)? 2 (%bgl’i) ?1221 (%%) %
) 52 -1 5 1L
Model-based variance {ZZ E [8762 log Li] } a {Zl ( 6%1) 7}
Opi\2 (Vi —ii;)2
. . Z (aﬁlOgL) Z'L(a%) V.g
Sandwich variance T E—— e
{Zl 2p2 o8 L ] [Zl( 8‘231) V%]
The likelihood model is p(y | 8) = TI, Li(B), and the quasi-likelihood model has

ElY; | B] = pi(B), var(Y; | B) = aV~(B) i =1,...,n,and cov(¥;,Y; | B) = 0,4 ;ﬁ j. The
expected information is — >, E [ 952 log Ll} , and the observed information is — >, 3 62 log L;.

The sandwich estimator is A~ BA~1 which simplifies to — A1 under the model

specification of the mean, and with uncorrelated data. There is finite sample bias in
R; as an estimate of Y; — u;(3) and versions that adjust for the estimation of the
parameters 3 are available; see Kauermann and Carroll (2001).

The great advantage of sandwich estimation is that it provides a consistent
estimator of the variance in very broad situations and the use of the empirical
residuals is very appealing. There are two things to bear in mind when one considers
the use of the sandwich technique, however. The first is that, unless the sample
size is sufficiently large, the sandwich estimator may be highly unstable; in terms
of mean squared error, model-based estimators may be preferable for small- to
medium-sized n (for small samples one would want to avoid the reliance on the
asymptotic distribution anyway). Consequently, empirical is a better description of
the estimator than robust. The second consideration is that if the assumed mean—
variance model is correct, then a model-based estimator is more efficient.

In many cases, quasi-likelihood with a model-based variance estimate may be
viewed as an intermediary between the full model specification and sandwich
estimation, in that the form of the variance function separates estimation of 3 and «,
to give consistency of 3 in broad circumstances, though the standard error will not
be consistently estimated unless the variance function is correct. Table 2.2 provides
a summary and comparison of the various elements of the likelihood and quasi-
likelihood methods, with sandwich estimators for each.
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Example: Poisson Mean

We report the results of a small simulation study to illustrate the efficiency-
robustness trade-off of variance estimation. Data were simulated from the model
Y; | & ~ Poisson(é), i = 1,...,n, where 6 ~;;q Gamma(6b, b). This setup gives
marginal moments

E[Y;] = 6
1
var(Y;) = E[Y;] x | 1+ 7)) = E[Y;] x a.
We take § = 10 and a = 1, 2, 3 corresponding to no excess-Poisson variability, and
variability that is two and three times the mean. We estimate 6 and then form an
asymptotic confidence interval based on a Poisson likelihood, quasi-likelihood, and

sandwich estimation.
For a univariate estimator 6 arising from a generic estimating function G(6,Y"):

Vi@ —6) =4 N <o,%> .

(%G(@)) 2] .

l;(8) =—-0+Y;logb

where
d2

A:E[W

G(G)} , B=E

Under the Poisson model

and
dl; Y, -6
0.Y;) = S;(0) = — = 2+ 7
G(0.Y)) = $i(0) = 25 = =
dzli__Yi
dez 92’

to give the familiar MLE, 6=Y.Aswe already know
d?l (Y —6)2 var(Y) 1
11(9)——A——E [@] —B—Var( 02 )

under the assumption that var(Y") = 6. The Poisson model-based variance estimator
is therefore

e 1

var(f) = = =
Under the Poisson model, the variance equals the mean, and given the efficiency of
the latter, it makes sense to estimate the variance by the sample mean.

= |
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The quasi-likelihood estimator is derived from the quasi-score

Y; -0
G(6.Y;) = Ui(6) = ==,

and
var(f) = (D'V~'D) 'a

where the scale parameter is estimated using the method of moments

-~

(Yi —6)°
-

A 1 &
o=
n—lz

i=1

The quasi-likelihood estimator of the variance is

N 2
van(9) = =,
n

where

n—1

i=1

For sandwich estimation based on the score

and
gt i Yi—0)? _ (n-1)s
nio 02 n?
Hence,
var(0) = (o — /n (2.45)

Estimation of var(Y;) by (Y; — Y)? produces the variance estimator (2.45).
Estimating var(Y;) by n(Y; —Y)?/(n — 1) would reproduce the degrees of freedom
adjusted quasi-likelihood estimator.

Table 2.3 gives the 95% confidence interval coverage for the model-based, quasi-
likelihood, and sandwich estimator variance estimates as a function of the sample
size n and overdispersion/scalar parameter . We see that when the Poisson model
is correct (o« = 1), the model-based standard errors produce accurate coverage for
all values of n. For small n, the quasi-likelihood and sandwich estimators have low
coverage, due to the instability in variance estimation, with sandwich estimation
being slightly poorer in performance. As the level of overdispersion increases, the
performance of the model-based approach starts to deteriorate as the standard error
is underestimated, resulting in low coverage. For oo = 2, 3, the quasi-likelihood and
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Table 2.3 Percent confidence interval coverage for the Poisson mean example, based on 100,000
simulations

Overdispersion

a=1 a=2 a=3
n Model Quasi Sand Model Quasi Sand Model Quasi Sand
5 95 87 84 83 87 84 74 86 83
10 94 92 90 83 91 90 73 91 89
15 95 93 92 84 92 92 75 92 91
20 95 93 93 83 93 93 73 93 92
25 95 94 93 83 94 93 74 93 93
50 95 94 94 83 94 94 74 94 94
100 95 95 94 83 95 94 74 95 94

The nominal coverage is 95%. The overdispersion is given by o = var(Y") /E[Y]

sandwich estimators again give low coverage for small values of n, due to instability,
but for larger values, the coverage quickly improves. The adjusted degrees of
freedom used by quasi-likelihood give slightly improved estimation over the naive
sandwich estimator.

This example shows the efficiency-robustness trade-off. If the model is correct
(which corresponds here to a« = 1), then the model-based approach performs
well. The sandwich and quasi-likelihood approaches are more robust to variance
misspecification, but can be unstable when the sample size is small. The choice of
which variance model to use depends crucially on our faith in the model. The use of
a Poisson model is a risky enterprise, however, since it does not contain an additional
variance parameter.

Example: Lung Cancer and Radon

Returning to the lung cancer and radon example, we calculate sandwich standard
errors, assuming that counts in different areas are uncorrelated. We take as “working
model” a Poisson likelihood, with maximum likelihood estimation of 3. The
estimating function is

S(B) =DV Y —p)=a" (Y - p),
as derived previously, (2.20). Under this model
(A7'BAN'2(B, — B) —a Na2(0,1),
with sandwich ingredients
A=D'V''D
B =DV var(Y)V!'D,
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estimators
A=DV~'D
G20 -+ 0
PPN 0620 .
B=DvVv! > T |\vD
......... 52
and with 62 = (Y; — 1i;)?, for i = 1,...,n. Substitution of the required data
quantities yields the variance—covariance matrix
0.0432 —0.87 x 0.043 x 0.0080
—0.87 x 0.043 x 0.0080 0.00802

The estimated standard errors of BO and Bl are 0.043 and 0.0080, respectively, and
are 60% and 49% larger than their likelihood counterparts, though slightly smaller
than the quasi-likelihood versions. An asymptotic 95% confidence interval for the
relative risk associated with a one-unit increase in radon is [0.949, 0.980].

We have a linear exponential family likelihood and so a consistent estimator
of the loglinear association between lung cancer incidence and radon, as is clear
from (2.20). If the outcomes are independent, then a consistent sandwich variance
estimator is obtained and the large sample size indicates asymptotic inference is
appropriate. However, in the context of these data, independence is a little dubious as
we may have residual spatial dependence, particularly since we have not controlled
for confounders such as smoking which may have spatial structure (and hence
will induce spatial dependence). Sandwich standard errors do not account for such
dependence (unless we can lean on replication across time). In Sect. 9.7, we describe
a model that allows for residual spatial dependence in the counts. Although the
loglinear association is consistently estimated, this of course says nothing about
causality or about the appropriateness of the mean model.

2.7 Bootstrap Methods

With respect to estimation and hypothesis testing, the fundamental frequentist
inferential summary is the distribution of an estimator under hypothetical repeated
sampling from the distribution of the data. So far we have concentrated on the use
of the asymptotic distribution of the estimator under an assumed model, though
sandwich estimation (and to a lesser extent quasi-likelihood) provided one method
by which we could relax the reliance on the assumed model. The bootstrap is a
computational technique for alleviating some forms of model misspecification. The
bootstrap may also be used, to some extent, to account for a “non-asymptotic”
sample size. We first describe its use in single parameter settings before moving
to a regression context.
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2.7.1 The Bootstrap for a Univariate Parameter

Suppose Yi,. .., Y,, are an independent and identically distributed sample from a
distribution function F' that depends on a univariate parameter . Let 6(Y") represent
an estimator of §. We may be interested in estimation of

(i) vars[0(Y)]

(i) Prela < 6(Y) < b]

where we have emphasized that these summaries are evaluated under the sampling
distribution of the data F'. Estimation of (i) is of particular interest if the sampling
distribution of 6 is approximately normal, in which case a 100(1 — «)% confidence
interval is

-~ -~

A(Y) + bias,, [é(Y)} + 21 2\/ vare (9) (2.46)

where bias P(Y)} is the bias of the estimator, and z; _, /5 the (1 — a/2) quantile

of an N(0, 1) random variable. More generally, interest may focus on a function of
interest T'(F).

The bootstrap is an idea that is so simple it seems, at first sight, like cheating
but it turns out to be statistically valid in many circumstances, so long as care
is taken in its implementation. The idea is to first draw B bootstrap samples
of size n, Y, = [Vii,..., Y], b = 1,..., B, from an estimate of F, F. In
the nonparametric bootstrap, the estimate of F' is Fj,, the empirical estimate
of the distribution function that places a mass of 1/n at each of the observed

Yi, i = 1,...,n. Bootstrap samples are obtained by sampling a new dataset
Yii,i=1,...,n, from F,, with replacement. If one has some faith in the assumed

model, then F may be based upon this model, which we call Fj; where 6 = @(y),
to give a second implementation. In this case, bootstrap samples are obtained by
sampling Y;5,% = 1,...,n, as independent and identically distributed samples from
F}, to give a parametric bootstrap estimator.

Intuitively, we are replacing the distribution of

0, —06

with

0 —0,.
Much theory is available to support the use of the bootstrap; early references are
Bickel and Freedman (1981) and Singh (1981); see also van der Vaart (1998).
Further references to the bootstrap are given in Sect.2.11. As a simple example

of the sort of results that are available, we quote the following, a proof of which
may be found in Bickel and Freedman (1981).
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Result. Consider a bootstrap estimator of the sample mean, yu, of the distribution
F and assume E[Y?] < oo and let the variance of F' be 0. Then we know
that /n(Y,, — u) —a N(0,02), and for almost every sequence Y7,Ya,...,

V(Y —Y,) =4 N(0,02).

The distribution of other functions of interest can be obtained via the delta
method; see van der Vaart (1998). There are two approximations that are being used
in the bootstrap. First, we are estimating F' by F', and second, we are estimating the
quantity of interest, for example, (i) or (ii), using B samples from F'. For example,
if (i) is of interest, an obvious estimator of var.(6) is

~ 1 B ?
0(Y;) - 5 > 00| - (2.47)

In this case, the two approximations are

vary (é) ~ varg (5*) ~ vars (5*)

and the first approximation may be poor if the estimate F is not close to ﬁ, but we
can control the second approximation by choosing large B. For the nonparametric
bootstrap, we could, in principle, enumerate all possible samples, but there are n™ of

. 2n—1 .. s
these, of which ( ) are distinct, which is far too large a number to evaluate
n

in practice.

There are many possibilities for computation of confidence limits, as required in
(ii). If normality of 6 is reasonable, then (2.46) is straightforward to use with the
variance estimated by (2.47) and the bias by

As a simple alternative, the bootstrap percentile interval for a confidence interval of
coverage 1 — avis

nx *
|: a/2 1—0¢/2:|

where 5; /2 and éf_a /2 are the a;/2 and 1 — «/2 quantiles of the bootstrap estimates

~

0(Y,), b = 1,...,B. More refined bootstrap confidence interval procedures
are described in Davison and Hinkley (1997). For example, Exercise 2.9 outlines the
derivation of a confidence interval based on a pivot. In Sect.2.7.3, we illustrate the
close links between bootstrap variance estimation and sandwich estimation.

The bootstrap method does not work for all functions of interest. In particular,
it fails in situations when the tail behavior is not well behaved, for example, a
bootstrap for the maximum Y(,,) will be disastrous.
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2.7.2 The Bootstrap for Regression

The parametric and nonparametric methods provide two distinct versions of the
bootstrap, and in a regression context, another important distinction is between re-
sampling residuals and resampling cases. We illustrate the difference by considering
the model

yi = f(xi, B) + €, (2.48)

where the residuals €; are such that E[e;] = 0,4 = 1,...,n and are assumed
uncorrelated. The two methods are characterized according to whether we take F'
to be the distribution of Y only or of {Y, X} In the resampling residuals approach,
the covariates x; are considered as fixed, and bootstrap datasets are formed as

YY) = f(zi, B) + ens,

where a number of options are available for sampling €, b = 1,...,B, ¢ = 1,
.., n. The simplest, nonparametric, version is to sample €;; with replacement from

i [ S, A)} )

i=1

€ =Yi — f wza

3I>—‘

Various refinements of this simple approach are possible. If we are willing to assume
(say) that €; | 02 ~j;q N(0,02), then a parametric resampling residuals method
samples €,; ~ N(0,52) based on an estimate 2. In a model such as (2.48),
the meaning of residuals is clear, but in generalized linear models (Chap. 6), for
example, this is not the case and many alternative definitions exist.

The resampling residuals method has the advantage of respecting the “design,”
that is, @1, ..., x,. A major disadvantage, however, is that we are leaning heavily
on the assumed mean—variance relationship, and we would often prefer to protect
ourselves against an assumed model. The resampling case method forms bootstrap
datasets by sampling with replacement from {Y;, X;, ¢ = 1,...,n} and does not
assume a mean—variance model. Again parametric and nonparametric versions are
available, but the latter is preferred since the former requires a model for the joint
distribution of the response and covariates which is likely to be difficult to specify.
When cases are resampled, the design in each bootstrap sample will not in general
correspond to that in the original dataset which, though not ideal (since it leads
to wider confidence intervals than necessary), will have little impact on inference,
except when there are outliers in the data; if the outliers are sampled multiple times,
then instability may result.

2.7.3 Sandwich Estimation and the Bootstrap

In this section we heuristically show why we would often expect sandwich and
bootstrap variance estimates to be in close correspondence. For simplicity, we
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consider a univariate parameter ¢, and let §n denote the MLE arising from a
sample of size n. In a change of notation, we denote the score by S(f) =
[S1(0),...,Sn(0)]", where S;(#) = dl;/df is the contribution to the score from
observation Y;, i = 1,...,n. Hence,

where 1 is an n X 1 vector of 1’s. The sandwich form of the asymptotic variance
of 6, is

~ 1B
var(6,) = E]
where
A0)=E [%} , B(0) =E[S(0)%].

These quantities may be empirically estimated via

i 1dS 1 ds;
" d gn_nizl do 5
~ 1 n 1 « )
B, = -S0)'S®)| =-> Si(0)
n gn n i=1 §n

A convenient representation of a bootstrap sample is Y* = Y x D where D =
diag(Ds, ..., D,,) is a diagonal matrix consisting of a multinomial random variable

1 1
~ Multinomial {n, (—, R —)]
n n

Dy
D,
with
E([D1,...,D,]") =1
1
var([Dy,...,Dy|") =1, — =11" = 1,
n

as n — oo. The MLE of 6 in the bootstrap sample is denoted 5;; and satisfies
S*(6%) = 0, where S*(0) is the score corresponding to Y *. Note that
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We consider a one-step Newton—Raphson approximation (see Sect.6.5.2 for a
more detailed description of this method) to 6 and show that this leads to a
bootstrap variance estimate that is approximately equal to the sandwich variance
estimate. The following informal derivation is carried out without stating regularity
conditions. It is important to emphasize that throughout we are conditioning on Y’
and therefore on 6,,. A first-order Taylor series approximation

~ ~ ~ ~  ds*
0=S5*(6r) ~ S*(6,) + (6 — 6,) 5
do 9,

leads to the one-step approximation

unless the bootstrap sample coincides with the original sample, that is, unless
D =1,. We replace [%S*(Gﬂ @J by its limit

4 59

[, -5 S

" d
= Z @Si(e) 5
n =1 n

where /Aln = % %S (9)’ 5. - Therefore, the one-step bootstrap estimator is approxi-

mated by " R
~ S(6,)'D

6y, ~ 0, =
nA,

and is approximately unbiased as an estimator since

B — 6]~ — 5(922213[17] o Si%) 1,

and, recall, én is being held constant. The variance is

~ S(By)var([Dy,...,D,)S(0,) SB,)" (1-1117) S(6,)
- (TLA\ )2 (nAn)2

5(5 )TIS( .)  nB, B,

(nd,)?  (nA,)?  nA2
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Fig. 2.3 Sampling
distribution of 3 arising
from the nonparametric
bootstrap samples. The solid
curve is the asymptotic
distribution of the MLE under
the Poisson model, and the
dashed line is the asymptotic
distribution under the
quasi-Poisson model

Density

-0.07 -0.05 -0.03 -0.01
N
By

which is the sandwich estimator. Hence, Var(é\fI - én) approximates Var(é\n - 0),
which is a fundamental link in the bootstrap. For a more theoretical treatment, see
Arcones and Giné (1992) and Sect. 10.3 of Kosorok (2008).

Example: Lung Cancer and Radon

For the lung cancer and radon example, we implement the nonparametric bootstrap
resampling B = 1,000 sets of n case triples [V}, Ep;, 25, b = 1,...,B, i =
1,...,n. Figure 2.3 displays the histogram of estimates arising from the bootstrap
samples, along with the asymptotic normal approximations to the sampling distri-
bution of the estimator under the Poisson and quasi-Poisson models. We see that
the distribution under the quasi-likelihood model is much wider than that under the
Poisson model. This is not surprising since we have already seen that the lung cancer
data are overdispersed relative to a Poisson distribution. The bootstrap histogram
and quasi-Poisson sampling distribution are very similar, however.

Table 2.4 summarizes inference for 3; under a number of different methods
and again confirms the similarity of asymptotic inference under the quasi-Poisson
model and nonparametric bootstrap. In this example the similarity in the intervals
from quasi-likelihood, sandwich estimation, and the nonparametric bootstrap is
reassuring. The point estimates from the Poisson, quasi-likelihood, and sandwich
approaches are identical. The point estimate from the quadratic variance model (that
arises from a negative binomial model) is slightly closer to zero for these data, due
to the difference in the variance models over the large range of counts in these data.
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Table 2.4 Comparison of inferential summaries over various approaches, for the lung
cancer and radon example

Inferential method B s.e.(El) 95% CI for exp(81)
Poisson —0.036 0.0054 0.954, 0.975
Quasi-likelihood —0.036 0.0090 0.947, 0.982
Quadratic variance —0.030 0.0085 0.955, 0.987
Sandwich estimation —0.036 0.0080 0.949, 0.980
Bootstrap normal —0.036 0.0087 0.948, 0.981
Bootstrap percentile —0.036 0.0087 0.949, 0.981

The last two lines refer to nonparametric bootstrap approaches, with intervals based on
normality of the sampling distribution of the estimator (“Normal”) and on taking the
2.5% and 97.5% points of this distribution (“Percentile”)

2.8 Choice of Estimating Function

The choice of estimating function is driven by the conflicting aims of efficiency
and robustness to model misspecification. If the likelihood corresponds to the
true model, then MLEs are asymptotically efficient so that asymptotic confidence
intervals have minimum length. However, if the assumed model is incorrect, then
there are no guarantees of even consistency of estimation.

Basing estimating functions on simple model-free functions of the data often
provides robustness. As we discuss in Sect.5.6.3, the classic Gauss—Markov
theorem states, informally, that among estimators that are linear in the data, the
least squares estimator has smallest variance, and this result is true for fixed sample
sizes. There is also a Gauss—Markov theorem for estimating functions. Suppose
E[Y; | B] = pi(B), var(V;) = o2 and cov(Y;,Y;) = 0,4 # j, and consider the class
of linear unbiased estimating functions (of zero) that are of the form

n

G(B) = _ai(B)[Y: — n(B)], (2.49)
i=1
where a;(3) are specified nonrandom functions, subject to >, a;(8) = ¢, a

constant (this is to avoid obtaining an arbitrarily small variance by multiplying
the estimating function by a constant). The estimating function (2.49) provides a
consistent estimator 3 so long as the mean p;(3) is correctly specified. It can be
shown, for example, Godambe and Heyde (1987), that

E[UU"] < E[GG"], (2.50)

where
UB) =DV HY - p)/e,

so that this estimating function has the smallest variance. Quasi-likelihood estima-
tors are therefore asymptotically optimal in the class of linear estimating functions
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and will be asymptotically efficient if the quasi-score functions correspond to the
score of the likelihood of the true data-generating model. Of course a superior
estimator (in terms of efficiency) may result from an estimating function that is not
linear in the data, if the data arise from a model for which the score function is not
linear. The consideration of quadratic estimating functions illustrates the efficiency-
robustness trade-off.

Result (2.50) is true for an estimating function based on a finite sample size n,
though there is no such result for the derived estimator. However, the estimator
derived from the estimating function is asymptotically efficient (e.g., McCullagh
1983). The optimal estimating equation is that which has minimum expected
distance from the score equation corresponding to the true model. We reemphasize
that a consistent estimator of the parameters in the assumed regression model is
obtained from the quasi-score (2.50), and the variance of the estimator will be
appropriate so long as the second moment of the data has been specified correctly.

To motivate the class of quadratic estimating functions suppose

Y; | B ~inda N [Mz(ﬁ)vaf(ﬁ)] )

1 =1,...,n. The log-likelihood is

ol
5(8) %
Y z 2 - z 2 A
ﬁ) B
If the first two moments are correctly specified, then E[S(3)] = O, so that a

consistent estimator is obtained.
In general, we may consider

Zai(ﬁ) [Y: — ps(B)] + b:(B) {[Y: — 11:(B)]* — 0:(B)?} ,

where a;(8), b;(3) are specified nonrandom functions. With this estimating func-
tion, the information in the variance concerning the parameters 3 is being used
to improve efficiency. Among quadratic estimating functions, it can be shown that
(2.51) is optimal in the sense of producing estimators that are asymptotic efficient
(Crowder 1987). In general, to choose the optimal estimating function, the first four
moments of the data must be known, which may seem unlikely, but this approach
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may be contrasted with the use of the score as estimating function which effectively
requires all of the moments to be known. There are two problems with using
quadratic estimating functions. First, consistency requires the first two moments
to be correctly specified. Second, to estimate the covariance matrix of the estimator,
the skewness and kurtosis must be estimated, and these may be highly unstable. We
return to this topic in Sect. 9.10.

2.9 Hypothesis Testing

Throughout the book, we emphasize estimation over hypothesis testing, for reasons
discussed in Chap.4, but in this section describe the rationale and machinery of
frequentist hypothesis testing.

2.9.1 Motivation

A common aim of statistical analysis is to judge the evidence from the data
in support of a particular hypothesis, defined through specific parameter values.
Hypothesis tests have historically been used for various purposes, including:

* Determining whether a set of data is consistent with a particular hypothesis
* Making a decision as to which of two hypotheses is best supported by the data

We assume there exists a test statistic 7 = T(Y) with large values of T
suggesting departures from Hy. In Sects.2.9.3-2.9.5, three specific recipes are
described, namely, score, Wald, and likelihood ratio test statistics. We define the
p-value, or significance level, as

p=pY)=Pr[T(Y)>T(y)| Hol,

so that, intuitively, if this probability is “small,” the data are inconsistent with H.
If T(Y) is continuous, then under Hy, the p-value p(Y") follows the distribution
U(0, 1). Consequently, the significance level is the observed p(y). The distribution
of T(Y') under Hy may be known analytically or may be simulated to produce a
Monte Carlo or bootstrap test.

The nomenclature associated with the broad topic of hypothesis testing is
confusing, but we distinguish three procedures:

1. A pure significance test calculates p but does not reject Hy and is often viewed
as an exploratory tool.

2. A test of significance sets a cutoff value « (e.g., o« = 0.05) and rejects Hy if
p < a corresponding to T' > T7,. The latter is known as the critical region.

3. A hypothesis test goes one step further and specifies an alternative hypothesis,
H;. One then reports whether Hj is rejected or not. The null hypothesis has
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special position as the “status quo,” and conventionally the phrase “accept Hy”
is not used because not rejecting may be due to low power (perhaps because of a
small sample size) as opposed to H, being true.

Rejecting Hy when it is true is known as a type I error, and a type II error occurs
when Hj is not rejected when it is in fact false. To evaluate the probability of a
type Il error, specific alternative values of the parameters need to be considered. The
power is defined as the probability of rejecting Hy when it is false. We emphasize
that a test of significance may reject Hy for general departures, while a hypothesis
test rejects in the specific direction of H;.

A key point is that the consistency of the data with Hj is being evaluated, and
there is no reference to the probability of the null hypothesis being true. As usual in
frequentist inference, Hy is a fixed unknown and probability statements cannot be
assigned to it.*

2.9.2 Preliminaries

We consider a p-dimensional vector of parameters @ and consider two testing
situations. In the first, we consider the simple null hypothesis Hy : 8 = 6q
versus the alternative Hy : 8 # 6. In the second, we consider a partition of the
parameter vector = [0, 62], where the dimensions of 8, and 03 are p — r and 7,
respectively, and a composite null. Specifically, in the composite case, we compare
the hypotheses:

Hy : 01 unrestricted, 65 = 6,

Hy : 0 =[01,05] # [01,05).

As a simple example, in a regression context, let @ = [0, 0] with 6, the intercept
and 6 the slope. We may then be interested in Hy : 62 = 0 with §; unspecified. In
both the simple and composite situations, the unrestricted MLE under the alternative
is denoted 0,, = [0,,1, 0,,2].

For simplicity of exposition, unless stated otherwise, we suppose that the re-
sponses Y;, 7 = 1, ..., n, are independent and identically distributed. Consequently
we have p(y | 8) = []"_; p(y; | ©). The extension to the nonidentically distributed
situation, as required for regression, is straightforward. The p x 1 score vector is

S,.(6) = 61539)

i=1

4As described in Chap. 3, in the Bayesian approach to hypothesis testing, a prior distribution is
placed on the alternatives (and on the null), allowing the calculation of the probability of Hy given
the data, relative to other hypotheses under consideration.
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where [;(0) is the log-likelihood contribution from observation i, i = 1,...,n.
Let S, (0) = [Sn1(0), Sn2(0)]" be a partition of the score vector with S,,1(0) of
dimension (p — r) x 1 and S,,2(0) of dimension r x 1. Under the composite null,
let 52 = [gnlo, 60| denote the MLE, where §n10 is found from the estimating
equation

~

Sn1(0n10,020) = 0.

In general, §n10 #+ énl.
In the independent and identically distributed case, I,(0) = nlI;(0) is the
information in a sample of size n. Suppressing the dependence on 6, let

I - [111 112]
Iy Iy

denote a partition of the expected information matrix, where I, I12, I, and T2
are of dimensions (p —r) x (p—7), (p—7) X r,r X (p—r), and r X r, respectively.
The inverse of I is

It = { i _1;1%2_111212-;}
—Iyy I 1,y Iy,
where
Lo =1 — L1515, Iy
Doy = Ing — Iy I 1o

using results from Appendix B.

2.9.3 Score Tests

We begin with the simple null Hy : @ = 6. Recall the asymptotic distribution of
the score, given in (2.17):

n=128,(0) —q N, [0,1(0)].
Therefore, under the null hypothesis
S(60)"I; ' (80)Sn(60)/n —a X (2.52)

Intuitively, if the elements of S,,(6y) are large, this means that the components of
the gradient at 6 are large. The latter occurs when 6 is “far” from the estimator
0,, for which S,,(6,,) = 0. In (2.52), the matrix I; ' () is scaling the gradient
distance. The information may be evaluated at the MLE, én, rather than at 6, since

~

I,(6,) —p I1(60), by the weak law of large numbers.
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Under the composite null hypothesis, Hy : 61 unrestricted, 65 = 6:
Sn(07) I (62)S(87) /1 —a X7

As a simplification, we can express this statistic in terms of partitioned information
matrices. Since r elements of the score vector are zero, that is, Sng(Hg) = 0, we
have

81 (82) I1115(62)S,1(80)/n —+a X2

Hence, the model only needs to be fitted under the null. Each of the score statistics
remains asymptotically valid on replacement of the expected information by the
observed information.

2.9.4 Wald Tests

Under the simple null hypothesis Hy : @ = 6, the Wald statistic is based upon the
asymptotic distribution

Vi(8, —0) —a N, [0,11(6)71], (2.53)
and the Wald statistic is the quadratic form based on (2.53):
V(8. — 00)" 11 (80)V/n(6, — 60) —a X5 (2.54)
An alternative form that is often used in practice is

\/ﬁ(é\n - OO)TII (é\n)\/ﬁ(é\n - 00) —d X;z;u

~

which again follows because I1(0,,) —, I1(6y), by the weak law of large numbers.
Under a composite null hypothesis, the Wald statistic is based on the marginal
distribution of 0,,5:

ﬁ(@ﬂ - 920)T111»2(§2)\/ﬁ(§n2 — 02) —a X2

The observed information may replace the expected information in either form of
the Wald statistic.

2.9.5 Likelihood Ratio Tests
Finally, we consider the likelihood ratio statistic which, under a simple null, is

2 [zn(é‘n) - zn(eo)] :
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Unlike the score and Wald statistics, the asymptotic distribution is not an obvious
quadratic form, and so we provide a sketch proof of the asymptotic
distribution under Hy. A second-order Taylor expansion of [,,(6y) about 8,, gives

r 9n(0)
00

1 . 921,(0) ~
+ 500 - 8,)" Zpr o s(49(J—(;vn),

ln(eo) = ln(é\n) + (00 - an) ~ 2

6n

where 8 is between 0y and én The middle term on the right-hand side is zero, and

, % i)
Hence,
=2 [1u(60) = 1u(6.)] =2 [14(8) ~ 1(60)]
~ n(6, — 00)"I1(6,)(8,, — 6y),
and so

2 [zn(én) - zn(eo)} —a X2 (2.55)
Similarly, under a composite null hypothesis:

2 {ln(é\n) - ln(é\g)} —d X?«'

2.9.6 Quasi-likelihood

We briefly consider the quasi-likelihood model described in Sect.2.5. The score
test can be based on the quasi-score statistic U,,(3) = D'V ~1Y — u)/a, with
the information in a sample of size n being D"V ! D /a. The latter is also used
in the calculation of a Wald statistic since it supplies the required standard errors.
Similarly, a quasi-likelihood ratio test can be performed using [,,(6,,, ), the form
of which is given in (2.32). Unknown « can be accommodated by substitution of a
consistent estimator @. For example, we might estimate « via the Pearson statistic
estimator (2.31).

If one wished to account for estimation of «, then one possibility is to assume
that (n — p) x a follows a x%fp distribution and then evaluate significance based
on the ratio of scaled x2-squared random variables, to give an F distribution under
the null (see Appendix B). Outside of the normal linear model, this seems a dubious
exercise, however, since the numerator and denominator will not be independent,
and either of the x? approximations could be poor. The use of an F' statistic is
conservative, however (so that significance will be reduced over the use of the plug-
in x? approximation).
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2.9.7 Comparison of Test Statistics

The score test statistic is invariant under reparameterization, provided that the
expected, rather than the observed, information is used. The score statistic may also
be evaluated without second derivatives if S,,(0¢)S,(60)" is used, which may be
useful if these derivatives are complex, or unavailable. The score statistic requires
the value of the score at the null, but the MLE under the alternative is not required.

Confidence intervals can be derived directly from the Wald statistic so that there
is a direct link between estimation and testing. Interpretation is also straightforward;
in particular, statistical versus practical significance can be immediately considered.
A major drawback of the Wald statistic is that it is not invariant to the parameteri-
zation chosen, which ties in with our earlier observation (Sect. 2.3) that asymptotic
confidence intervals are more accurate on some scales than on others. The Wald
statistic uses the MLE but not the value of the maximized likelihood.

The likelihood ratio statistic is invariant under reparameterization. Confidence
intervals derived from likelihood ratio tests always preserve the support of the pa-
rameter, unlike score- and Wald-based intervals (unless a suitable parameterization
is adopted). Similar to the attainment of the Cramér—Rao lower bound (Appendix F),
there is an elegant theory under which the likelihood ratio test statistic emerges as
the uniformly most powerful (UMP) test, via the famous Neyman—Pearson lemma;
see, for example, Schervish (1995). The likelihood ratio test requires the fitting of
two models.

The score, Wald, and likelihood ratio test statistics are asymptotically equivalent
but are not equally well behaved in finite samples. In general, and by analogy
with the asymptotic optimality of the MLE, the likelihood ratio statistic is often
recommended for use in regular models. If 8,, and 6y are close, then the three
statistics will tend to agree.

Chapter 4 provides an extended discussion and critique of hypothesis testing.

Example: Poisson Mean

We illustrate the use of the three statistics in a simple context. Suppose we have data
Y; | A ~aq Poisson(A), i = 1,...,n, and we are interested in Hy : A = Ag. The
log-likelihood, score, and information are

In(A) = —nA +nY log \,

B nY n(Y — )
Sp(A) = —n+ = U
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Fig. 2.4 Geometric interpretation of score, Wald, an(i likelihood ratio (LR) statistics, for Poisson
data and a test of Hp : Ao = 1, with data resultingin A =3 = 0.6

The score and Wald statistics follow from (2.52) and (2.54) and both lead to

n(Y — X\o)?
—( 0) —d X%
Ao

under the null. From (2.55), the likelihood ratio statistic is
2n [Y(logY —log Ag) — (Y — Xo)] —a Xi-

Suppose we observe 2321 y; = 12 events in n = 20 trials so that X = y = 0.6.
Assume we are interested in testing the null hypothesis Hy : Ag = 1.0. The score
and Wald statistics are 3.20 and the likelihood ratio statistic is 3.74, with associated
observed significance levels of 7.3% and 5.4%, respectively. Figure 2.4 plots the
log-likelihood against )\ for these data. The (unscaled) statistics are indicated on the
figure. The score test is based on the gradient at o, the Wald statistic is the squared
horizontal distance between A and Ay, and the likelihood ratio test statistic is two
times the vertical distance between [(A) and [ (o).

We now reparameterize to # = log )\, so that the null becomes Hy : 6 = 6y = 0.
The likelihood ratio statistic is invariant to parameterization, and the score statistic
turns out to be the same as previously in this example, since the observed and
expected information are equal. The forms of the Wald, score, and likelihood ratio
statistics, for general 6, are
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n(logY — )2 exp(6o)
n[Y — exp(@o)]Qexp(—b‘o)

2n {?(5— 60) — [exp(d) — eXP(%)]}

with numeric values of 5.22, 3.20 and 3.74, respectively, in the example.

2.10 Concluding Remarks

In Sect. 1.2, we emphasized that model formulation should begin with the model
that is felt most appropriate for the context, before proceeding to determine the
behavior of inferential procedures under this model. In this chapter we have seen
that likelihood-based inference is asymptotically efficient if the model is correct.
Hence, if one has strong belief in the assumed model, then a likelihood approach is
appealing, particularly if the score equations are of linear exponential family form,
since in this case consistent estimators of the parameters in the assumed regression
model are obtained. If the likelihood is not of linear exponential form, then there
are no guarantees of consistency under model misspecification. So far as estimation
of the standard error is concerned, in situations in which n is sufficiently large for
asymptotic inference to be accurate, sandwich estimation or the bootstrap may be
used to provide consistent model-free standard errors, so long as the observations are
uncorrelated. The relevance of asymptotic calculations for particular sample sizes
may be investigated via simulation. In general, sandwich estimation is a very simple,
broadly applicable and appealing technique.

In many instances the context and/or questions of interest may determine the
mean function and perhaps give clues to the mean—variance relationship. The form
of the data may suggest viable candidates for the full probability model. A caveat to
this is that models such as the Poisson or exponential for which there is no dispersion
parameter should be used with extreme caution since there is no mechanism to “soak
up” excess variability. In practice, if the data exhibit overdispersion, as is often the
case, then this will lead to confidence intervals that are too short. Information on
the mean and variance may be used within a quasi-likelihood approach to define
an estimator, and if n is sufficiently large, sandwich estimation can provide reliable
standard errors. Experience of particular models may help to determine whether
the assumption of a particular likelihood with the desired mean and variance
functions is likely to be much less reliable than a quasi-likelihood approach. The
choice of how parametric one wishes to be will often come down to personal taste.

We finally note that the efficiency-robustness trade-off will be weighted in
different directions depending on the nature of the analysis. In an exploratory
setting, one may be happy to proceed with a likelihood analysis, while in a
confirmatory setting, one may want to be more conservative.
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2.11 Bibliographic Notes

Numerous accounts of the theory behind frequentist inference are available, Cox and
Hinkley (1974) remains a classic text. Casella and Berger (1990) also provides an in-
depth discussion of frequentist estimation and hypothesis testing. A mathematically
rigorous treatment of the estimating functions approach is provided by van der Vaart
(1998). A gentler and very readable presentation of a reduced amount of material is
Ferguson (1996). Further discussion of estimating functions, particularly for quasi-
likelihood, may be found in Heyde (1997) and Crowder (1986).

Likelihood was introduced by Fisher (1922, 1925b), and quasi-likelihood by
Wedderburn (1974). Asymptotic details for quasi-likelihood are described in
McCullagh (1983), while Gauss—Markov theorems detailing optimality are de-
scribed in Godambe and Heyde (1987) and Heyde (1997). Firth (1993) provides
an excellent review of quasi-likelihood.

Crowder (1987) gives counterexamples that reveal situations in which quasi-
likelihood is unreliable. Linear and quadratic estimating functions are described
by Firth (1987) and Crowder (1987). Firth (1987) also investigates the efficiency
of quasi-likelihood estimators and concludes that such estimators are robust to
“moderate departures” from the likelihood corresponding to the score.

The form of the sandwich estimator was given in Huber (1967). White (1980)
implemented the technique for the linear model, and Royall (1986) provides a clear
and simple account with many examples. Carroll et al. (1995, Appendix A.3) gives
a very readable review of sandwich estimation.

Efron (1979) introduced the bootstrap, and subsequently there has been a huge
literature on its theoretical properties and practical use. Bickel and Freedman (1981)
and Singh (1981) provide early theoretical discussions; see also van der Vaart
(1998). Book-length treatments include Efron and Tibshirani (1993) and Davison
and Hinkley (1997).

The score test was introduced in Rao (1948) as an alternative to the likelihood
ratio and Wald tests introduced in Neyman and Pearson (1928) and Wald (1943),
respectively. Consequently, the score test is sometimes known as the Rao score test.
Cox and Hinkley (1974) provide a general discussion of hypothesis testing. Peers
(1971) compares the power of score, Wald, and likelihood ratio tests. An excellent
expository article on the three statistics, emphasizing a geometric perspective, may
be found in Buse (1982).

2.12 Exercises

2.1 Suppose Y1,Y2 | 6 ~iq U(6 —0.5,60 + 0.5). Show that Pr(min{Y7, Y2} <
0 < max{Y1,Y2} | ) = 0.5, so that [min{Y7, Y2}, max{Y7,Y2}] is a
50% confidence interval for 6. Suppose we observe a particular interval with
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max{Y7, Y2} — min{Y7,Y2} > 0.5. Show that in this case we know with
probability 1 that this interval contains .3
2.2 Consider a single observation from a Poisson distribution: Y | § ~ Poisson(#).

(a) Suppose we wish to estimate exp(—36). Show that the UMVUE is (—2)¥
fory = 0,1,2,...Is this a reasonable estimator?

(b) Suppose we wish to estimate 2. Show that T'(T — 1)/n? is the UMVUE
for 6. By examining the case 7' = 1 comment on whether this is a sensible
estimator.

2.3 Let Y; | 02 ~4iq N(u, 02) with pr known.

(a) Show that the distribution p(y | o2) is a one-parameter exponential family
member.

(b) Show that 5% = 13" (Y; — p)? is an unbiased estimator of o and
evaluate its variance.

(c) Consider estimators of the form 62 = a ), (Y; — p)?. Determine the
value of a that minimizes the mean squared error.

(d) The use of mean squared error to judge an estimator is appropriate for a
quadratic loss function, in this case L(52, 0%) = (52 —0?)?. Since 0% > 0,
there is an asymmetry in this loss function. Hence, explain why downward
bias in an estimator of o can be advantageous.

(e) Show that 52 is optimal amongst estimators > with respect to the Stein

loss function
~ o o2
LS(O'g,O'Z) = (F) — IOg (F) —1.
2.4 Suppose Y; | 0; ~;nq Poisson(6;) with 6; ~;,q Ga(u;b,b) fori =1,...,n.

(a) Show that E[Y;] = p; and var(Y;) = p;(1 +b71).

(b) Show that the marginal distribution of Y; | u;, b is negative binomial.

(c) Suppose log u; = Bo + B1a;. Write down the likelihood function L(3,b),
log- likelihood function I(83,b), score function S(3,b), and expected
information matrix I(3,0).

2.5 Consider the exponential regression problem with independent responses
pyi | X)) = Xe My >0

and log \; = — By — B1x; for given covariates x;, ¢ = 1,...,n. We wish to
estimate the 2 x 1 regression parameter 3 = [y, 51]" using MLE.

SThis exercise shows that although the confidence interval has the correct frequentist coverage
when averaging over all possible realizations of data, for some data we know with probability 1
that the specific interval created contains the parameter. The probability distribution of the data in
this example is not regular (since the support of the data depends on the unknown parameter), and
so we might anticipate difficulties. Conditioning on an ancillary statistic resolves the problems; see
Davison (2003, Example 12.3).
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Table 2.5 Survival times y; and concentrations of a contaminant x; forz = 1,...,15

i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x;

Yi

61 42 05 88 15 92 85 87 67 65 63 67 02 87 1715
08 35 124 11 89 24 01 04 35 83 26 15 166 0.1 13

(a) Find expressions for the likelihood function L(3), log-likelihood function
1(83), score function S(3), and Fisher’s information matrix I(3).

(b) Find expressions for the maximum likelihood estimate B . If no closed-form
solution exists, then instead provide a functional form that could be simply
implemented.

(c) For the data in Table 2.5, numerically maximize the likelihood function to
obtain estimates of 3. These data consist of the survival times (y) of rats
as a function of concentrations of a contaminant (z). Find the asymptotic
covariance matrix for your estimate using the information I(3). Provide a
95% confidence interval for each of 5y and [3;.

(d) Plot the log-likelihood function I(Sy, 81) and compare with the log of the
asymptotic normal approximation to the sampling distribution of the MLE.

(e) Find the maximum likelihood estimate BE under the null hypothesis Hy :
B1=0.

(f) Perform score, likelihood ratio, and Wald tests of the null hypothesis Hy :
B1 = 0 with a = 0.05. In each case, explicitly state the formula you use to
compute the test statistic.

(g) Summarize the results of the estimation and hypothesis testing carried out
above. In particular, address the question of whether increasing concentra-
tions of the contaminant are associated with a rat’s life expectancy.

2.6 Consider the so-called Neyman—Scott problem (Neyman and Scott 1948) in

which Y;; | pi, 0% ~ina N(pi,0%), i = 1,...,n,j = 1,2. Obtain the MLE
of o2 and show that it is inconsistent. Why does the inconsistency arise in this
example?

2.7 Consider the example discussed at the end of Sect.2.4.3 in which the true

distribution is gamma, but the assumed likelihood is exponential.

(a) Evaluate the form of the sandwich estimator of the variance, and compare
with the form of the model-based estimator.

(b) Simulate data from Ga(4,2) and Ga(10,2) distributions, for n = 10 and
n = 30, and obtain the MLEs and sandwich and model-based variance
estimates. Compare these variances with the empirical variances observed
in the simulations.

(c) Provide figures showing the log of the gamma densities of the previous part,
plotted against y, along with the “closest” exponential densities.

2.8 Consider the Poisson-gamma random effects model given by (2.33) and (2.34),

which leads to a negative binomial marginal model with the variance a quadratic
function of the mean. Design a simulation study, along the lines of that which
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2.9

produced Table 2.3, to investigate the efficiency and robustness under the
Poisson model, quasi-likelihood (with variance proportional to the mean), the
negative binomial model, and sandwich estimation. Use a loglinear model

log p1; = Bo + Brs,

with z; ~;;q N(0,1), fori = 1,...,n,and By = 2, f1 = log2. You should
repeat the simulation for different values of both n and the negative binomial
overdispersion parameter b. Report the 95% confidence interval coverages for
By and (1, for each model. R

A pivotal bootstrap interval is evaluated as follows. Let R,, = 8,, — 0 be a pivot,
and H(r) = Pr(R,, < r) be the distribution function of the pivot. Now define
an interval C,, = [ay, by, | where

e
(1-3)

_ g1
o H(3)

a, =6,

)

(=l
3
|
S

(a) Show that
Pr(a, <6, <b,)=1-—«

so that C,, is an exact 100(1 — a))% confidence interval for 6.

~

(b) Hence, show that the confidence interval is C,, = [ @y, by, | where
T a\ o~
Up =0, — H™* (1—5) =t —11_0)

=20, — 0{—&/2

where 17 denotes the v sample quantile of the B bootstrap samples

-~

[Rr1, ..., Ry gl and 07 the y sample quantile of [0}, . . ., 9\;3].
[Hint: To evaluate a,, and b,,, we need to know H, which is unknown, but
may be estimated based on the bootstrap estimates

N 1 &
H(T)ZEZI( o S T)

where RY, = 0%, — 0,,b=1,...,

oS

-]



Chapter 3
Bayesian Inference

3.1 Introduction

In the Bayesian approach to inference, all unknown quantities contained in a
probability model for the observed data are treated as random variables. This is in
contrast to the frequentist view described in Chap. 2 in which parameters are treated
as fixed constants. Specifically, with respect to the inferential targets of Sect. 2.1,
the fixed but unknown parameters and hypotheses are viewed as random variables
under the Bayesian approach. Additionally, the unknowns may include missing data,
or the true covariate value in an errors-in-variables setting.

The structure of this chapter is as follows. In Sect. 3.2 we describe the constituents
of the posterior distribution and its summarization and in Sect. 3.3 consider the
asymptotic properties of Bayesian estimators. Section 3.4 examines prior speci-
fication, and in Sect. 3.5 issues relating to model misspecification are discussed.
Section 3.6 describes one approach to accounting for model uncertainty via
Bayesian model averaging. As we see in Sect.3.2, to implement the Bayesian
approach, integration over the parameter space is required, and historically this has
proved a significant hurdle to the routine use of Bayesian methods. Consequently,
we discuss implementation issues in some detail. In Sect. 3.7, we provide a descrip-
tion of so-called conjugate situations in which the required integrals are analytically
tractable, before providing an overview of analytical and numerical integration
techniques, importance sampling, and direct sampling from the posterior. One
particular technique, Markov chain Monte Carlo (MCMC), has greatly extended
the range of models that may be analyzed with Bayesian methods, and Sect. 3.8
is devoted to a description of MCMC. Section 3.9 considers the important topic
of exchangeability, and in Sect. 3.10 hypothesis testing via so-called Bayes factors
is discussed. Section 3.11 considers a hybrid approach to inference in which the
likelihood is taken as the sampling distribution of an estimator and is combined with
a prior via Bayes theorem. Concluding remarks appears in Sect. 3.12, including
a comparison of frequentist and Bayesian approaches, and the chapter ends with
bibliographic notes in Sect. 3.13.

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series 85
in Statistics, DOI 10.1007/978-1-4419-0925-1_3,
© Springer Science+Business Media New York 2013
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3.2 The Posterior Distribution and Its Summarization

Let @ = [, ...,0,]" denote all of the unknowns of the model, which we continue
to refer to as parameters, and y = [y1,...,yn]" the vector of observed data. Also
let Z represent all relevant information that is currently available to the individual
who is carrying out the analysis, in addition to y. In the following description, we
assume for simplicity that each element of 6 is continuous.

Bayesian inference is based on the posterior probability distribution of 6 after
observing y, which is given by Bayes theorem:

_py16.D7(6 D)
POl = "

3.1

There are two key ingredients: the likelihood function p(y | 0,7) and the prior
distribution 7(@ | Z). The latter represents the probability beliefs for 6 held
before observing the data y. Both are dependent upon the current information 7.
Different individuals will have different information Z, and so in general their prior
distributions (and possibly their likelihood functions) may differ. The denominator
in 3.1), p(y | Z), is a normalizing constant which ensures that the right-hand
side integrates to one over the parameter space. Though of crucial importance, for
notational convenience, from this point onwards we suppress the dependence on Z,
to give

p(y | 6)7(0)
(7] =—"7r 7
p(0|y) )
where the normalizing constant is
o) = [ ply| 6)(6) do. (32)
6

and is the marginal probability of the observed data given the model, that is, the
likelihood and the prior. Ignoring this constant gives

p(@|y) xp(y|0) xm(6)
or, more colloquially,
Posterior o< Likelihood x Prior.

The use of the posterior distribution for inference is very intuitively appealing since
it probabilistically combines the information on the parameters contained in the data
and in the prior.

The manner by which inference is updated from prior to posterior extends
naturally to the sequential arrival of data. Suppose first that y; and y» represent
the current totality of data. Then the posterior is
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(6
p(e | y1,y2) _ p(y17y2 | )ﬂ-( ) (33)
p(Y1,92)

Now consider a previous occasion at which only y; was available. The posterior
based on these data only is

p(y: | 0)n(6)

After observing y; and before observing y», the “prior” for @ corresponds to
the posterior p(@ | wi), since this distribution represents the current beliefs
concerning . We then update via

p(y2 | y1,0)7(0 | Y1)
p(y2 | y1) '

PO | y1,y2) = (3.4)

Factorizing the right-hand side of (3.3) gives

p(y2191,0)  py: | 0)m(0)
p(y2 | y1) p(y1)

p(e | y1,y2) =

which equals the right-hand side of (3.4). Hence, consistent inference based on y;
and ys is reached regardless of whether we produce the posterior in one or two
stages. In the case of conditionally independent observations,

P(y1,y2 | 0) =p(y1 | O)p(y2 | 0)

in (3.3) and
P(y2 [41,0) = p(y2 | 0)
in (3.4).

At first sight, the Bayesian approach to inference is deceptively straightforward,
but there are a number of important issues that must be considered in practice.
The first, clearly vital, issue is prior specification. Second, once prior and like-
lihood ingredients have been decided upon, we need to summarize the (usually)
multivariate posterior distribution, and as we will see, this summarization requires
integration over the parameter space, which may be of high dimension. Finally, a
Bayesian analysis must address the effect that possible model misspecification has
on inference. Prior specification is taken up in Sect. 3.4 and model misspecification
in Sect. 3.5. Next, posterior summarization is described.

Typically the posterior distribution p(@ | y) is multivariate, and marginal
distributions for parameters of interest will be needed. The univariate marginal
distribution for 6; is

p(0: |y) = / p(0|y)do_;, (3.5)

—1

where 0_; is the vector 6 excluding 6;, thatis, 0_; = [01,...,0,—1,0i41,...,0p).
While examining the complete distribution will often be informative, reporting
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summaries of this distribution is also useful. To this end moments and quantiles
may be calculated. For example, the posterior mean is

E[0; | y] = /0 Oip(0; | y) dbi. (3.6)

The 100 x ¢% quantile, 6;(q), with 0 < ¢ < 1 is found by solving

0:(q)
q=Pr[0; <0;(q)] = / p(0: | y) do;. 3.7

— 00

The posterior median 6;(0.5) is often an adequate summary of the location of the
posterior marginal distribution.

Formally, the choice between posterior means and medians can be made by
viewing point estimation as a decision problem. For simplicity suppose that 6 is
univariate and the action, a, is to choose a point estimate for 6. Let L(6, a) denote
the loss associated with choosing action a when 6 is the true state of nature. The
(posterior) expected loss of an action a is

L(a) = /9L(0,a)p(0 | y) df (3.8)

and the optimal choice is the action that minimizes the expected loss. Different loss
functions lead to different estimates (Exercise 3.1). For example, minimizing (3.8)
with the quadratic loss L(6,a) = (6 — a)? leads to reporting the posterior mean,
a =E[f | y]. The linear loss,

L(0,a) = {

corresponds to a loss which is proportional to ¢; if we overestimate and to ¢y if we
underestimate. This function leads to @ such that

C2 C2 / C1

Pr(d <a = =
I‘( _a|y) c1+ c2 1+02/61,

that is, a = 6 (ClcfQ ), so that presenting a quantile is the optimal action. Notice
that only the ratio of losses is required. When ¢; = ¢, under- and overestimation
are deemed equally hazardous, and the median of the posterior should be reported.

A 100 xp % equi-tailed credible interval (0 < p < 1) is provided by

[0: {1 —-p}/2), 0: ({1 +p}/2) |

This interval is the one that is usually reported in the majority of Bayesian analyses
carried out, since it is the easiest to calculate. However, in cases where the posterior
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is skewed, one may wish to instead calculate a highest posterior density (HPD)
interval in which points inside the interval have higher posterior density than those
outside the interval. Such an interval is also the shortest credible interval.

Another useful inferential quantity is the predictive distribution for unobserved
(e.g., future) observations z. Under conditional independence, so that p(z | 8,y) =
p(z | @), this distribution is

p(z | y) = / p(z | 0)p(6 | y) db. (3.9)

This derivation clearly assumes that the likelihood for the original data y is also
appropriate for the unobserved observations z.

The Bayesian approach therefore provides very natural inferential summaries.
However, these summaries require the evaluation of integrals, and for most models,
these integrals are analytically intractable. Methods for implementation are consid-
ered in Sects. 3.7 and 3.8.

3.3 Asymptotic Properties of Bayesian Estimators

Although Bayesian purists would not be concerned with the frequentist properties
of Bayesian procedures, personally I find it reassuring if, for a particular model, a
Bayesian estimator can be shown to be, as a minimum, consistent. Efficiency is also
an interesting concept to examine.

We informally give a number of results, before referencing more rigorous
treatments. We only consider parameter vectors of finite dimension. An important
condition that we assume in the following is that the prior distribution is positive in
a neighborhood of the true value of the parameter.

The famous Bernstein—von Mises theorem states that, with increasing sample
size, the posterior distribution tends to a normal distribution whose mean is the
MLE and whose variance—covariance matrix is the inverse of Fisher’s information.
Let 6 be the true value of a p-dimensional parameter, and suppose we are in the
situation in which the data are independent and identically distributed. Denote the
posterior mean by 8,, = 6,,(Y;,) = E[0 | Y,,] and the MLE by 8,,. Then,

Vi(8, —0) = (8, —8,) +/n(@, — 0)

and we know that ﬁ(@n —0) —4 N,[0,I(0)71], where I(0) is the information
in a sample of size 1 (Sect.2.4.1). It can be shown that /n(6,, — 6,,) —, 0 and so

Vn(8,, — 0) =4 N,[0,1(6)""].

Hence, 6,, is \/n-consistent and asymptotically efficient. It is important to empha-
size that the effect of the prior diminishes as n — co. As van der Vaart (1998,
p. 140) dryly notes, “Apparently, for an increasing number of observations one’s
prior beliefs are erased (or corrected) by the observations.”
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The Bernstein—von Mises theorem is so-called because of the papers by Bernstein
(1917) and von Mises (1931), though the theorem has been refined by a number of
authors. For references and a recent treatment, see van der Vaart (1998, Sect. 10.2).
An early paper on consistency of Bayesian estimators is Doob (1948) and again
there have been many refinements; see van der Vaart (1998, Sect.10.4). An
important assumption is that the parameter space is finite. Diaconis and Freedman
(1986) describe the problems that can arise in the infinite-dimensional case.

3.4 Prior Choice

The specification of the prior distribution is clearly a necessary and crucial aspect of
the Bayesian approach. With respect to prior choice, an important first observation
is that for all @ for which 7(6) = 0, we necessarily have p(@ | y) = 0, regardless of
any realization of the observed data, which clearly illustrates that great care should
be taken in excluding parts of the parameter space a priori.

We distinguish between two types of prior specification. In the first, which we
label as baseline prior specification, we presume an analysis is required in which
the prior distribution has “minimal impact,” so that the information in the likelihood
dominates the posterior. An alternative label for such an analysis is objective Bayes.
For an interesting discussion of the merits of this approach, see Berger (2006). Other
labels that have been put forward for such prior specification include reference, non-
informative and nonsubjective. Such priors may be used in situations (for example,
in a regulatory setting) in which one must be as “objective” as possible. There is
a vast literature on the construction of objective Bayesian procedures, with an aim
often being to define procedures which have good frequentist properties.

An analysis with a baseline prior may be the only analysis performed or,
alternatively, may provide an analysis with which other analyses in which substan-
tive priors are specified may be compared. Such substantive priors constitute the
second type of specification in which the incorporation of contextual information
is required. Once we have a candidate substantive prior, it is often beneficial to
simulate hypothetical data sets from the prior and examine these realizations to see
if they conform to what is desirable. A popular label for analyses for which the
priors are, at least in part, based on subject matter information is subjective Bayes.

3.4.1 Baseline Priors

On first consideration it would seem that the specification of a baseline prior is
straightforward since one can take

m(0) x 1, (3.10)

so that the posterior distribution is simply proportional to the likelihood p(y | 8).
There are two major difficulties with the use of (3.10), however.
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The first difficulty is that (3.10) provides an improper specification (i.e. it does
not integrate to a positive constant < co) unless the range of each element of 0
is finite. In some instances this may not be a practical problem if the posterior
corresponding to the prior is proper and does not exhibit any aberrant behavior
(examples of such behavior are presented shortly). A posterior arising from an
improper prior may be justified as a limiting case of proper priors, though some
statisticians are philosophically troubled by this argument. Another justification for
an improper prior is that such a choice may be thought of as approximating a prior
that is “locally uniform” close to regions where the likelihood is non-negligible (so
that the likelihood dominates) and decreasing to zero outside of this region. Great
care must be taken to ensure that the posterior corresponding to an improper prior
choice is proper. For nonlinear models, for example, improper priors should never be
used (as an example shortly demonstrates). It is difficult to give general guidelines as
to when a proper posterior will result from an improper prior. For example, improper
priors for the regression parameters in a generalized linear model (which are
considered in detail in Chap. 6) will often, but not always, lead to a proper posterior.

Example: Binomial Model

Suppose Y | p ~ Binomial(n, p), with an improper uniform prior on the logit of p,
which we denote 6 = log[p/(1 — p)]. Then, 7(6) o 1 implies a prior on p of

7(p) o [p(1 —p)] 7,

which is, of course, also improper." With this prior an improper posterior results if
y = 0 (or y = n) since the non-integrable spike at p = 0 (or p = 1) remains in the
posterior. Note that this prior results in the MLE being recovered as the posterior
mean.

Example: Nonlinear Regression Model

To illustrate the non-propriety in a nonlinear situation, consider the simple model
Y; | 0 ~ina N [exp(—0z;),0%] (3.11)

fori = 1,...,n, with § > 0 and o assumed known. With an improper uniform
prior on 6, 7(#) = 1, we label the resulting (unnormalized) “posterior” as

a(0 | y) =p(y | 0) x 7(0) = exp |~ 22 D)

I'This prior is sometimes known as Haldane’s prior (Haldane 1948).
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As § — oo,
1 n
0|y) — - ? 3.12
q(0 | y) — exp [ 552 ;:1 y] ; (3.12)

a constant, so that the posterior is improper, because the tail is non-integrable, that is,

Lmﬂﬂy%—m

c

for all . > 0. Intuitively, the problem is that as § — oo the corresponding nonlinear
curve does not move increasingly away from the data, but rather to the asymptote
E[Y | 6] = 0. The result is that a finite sum of squares results in (3.12), even
in the limit. By contrast, there are no asymptotes in a linear model, and so as the
parameters increase or decrease to 00, the fitted line moves increasingly far from
the data which results in an infinite sum of squares in the limit, in which case the
likelihood, and therefore the posterior, is zero. O

To summarize, it is ill-advised to think of improper priors as a default choice.
Rather, improper priors should be used with care, and it is better to assume that they
will lead to problems until the contrary can be shown. The safest strategy is clearly
to specify proper priors, and this is the approach generally taken in this book.

The second difficulty with (3.10) is that if we reparameterize the model in terms
of ¢ = g(0), where g(-) is a one-one mapping, then the prior for ¢ corresponding
to (3.10) is
de
d¢
so that, unless g is a linear transformation, the prior is no longer constant. We
have just seen an example of this with the binomial model. As another example,
consider a variance o2, with prior m(02) oc 1. This choice implies a prior for the
standard deviation, 7(o) o, which is nonconstant. The problem is that we cannot
be “flat” on different nonlinear scales. This issue indicates that a desirable property
in constructing baseline priors is their invariance to parameterization in order to
obtain the same prior regardless of the starting parameterization.

A number of methods have been proposed for the specification of baseline or
non-informative priors (we avoid the latter term since it is arguable that priors are
ever non-informative). Jeffreys (1961, Sect. 3.10) suggested the use of

)

ﬂ@—‘

7(0) o< [1(0)['/?, (3.13)

where I(0) is Fisher’s expected information. This prior has the desirable property
of invariance to reparameterization. The invariance holds in general but is obvious
in the case of univariate . If ¢ = g(6),

2
M@—@@x(%), (3.14)
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where the subscripts now emphasize the parameterization. Consequently, if we
start with

my(¢) o I, (¢)1/2

this implies
1/2

%

_ 1/2
A0

mo(0) o I, [97(9)]

from (3.14). Hence, prior (3.13) results if we use the prescription of Jeffreys, but
begin with ¢. In the case of Y | p ~ Binomial(n,p) the information is I(p) =
n/[p(1 — p)] (Sect.2.4.1). Therefore, Jeffreys prior is 7(p) oc [p(1 — p)]~'/2. This
prior has the advantage of producing a proper posterior wheny = O ory = n, a
property not shared by Haldane’s prior.

Unfortunately, the application of the above procedure to multivariate € can lead
to posterior distributions that have undesirable characteristics. For example, in the
Neyman—Scott problem, the use of Jeffreys prior gives, as n — oo, a limiting
posterior mean that is inconsistent, in a frequentist sense (see Exercise 3.3).

A refinement of Jeffreys approach for selecting priors on a more objective basis is
provided by reference priors. We briefly describe this approach heuristically; more
detail can be found in Bernardo (1979) and Berger and Bernardo (1992). For any
prior/likelihood distribution, suppose we can calculate the expected information
concerning a parameter of interest that will be provided by the data. The more
informative the prior, the less information the data will provide. An infinitely large
sample would provide all of the missing information about the quantity of interest,
and the reference prior is chosen to maximize this missing information.

3.4.2 Substantive Priors

The specification of substantive priors is obviously context specific, but we give a
number of general considerations. Specific models will be considered in subsequent
chapters. In this section we will discuss some general techniques but will not
describe prior elicitation in any great detail; see Kadane and Wolfson (1998),
O’Hagan (1998), and Craig et al. (1998) and the ensuing discussion for more on
this topic which can be thought of as the measurement of probabilities.

When specifying a substantive prior, it is obvious that we need a clear under-
standing of the meaning of the parameters of the model for which we are specifying
priors, and this can often be achieved by reparameterization.

Example: Linear Regression

Consider the simple linear regression E[Y" | 2] = 79 + 71 2. Interpretation is often
easier if we reparameterize as
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E[Y | Z] 260+61(Z—7)

where z = ¢ X x and c is chosen so that the units of z are convenient. Under
this parameterization, 3y is the expected response at z = Z. It will often be
easier to specify a prior for 3 than for 7, the average response at x = 0, which
may be meaningless. The slope parameter, 31, is the change in expected response
corresponding to a c-unit increase in x (1-unit increase in 2).

Example: Exponential Regression

It may be easier to specify priors on observable quantities, before transforming back
to the parameters. For the nonlinear model (3.11), we might specify a prior for the
expected response at x = Z, ¢ = exp(—0 ) to give a prior 7, (¢). The prior for 6 is

mo(0) = 7, [exp(—=07) ] x T exp(-07),

the last term corresponding to the Jacobian of the transformation ¢ — 6. As an
example, one might assume a Be(a, b) prior for ¢, with a and b chosen to give a
90% interval for ¢. O

While the axioms of probability are uncontroversial, the interpretation of proba-
bility has been contested for centuries. In the frequentist approach of Chap. 2, prob-
ability was defined in an objective frequentist sense. If the event A is of interest and
an experiment is repeated n times resulting in n 4 occasions on which A occurs, then

P(A) = lim 4.
n—oo N

In contrast, in the subjective Bayesian worldview, probabilities are viewed as sub-
jective and conditional upon an individual’s experiences and knowledge, although
one may of course base subjective probabilities upon frequencies. Cox and Hinkley
(1974, p. 53) state, with reference to the use of Bayes theorem, “If the prior
distribution arises from a physical random mechanism with known properties,
this argument is entirely uncontroversial,” but continue, “A frequency prior is,
however, rarely available. To apply the Bayesian approach more generally a wider
concept of probability is required . . . the prior distribution is taken as measuring the
investigator’s subjective opinion about the parameter from evidence other than the
data under analysis.”

As alluded to by this last quote, an obvious procedure is to base the prior
distribution upon previously collected data. Ideally, preliminary modeling of such
data should be carried out to acknowledge sampling error. If one believed that the
data-generation mechanism for both sets of data was comparable, then it would
be logical to base the posterior on the combined data (and then once again one
has to decide on how to pick a prior distribution). Often such comparability is not
reasonable, and a conservative approach is to take the prior as the posterior based
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on the additional data, but with an inflated variance, to accommodate the additional
uncertainty. This approach acknowledges nonsystematic differences, but systematic
differences (in particular, biases in one or both studies) may also be present, and this
is more difficult to deal with.

Roughly speaking, so long as the prior does not assign zero mass to any region,
the likelihood will dominate with increasing sample size (as we saw in Sect. 3.3), so
that prior choice becomes decreasingly important. A very difficult problem in prior
choice is the specification of the joint distribution over multiple parameters. In some
contexts one may be able to parameterize the model so that one believes a priori that
the components are independent, but in general this will not be possible.

Due to the difficulties of prior specification, a common approach is to carry out
a sensitivity analysis in which a range of priors are considered and the robustness
of inference to these choices is examined. An alternative is to model average across
the different prior models; see Sect. 3.10.

3.4.3 Priors on Meaningful Scales

As we will see in Chaps. 6 and 7, loglinear and linear logistic forms are extremely
useful regression models, taking the forms

logp = Bo+ Bizr + ... + Brak

log <ﬁ) = fo+ P1x1+ ...+ Prak

retrospectively, where ;1 = E[Y]. Both forms are examples of generalized linear
models (GLMs) which are discussed in some detail in Chap. 6.

Often there will be sufficient information in the data for 8 = [5, 51, ..., Bk]"
to be analyzed using independent normal priors with large variances (unless, for
example, there are many correlated covariates). The use of an improper prior for 3
will often lead to a proper posterior though care should be taken. Chapter 5 discusses
prior choice for the linear model and Chap. 6 for GLMs, and Sect. 6.8 provides an
example of an improper posterior that arises in the context of a Poisson model with
a linear link.

If we wish to use informative priors for 3, we may specify independent normal
priors, with the parameters for each component being obtained via specification of
two quantiles with associated probabilities. For loglinear and logistic models, these
quantiles may be given on the exponentiated scale since these are more interpretable
(as the rate ratio and odds ratio, respectively). If 8, 65 are the quantiles and p1, p2
are the associated probabilities, then the parameters of the normal prior are

W= M (3.15)

Z1 — 22

o= M (3.16)
21 — %2
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where z; and zp are the quantiles of a standard normal random variable. For
example, in an epidemiological context with a Poisson regression model, we may
wish to specify a prior on a relative risk parameter, exp(/51) which has a median of 1
(corresponding to no association) and a 95% point of 3 (if we think it is unlikely that
the relative risk associated with a unit increase in exposure exceeds 3). If we take
01 = log(1l) and 62 = log(3), along with p; = 0.5 and p2 = 0.95, then we obtain
B1 ~ N(0,0.6682). In general, less care is required in prior choice for intercepts in
GLMs since they are very accurately estimated with even small amounts of data.

Many candidate prior distributions contain two parameters. For example, a beta
prior may be used for a probability and lognormal or gamma distributions may be
used for positive parameters such as measures of scale. A convenient way to choose
these parameters is to, as above, specify two quantiles with associated probabilities
and then solve for the two parameters. For example, suppose we wish to specify a
beta prior, Be(ay, a2), for a probability p, such that the p; and p2 quantiles are ¢;
and ¢2. Then we may solve

[p1 —Pr(p < 1 | a1,a2)]? + [p2 —Pr(p < g2 | a1,a2)]* =0

for a1, as. For example, taking p; = 0.05,p2 = 0.95,q; = 0.1,¢2 = 0.6 yields
a1 = 2.73, as = 5.67, and Fig. 3.1 shows the resulting density.

3.4.4 Frequentist Considerations

We briefly give a simple example to illustrate the frequentist bias-variance trade-off
of prior specification, by examining the mean squared error (MSE) of a Bayesian
estimator. Consider data Y;, ¢ = 1,...,n, with Y; independently and identically
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Fig. 3.2 Mean squared error
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distributed with E[Y; | u1] = g and var(Y; | ) = o with o2 known. The asymptotic
distribution of the sample mean is

V(Y — u) —a N(0,0?).

We treat this distribution as the likelihood and examine a Bayesian analysis with
prior
o~ N(m,v).

The posterior is
— 0'2
w|Y, —aN <wnYn + (1 —wy)m, wn—>
n

where
nv

Wy = ——.
nv + o2

We first observe that the posterior mean estimator is consistent since w,, — 1 as
n — 00), so long as v > 0, but the estimator has finite sample bias if v1 # 0. The
mean squared error of the posterior mean estimator is

MSE = Variance + Bias®
o2
wn? + [wnllf + (1 - wn)m — MK

]2

o 2 2
:wng—i-(l—wn) (m — p)=.

Figure 3.2 illustrates the MSE as a function of . for two different prior distributions
that are both centered at zero but have different variances of v = 1, 3. For simplicity
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we have chosen 02 /n = 1 with n = 9 (so that the MSE of the sample mean is 1, and
is indicated as the solid horizontal line). The trade-off when specifying the variance
of the prior is clear; if the true y is close to m, then reductions in MSE are achieved
with a small v, though the range of ;1 over which an improved MSE is achieved is
narrower than with the wider prior. At values of x of m & /v + 02 /n, the MSE of
the sample mean and Bayesian estimator are equal. The variance of the estimator is
given by the lowest point of the MSE curves, and the bias dominates for large |u|.

Example: Lung Cancer and Radon

As an example of prior specification, we return to the simple model considered
repeatedly in Chap. 2 with likelihood

Y | B ~ina Poisson | E; exp(fo + Bix;) |,

where recall that Y; are counts of lung cancer incidence in Minnesota in 1998—
2002, and z; is a measure of residential radon in county %, ¢ = 1,...,n. The
obvious improper prior here is 7(3) o 1 (and results in a proper posterior for this
likelihood).

To specify a substantive prior, we need to have a clear interpretation of the pa-
rameters, and 3y and 31 are not the most straightforward quantities to contemplate.
Hence, we reparameterize the model as

Y | @ ~ina Poisson (E;6007' "),
where 8 = [0, 61]" so that
o =E[Y/E | 2 = 7] = exp(Bo + A1 7)

is the expected standardized mortality ratio in an area with average radon. The
standardization that leads to expected numbers E implies we would expect 6y to
be centered around 1. The parameter §; = exp(/31) is the relative risk associated
with a one-unit increase in radon. Due to ecological bias, studies often show
a negative association between lung cancer incidence and radon (and it is this
ecological association we are estimating for this illustration and not the individual-
level association). We take lognormal priors for 6y and #; and use (3.15) and (3.16)
to deduce the lognormal parameters. For 6, we take a lognormal prior with 2.5%
and 97.5% quantiles of 0.67 and 1.5 to give 4 = 0,0 = 0.21. For 6; we assume
the relative risk associated with a one-unit increase in radon is between 0.8 and 1.2
with probability 0.95, to give u = —0.02, 0 = 0.10. We return to this example later
in the chapter.
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3.5 Model Misspecification

The behavior of Bayesian estimators under misspecification of the likelihood has
received less attention than frequentist estimators. Recall the result concerning the
behavior of the MLE 6,, under model misspecification summarized in (2.27), which
we reproduce here:

Vi (B, —0;) —a N, [0, T K(J)7Y

where

2

0
J =E; {W log p(Y" | GT):|

K=E Ka%logp(y | gT)> ((%logp(Y | OT))T]

with @, the true 6 and p(Y | 6) the assumed model. Let 6,, = E[0 | Y] be the
posterior mean which we here view as a function of Y,, = [Y3,...,Y,]". From

Sect. 3.3, \/ﬁ(én — §n) —p 0, and hence
Vi(0, —0;) —a N, [0, K (J)7!].

This has important implications since it shows that, asymptotically, the effect of
model misspecification on the posterior mean is the same as its effect on the MLE. If
the likelihood is of linear exponential family form, correct specification of the mean
function leads to consistent estimation of the parameters in the mean model (see
Sect. 6.5.1 for details). As with the reported variance of the MLE, the spread of the
posterior distribution could be completely inappropriate, however. While sandwich
estimation can be used to “correct” the variance estimator for the MLE, there is no
such simple solution for the posterior mean, or other Bayesian summaries.

With respect to model misspecification, the emphasis in the Bayesian literature
has been on sensitivity analyses, or on embedding a particular likelihood or prior
choice within a larger class. Embedding an initial model within a continuous class
is a conceptually simple approach. For example, a Poisson model may be easily
extended to a negative binomial model.

A difficulty with considering model classes with large numbers of unknown
parameters is that uncertainty on parameters of interest will be increased if a simple
model is closer to the truth. In particular, model expansion may lead to a decrease in
precision, as we now illustrate. As we have seen, as n increases, the prior effect is
negligible and the posterior variance is given by the inverse of Fisher’s information,
(Sect.3.3). Suppose that we have k parameters in an original model, and we are
considering an expanded model with p parameters, and let

[111 I12]
Iy Iy |’
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where I7; is a k x k matrix corresponding to the information on the parameters
of the simpler model (which includes the parameters of interest), and I is the
(p — k) x (p — k) information matrix concerning the additional parameters in the
enlarged model. In the simpler model, the information on the parameters of interest
is I, while for the enlarged model, it is

I — 1121521121,

which is never greater than I1;. This is an oversimplified discussion (as we shall
see in Sect. 5.9), but it highlights that there can be a penalty to pay for specifying an
overly complex model.

3.6 Bayesian Model Averaging

If a discrete number of models are considered, then model averaging provides an
alternative means of assessing model uncertainty. The Bayesian machinery handles
multiple models in a very straightforward fashion since essentially the unknown
model is treated as an additional discrete parameter. Let My, ..., M ; denote the J
models under consideration and 6 the parameters of the jth model. Suppose, for
illustration, there is a parameter of interest ¢ (which we assume is univariate) that
is well defined for each of the J models under consideration. The posterior for ¢ is
a mixture over the J individual model posteriors:

J

p(oly) = ple| M;,y)Pr(M; | y)

J=1

where

p(o| Mj,y) = /p(¢ | 05, M;,y)p(0; | M;,y) do,

- |1Mj) [ 906165005, 9)0tw | ,.34,)0(6; | 115 )
PI"(Mj | y) _ p(y | ]ZJ(?)J?Y(MJ)
J oy | 65, M;)p(8; | M;) 6, Pr(M;)

|
p(y)

and with Pr(M;) the prior belief in model j and p(@; | M;) the prior on the
parameters of model M ;. The marginal probabilities of the data under the different
models are calculated as

ply | M;) = / Py | 65, M;)p(8; | My) db,



3.6 Bayesian Model Averaging 101

with
J
p(y) = > p(y | M;) Pr(M).
j=1
To summarize the posterior for ¢, we might report the posterior mean

El¢ |y] = ZEGﬁIy, | x Pr(M; | y),

which is simply the average of the posterior means across models, weighted by the
posterior weight received by each model. The posterior variance is

var(¢ | y) = Zvarﬂﬁly, ;) x Pr(M; | y)

J
- Z {E[¢ | y, M;] — E[¢ | y]}* x Pr(M; | y)

which averages the posterior variances concerning ¢ in each model, with the
addition of a term that accounts for between-model uncertainty in the mean.

Although model averaging is very appealing in principle, in practice there are
many difficult choices, including the choice of the class of models to consider and
the priors over both the models and the parameters of the models. Summarization
can also be difficult because the parameter of interest may have different interpre-
tations in different models. For example, in a regression setting, suppose we fit the
single model

EY | z1,29] = fo + frz1 + Pa2

with [3; the parameter of interest. The interpretation of /31 is as the average change in
response corresponding to a unit increase in z1, with x5 held constant. If we average
over this model and the model with z; only, then the usual “xy held constant”
qualifier is not accurate, so a phrase such as “allowing for the possibility of x4
in the model” may be instead used. Performing model averaging over models which
represent different scientific theories is also not appealing if the search for a causal
explanation is sought. If prediction is the aim, then model averaging is much more
appealing since parameter interpretation is often irrelevant (see Chap. 12). Another
disadvantage of model averaging is that it may encourage the user to believe they
have accounted for “all” uncertainty in which covariates to include in the model
which is a dangerous conclusion to draw.
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3.7 Implementation

In this section we provide an overview of methods for evaluating the integrals
required for performing Bayesian inference. We begin, in Sect. 3.7.1, by describing
so-called conjugate situations in which the prior and likelihood combination is
constructed in order for the posterior to be of the same form as the prior.
Unfortunately, in a regression setting, conjugate analyses are rarely available beyond
the linear model. In Sect. 3.7.2 the analytical Laplace approximation is described.
Quadrature methods are considered in Sect. 3.7.3 before we turn to a method that
combines Laplace and numerical integration in a very clever way, in Sect. 3.7.4, to
give a method known as the integrated nested Laplace approximation INLA). More
recently developed sampling-based (Monte Carlo) approaches have transformed
the practical application of Bayesian methods, and we therefore describe these
approaches in some detail. In Sect.3.7.5, importance sampling Monte Carlo is
considered, and in Sects.3.7.6 and 3.7.7, direct sampling from the posterior is
described. MCMC algorithms are particularly important, and to these we devote
Sect. 3.8.

Beyond the crucial importance of integration in Bayesian inference, this material
is also relevant in a frequentist context. Specifically, in Part III of this book, we
will consider nonlinear and generalized linear mixed effects models for which
integration over the random effects is required in order to obtain the likelihood for
the fixed effects.

3.7.1 Conjugacy

So-called conjugate prior distributions allow analytical evaluation of many of the
integrals required for Bayesian inference, at least for certain convenient parameters.
A conjugate prior is such that p(@ | y) and p(0) belong to the same family. We
assume dim(6@) = p. This definition is not adequate since it will always be true given
a suitable definition of the family of distributions. To obtain a more useful class,
we first note that if T'(Y") denotes a sufficient statistic for a particular likelihood
p(-|8), then

p(0|y) =p(0|t) ocp(t|0)p(0).
This allows a definition of a conjugate family in terms of likelihoods that admit a

sufficient statistic of fixed dimension.
The p-parameter exponential family of distributions has the form:

P(yi | 0) = f(yi)g(0) exp [A(0) u(yi)],

where, in general, A(6) and u(y;) have the same dimension as 6 and \(0) is called
the natural parameter (and in a linear exponential family, we have u(y;) = y;). For
n independent and identically distributed observations from p(- | 6),
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Table 3.1 Conjugate priors and associated posterior distributions, for various
likelihood choices

Prior Likelihood Posterior

0 ~ N(m,v) Y |0 ~N(0,0%/n) 0]y ~ Nwy+ (1 —w)m,wo?/n]
o2 known with w = v/(v + 02 /n)

0 ~ Be(a, b) Y | 6 ~ Bin(n, 0) 0|y~Be(a+y,b+n—y)

0 ~ Ga(a, b) Y | 6 ~ Poisson(0) 0|y~ Gala+y,b+1)

0 ~ Ga(a,b) Y | 6 ~ Exp(0) 0]y~ Gala+y,b+1)

p(y|6) = [H f (yi)] 9(6)"™ exp [X(0)"t(y)] ,

where

The conjugate prior density is defined as
p(0) = c(n,v) x g(8)" exp [A(6)"v],
where 77 and v are specified, a priori. The resulting posterior distribution is
PO |y) = c(n+n,v+1) x g(6)" " exp {A(0)'[v +t(y)]}

demonstrating conjugacy. Comparison with p(y; | 0) indicates that » may be viewed
as a prior sample size giving rise to a sufficient statistic v.

The above derivations are often not required if one wishes to simply obtain the
conjugate distribution for a given likelihood, since it can be determined quickly via
inspection of the kernel of the likelihood. The predictive distribution is often more
complex to derive, however, but is straightforward under the above formulation. In
the case of a conjugate prior, for new observations Z = [Z1, ..., Z,,] arising as
an independent and identically distributed sample from p(Z | ), the predictive
distribution is

cln+n,v+t(y)]
cn+n+m,v+tly, 2)]

p(z | y) = le

Table 3.1 gives the conjugate choices for a variety of likelihoods.

Beyond the normal linear model, the direct practical use of conjugacy in a
regression setting is limited, but as we will see subsequently, the material of this
section is very useful when implementing direct sampling or MCMC approaches.
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Example: Binomial Likelihood

Suppose we have a single observation from a binomial distribution, Y | 6 ~
Binomial(n, 6):

Py 0) = (Z) o (1 — o).

By direct inspection we recognize that the conjugate prior is a beta distribution, but
for illustration we follow the more long-winded route. In exponential family form,

ply | 0) = (Z) (1—6)"exp {ylog (%)] :

or, in terms of the natural parameter A = A(¢) = log[0/(1 — 0)],

Py | N) = <Z) 11+ exp(V)] ™ exp(yA).

The conjugate prior for )\ is therefore identified as
m(A) = ¢(n, v)[1 + exp(A)] ™" exp [LA] (3.17)

so that the prior for 6 is

m(0) = ¢(n,v)(1 — 0)" exp |:’U log 10%0} ﬁ

I'n+2)

_ eu—l 1—-6 n—v—1
I'v+1D)I'n—v+1) ( ) ’

the Be(a, b) distribution with parameters a = v,b = 1 — v. An interpretation of

these parameters is that a prior sample size = a + b yields the prior sufficient

statistic v = a. It follows immediately that the posterior is Be(a + y,b + n — y).
We write

a+y

a+b+n
a
a

E[f | y] =

L
—nw—i— —I—b(l w)

where w = n/(a + b + n), so that the posterior mean is a weighted combination of
the MLE, 6 = y/n, and the prior mean. Similarly,

at+y—1
modelf [} = 2
-1
= gw* + a—(l — w*),

n a+b—2
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where w* = n/(a+b+n—2), so that the posterior mode is a weighted combination
of the prior mode (if it exists) and the MLE. The choice of a uniform distribution,
a = b = 1, results in the posterior mode equaling the MLE, as expected in this
one-dimensional example.

The marginal distribution of the data, given likelihood and prior, is the beta-
binomial distribution

r b r I'(b -
Pry) = (" (at+b) Ilat+y)lb+n—y)
y ) I'(a)(b) I'la+b+n)
fory = 0,...,n.If @ = b = 1, the prior predictive is uniform over the space of
outcomes: p(y) = (n+ 1)L fory = 0,1,...,n, in line with intuition.

The mean of the prior predictive is

a

EY) = EE(Y |0)] = n x .

with variance

a+b+n
var(Y) = var, [E(Y | 0)] + Ey[var(Y | 6)] = nE(8)[1 — E(0)] x %
illustrating the overdispersion relative to var(Y | 6) = nf(1 — ), if n > 1. If
n = 1, there is no overdispersion since we have a single Bernoulli random variable
for which the variance is always determined by the mean.
The predictive distribution for a new trial, in which Z = 0,1, ..., m denotes the
number of successes and m the number of trials, is

)

p(Zly)—<m> T la+b+n) Fla+b+2)l(b+n—y+m-—2)

a+y)l'(b+n—y) I'la+b+n+m)

z

which is another version of the beta-binomial distribution and is an overdispersed
binomial for which

a—+y
[Z |y] =m x E[0 | y] mX
and
a+b+n+m
Var(Z|y)—m><E(9|y)><[1—E(9|y)]Xm-

As n — oo, with y/n fixed, the predictive p(z | y) approaches the binomial distri-
bution Bin(m, y/n). This makes sense since, under correct model specification, for
large n we effectively know 6, and so binomial variability is the only uncertainty
that remains.
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3.7.2 Laplace Approximation

In this section let

1= /OO exp[nh(0)] do, (3.18)

— 00

denote a generic integral of interest, and we suppose initially that € is a scalar.
Depending on the form of A(-), (3.18) can correspond to the evaluation of a variety
of quantities of interest including p(y) and posterior moments. The n appearing
in (3.18) is included solely to make the asymptotic arguments more transparent.

Let 6 denote the mode of h(-). We carry out a Taylor series expansion about 6,
assuming that h(-) is sufficiently well behaved for this operation; in particular we
assume that at least two derivatives exist. The expansion is

nh() =n i (0 - 0)F h ) (6),
k=0

k!

where (%) () represents the kth derivative of h(-) evaluated at 6. Hence,

e [ 0
I—/_Ooexp [nkZ_OTh(k)(H)] de

2 exp [nh(é)} /

— 00

oo

exp [”h;) @)(0 — 5)2} e,

where we have ignored quadratic terms and above in the Taylor series and exploited

() = 0. Writing v = —1/h(?) (0) gives the estimate

o\ 1/2
7”’) : (3.19)

T=exp {nh(@)} <—

n
which is known as the Laplace approximation. The error is such that

I
7\:1+On_1.
7 (n™)

Suppose we wish to evaluate the posterior expectation of a positive function of
interest ¢ (), that is,

_ J expllog ¢(8) + logp(y | 0) + log 7(8) + log(df/d¢)] db
Jexpllogp(y | 0) +logm(6)] do
_ [ exp[nh(8)] d6
[ expnha(8)] do

Elo(0) | y]
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where the Jacobian has been included in the numerator of the first line. Application
of (3.19) to numerator and denominator gives

=~ ﬂl exp ’thl 6‘1

Bip(o) | y] = 221G

Vo explnhg(6o)]

where 6; is the mode of h(-) and 7; = —1/h§-2)(§j),j = 0, 1. Further,

E[¢(0) | y] = E[¢(0) | y][L + O(n?)],
since errors in the numerator and denominator cancel (Tierney and Kadane 1986).
If ¢ is not positive then a simple solution is to add a large constant to ¢, apply

Laplace’s method, and subtract the constant.
Now consider multivariate @ with dim(@) = p and with required integral

I /Z---/Zexp[nh(@)] a0y - - - do,.

The above argument may be generalized to give the Laplace approximation
R - 2 p/2 N
T=exp [nh(@)} (—”) |7 |12, (3.20)
n

where  is the maximum of /(-) and © is the p x p matrix whose (4, j)th element is

__9%h
96,00,

9

An important drawback of analytic approximations is the difficulty in per-
forming error assessment, so that in practice one does not know the accuracy
of approximation. The evaluation of derivatives can also be analytically and
numerically troublesome. These shortcomings apart, however, we will see that these
approximations are useful as components of other approaches, such as the scheme

described in Sect. 3.7.4, and for suggesting proposals for importance sampling and
MCMC algorithms.

3.7.3 Quadrature

We consider numerical integration rules for approximating integrals of the form

- [,
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via the weighted sum
=2 wf(t),
i=1

where the points ¢; and weights w; define the integration rule. So-called Gauss rules
are optimal rules (in a sense we will define shortly) that are constructed to integrate
weighted functions of polynomials accurately. Specifically, if p(t) is a polynomial
of degree 2m — 1, then the Gauss rule (¢;, w;) is such that

> win(t:) = / w(t)p(t) dt.

It can be shown that no rule has this property for polynomials of degree 2m, showing
the optimality of Gauss rules. Different classes of rule emerge for different choices
of weight function. We describe Gauss—Hermite rules that correspond to the weight
function

w(t) = exp(—t?) (3.21)

which is of obvious interest in a statistics context. If the integral is of the form

I= /g(t) exp(—t?) dt

and f(¢) can be well approximated by a polynomial of degree 2m — 1, we would
expect an m-point Gauss—Hermite rule to be accurate.
The points of the Gauss—Hermite rule are the zeroes of the Hermite polynomials
H,,(t) with weights
2m=tm\\ /7

O A 1 ()P

In general, the points of the rule need to be located and scaled appropriately.
Suppose that i and o are the approximate mean and standard deviation of 6, and let
t = (6 — p)//20. The integral of interest is

I= /f(o) do = /g(,u—l— V20t)V20e " dt

and applying the transformation yields
I=> wig(t)),
i=1

where w) = wi\/ﬁa and {7 = p + \/§ati.
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In practice 1 and o are unknown but may be estimated at the same time as I is
evaluated to give an adaptive Gauss—Hermite rule (Naylor and Smith 1982).
Suppose 8 is two-dimensional, and we wish to evaluate

Iz/f(e) d0://f(91,92) dfs d91:/f*(91)d91

where
7160 = [ £(61.62) doe.
We form
mi
I=" wif*(0u),
i=1
with
ma
[ (0) = Zujfwu, 025)
j=1
to give

mi ma

T=Y"5 " wiu, f (01, 02),

i=1 j=1

which is known as a Cartesian Product rule. Such rules can provide very accurate in-
tegration with relatively few points, but the number of points required is prohibitive
in high dimensions since for p parameters and m points, a total of m? points are
required. Consequently, these rules tend to be employed when p < 10.

In common with the Laplace method, quadrature methods do not provide an
estimate of the error of the approximation. In practice, consistency of the estimates
across increasing grid sizes may be examined.

3.7.4 Integrated Nested Laplace Approximations

We briefly review the INLA computational approach which combines Laplace
approximations and numerical integration in a very efficient manner; see Rue
et al. (2009) for a more extensive treatment. Consider a model with parameters
6 that are assigned normal priors, with the remaining parameters being denoted
65 with G = dim(#;) and V = dim(65). Assume for ease of explanation that
the normal prior is centered at zero with variance—covariance matrix X, N (0, X),
where X' depends on elements in @5. Many models fall into this class including
generalized linear models (Chap. 6) and generalized linear mixed models (Chap. 9).
The posterior is
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n

(01,02 | y) o< (61 | 03)m(02) [ [ p(y: | 01,62)

=1

_ 1 _ “
x 7(60) | X(82) |7V/? exp —5012(62) '01 + > logp(yi | 61,62)

i=1

(3.22)

Of particular interest are the posterior univariate marginal distributions 7 (614 | y),
g=1,...,G,and w(02, | y),v =1,..., V. The “normal” parameters 0, are dealt
with by analytical approximations (as applied to the term in the exponent of (3.22),
conditional on specific values of 85). Numerical integration techniques are applied
to 6, so that V' should not be too large for accurate inference (Sect.3.7.3). For
elements of 81 we write

(01 | y) = /w(el | 05, ) x 7(05 | y) 465

which may be evaluated via the approximation

(01 | y) = / #(01y | 03.y) x 7(02 | y) A

K
~ Y R0y | 057, y) x 7O | y) x Ay (3.23)
k=1
for a set of weights Ay, k = 1, ..., K. Laplace or related analytical approximations

are applied to carry out the integration (over 814, g’ # ¢) required for evaluation of
7(61g | 02,y). To produce the grid of points {0?), k = 1,..., K} over which
numerical integration is performed, the mode of 7(0 | y) is located and the
Hessian is approximated, from which the grid of points {OgC), k=1,...,K},
with associated weights Ay, is created and used in (3.23), as was described in
Sect. 3.7.3. The output of INLA consists of posterior marginal distributions, which
can be summarized via means, variances, and quantiles.

3.7.5 Importance Sampling Monte Carlo

The first sampling-based technique we describe directly estimates the required inte-
grals. To motivate importance sampling Monte Carlo, consider the one-dimensional
integral

I= /0 £(0) do = E[£(6)),



3.7 Implementation 111

where the expectation is with respect to the uniform distribution, U(0, 1). This
formulation suggests the obvious estimator

with ) ~,iq U(0,1),t =1,..., m. By the central limit theorem (Appendix G),

~

M(Im - I) —d N[O,Var(f)],

where var(f) = E[f(0)?]—I? and we have assumed the latter exists. The form of the
variance reveals that the efficiency of the method is determined by how variable the
function f is, with respect to the uniform distribution over [0, 1]. If f were constant,
we would have zero variance!

To achieve an approximately constant function, we can trivially rewrite the

integral as
I = /f(@) dé _/%9(9) df =E, [%} , (3.24)

where we no longer restrict 4 to lie in (0, 1). Define the estimator

1 < f(0
EZ

t=1 g

where 0®) ~;4 g(-), with

~

Vm(Iy —I) —q N[0, var(f/g)],

2
(i> —I%
g
The latter may be estimated by

s L5 (10,

and

var(f/g) = E,

Consequently, the aim is to find a density that closely mimics f (up to proportion-
ality), so that the Monte Carlo estimator will have low variance because samples
from important regions of the parameter space (where the function is large) are
being drawn, hence the label importance sampling Monte Carlo. A great strength of
importance sampling is that it produces not only an estimate of I but a measure of
uncertainty also. Specifically, we may construct the 95% confidence interval
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Vvar(f/g) + Vvar(f/g)
m— 1.96—F—"=—— 1, + 1.96—F=— . (3.25)
vm vm

It may seem strange to be utilizing an asymptotic frequentist interval estimate when
evaluating an integral for Bayesian inference, but in this context the “sample size” m
is controlled by the user and is large so that an asymptotic interval is uncontroversial
(since a flat prior on I would give the same Bayesian interval).

Efficient use of importance sampling critically depends on finding a suitable g(-).
From the form of var(f/g), it is clear that if the support of 6 is infinite, g(-) must
dominate in the tails; otherwise, the variance will be infinite and the estimate will
not be useful in practice (even though the estimator is unbiased). It is also desirable
to have a g(-) which is computationally inexpensive to sample from. Student’s ¢, or
mixtures of Student’s ¢ distributions (West 1993), perhaps with iteration to tune the
proposal, are popular.

3.7.6 Direct Sampling Using Conjugacy

The emergence of methods to sample from the posterior distribution have revo-
lutionized the practical applicability of the Bayesian inferential approach. Such
methods utilize the duality between samples and densities: Given a sample, we can
reconstruct the density and functions of interest, and given an arbitrary density, we
can almost always generate a sample, given the range of generic random variate
generators available. With respect to the latter, the ability to obtain direct samples
from a distribution decreases as the dimensionality of the parameter space increases,
and MCMC methods provide an attractive alternative. However, as discussed in
Sect. 3.8, a major practical disadvantage to the use of MCMC is that the generated
samples are dependent which complicates the calculation of Monte Carlo standard
errors. Automation of MCMC algorithms is also not straightforward since an
assessment of the convergence of the Markov chain is required. Further, it is not
straightforward to calculate marginal densities such as (3.5) with MCMC. For
problems with small numbers of parameters, direct sampling methods provide a
strong competitor to MCMC, primarily because independent samples from the
posterior are provided and no assessment of convergence is required.

Suppose we have generated independent samples {H(t),t = 1,...,m} from
p(0 | y), with 8 = [th), ey 91@]; we describe how such samples may be used
for inference. The univariate marginal posterior for p(; | y) may be approximated
by the histogram constructed from the points H‘Et), t = 1,..., m. Posterior means
E[f; | y] may be approximated by

1 m
9 |y Ezet)u
t=1
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with other moments following in an obvious fashion. Coverage probabilities of the
form Pr(a < 0; < b| y) are estimated by

P(a<9 <bly) = %i[(a<9 <b)
t=1

with I(-) representing the indicator function which is 1 if its argument is true and
0 otherwise. The central limit theorem (Appendix G) allows the accuracy of these
approximations to be simply determined since the samples are independent.

We discuss how to estimate the standard error associated with the estimate

Lim = 1 > oW (3.26)

of u = E[0 | y]. By the strong law of large numbers, fi,, —>4.s. p as m — 0o, and
the central limit theorem (Appendix G) gives

Vm(fim = 1) =a N(0,0%)

where 02 = var(f | y) (assuming this variance exists). The Monte Carlo standard

error is o //m, with consistent estimate of o:

~ 1 ~
B = | =S (00) 2
t=1
By Slutsky’s theorem (Appendix G)
Bm =1 NG,1)

Um/\/_

as m — oo. An asymptotic confidence interval for y is therefore

~

fim +1.96 x 2.

Jm

We may also wish to obtain standard errors for functions that are not simple expec-
tations. For example, consider the posterior variance of a univariate parameter 6:

o =var(d | y) = E[(§ — p)* | y].

where 1 = E[ | y]. An obvious estimator is

1 m
=—) (¥ —p
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where [i,, is given by (3.26). Now,

(5] []) e (G [ 20 ])

where 15 = E[(6 — p1)7 | y] is the jth central moment, j = 3, 4 (where we assume
that these quantities exist). The standard error of 2 is estimated by

~ ~4
,LL4,m —Om

m

(3.27)

~

where i}, = £ 37" (0) — [i,,)* which can, unfortunately, be highly unstable.
Therefore, accurate interval estimates for o2 require larger sample sizes than are
needed for accurate estimates for u.

Once samples from p(@ | y) are obtained, it is straightforward to convert to
samples for a parameter of interest g(0) via g(6'?)). This property is important
in a conjugate setting since although we have analytical tractability for one set of
parameters, we may be interested in functions of interest that are not so convenient.
For example, with likelihood Y | # ~ Binomial(n, #) and prior § ~ Be(a,b), we
know that 6 | y ~ Be(a + y,b + n — y). However, suppose we are interested in the
odds g(6) = 6/(1 — 6). Given samples #*) from the beta posterior, we can simply
form g(6)) = 6 /(1 — M), t = 1,...,m. As an aside, in this setting, for a
Bayesian analysis with a proper prior, the realizations Y = 0 or Y = n do not cause
problems, in contrast to the frequentist case in which the MLE for g(6) is undefined.

3.7.7 Direct Sampling Using the Rejection Algorithm

The rejection algorithm is a generic and widely applicable method for generating
samples from arbitrary probability distributions.

Theorem (Rejection Sampling).
Suppose we wish to sample from the distribution

__Iw
1) = T

and we have a proposal distribution g(-) for which

W
M =sup g9(x)

< 0

Then the algorithm:
1. Generate U ~ U(0, 1) and, independently, X ~ g(-).



3.7 Implementation 115

2. Accept X if

otherwise return to 1,

produces accepted points with distribution f(z), and the acceptance probability is

_ [ () dx'

Pa i

Proof. The following is based on Ripley (1987). We have
Pr(X < x N acceptance ) = Pr(X < z)Pr( acceptance | X < x)

= / g(y) Pr( acceptance | y) dy

— 00

= [ooagy= [

The probability of acceptance is
e} *
Pr(acceptance) = / fT(y)dy = Pq.

The number of iterations until accepting a point is a geometric random variable with
probability p,. The expected number of iterations until acceptance is p; L. It follows
that

Pr(X < z | acceptance) = Z Pr( acceptance on the ith trial )
i=1

e i [C ), 1T (y)
—;(1—%) 1LM—M dy—a[mwdy

___M S ) D
Sy e e ML

as required. O

We describe a rejection algorithm that is convenient for generating samples from
the posterior (Smith and Gelfand 1992). Let 8 denote the unknown parameters, and
assume that we can evaluate the maximized likelihood

M= sgpp(y 19) =p(y | 0)
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where 8 is the MLE. The algorithm then proceeds as follows:

1. Generate U ~ U(0, 1) and, independently, sample from the prior, 8 ~ 7(8).
2. Accept 0 if

otherwise return to 1.

The probability that a point is accepted is

po = L PW10)7(0) 6 _ ply)

¢ M M

This algorithm can be very easy to implement since finding the MLE can often be
carried out routinely. We need then only generate points from the prior and evaluate
the likelihood at these points. Rejection sampling from the prior is very intuitive;
the prior supplies the points which are then “filtered out” via the likelihood.

The empirical rejection rate can be used to derive the normalizing constant as

p(y) = M x pa (3.28)

which may be useful for model assessment/selection (Sect.3.10). If we desire m
samples from the posterior, the number of generations required from the prior 7(-) is
m+m* (where m* is the number of rejected points), and m* is a negative binomial
random variable (Appendix D). The MLE of p, is m/(m + m*).

An alternative importance sampling estimator of the normalizing constant that is
more efficient than (3.28) is

1 m+m*

y) = —— ot 2
py) = t; p(y [ 6"), (3.29)
where 8 ~.;4 m(-), t = 1,...,m + m*. Notice that there is no rejection

of points associated with this calculation so that all m + m™* prior points are
used. Although (3.29) is the more efficient estimator, (3.28) provides an alternative
estimator as a by-product that is useful for code checking. The estimator (3.28)
assumes that all normalizing constants are included in M. If the maximization has
been carried out with respect to M* = p*(y | 8) where p*(y | 8) = p(y | 8)/c,
then we must instead use the estimate

p(y) = ¢ X M* X p,. (3.30)

Posterior moments can be estimated directly as averages of the accepted points,
or we may implement importance sampling estimators that use all points generated
from the prior. For example, the posterior mean

_ JOpy | O)m(6) b _ Eoply |6)]
oy | 0)m(©)dd — Elp(y|0)]

E[0 | y]



3.7 Implementation 117

may be estimated by

Bo | y) = i iz 00p(y | 00)
S PI)

m—+m* t=1

)

where () ~,,4 (), t=1,...,m+m*

Clearly we need a proper prior distribution to implement the above algorithm.
The efficiency of the algorithm will depend on the correspondence between the
likelihood and the prior, as measured through p(y). For large n, the algorithm will
become less efficient since the likelihood becomes increasingly concentrated, and
so prior points are less likely to be accepted (which is another manifestation of the
prior becoming less important with increasing sample size, Sect. 3.3).

The rejection algorithm that samples from the prior does not need the functional
form of the prior to be available. As an example, Wakefield (1996) used a predictive
distribution from a Bayesian analysis as the prior for the analysis of a separate
dataset; samples from the predictive distribution could be simply generated, even
though no closed form was available for this distribution.

Example: Poisson Likelihood, Lognormal Prior

We illustrate some of the technique described in the previous sections using a
Poisson likelihood with data from a geographical cluster investigation carried out
in the United Kingdom (Black 1984). The Sellafield nuclear site is located in the
northwest of England on the coast of West Cumbria. Initially, the site produced
plutonium for defense purposes and subsequently carried out the reprocessing
of spent fuel from nuclear power stations in Britain and abroad and stored and
discharged to sea low-level radioactive waste. Seascale is a village 3 km to the south
of Sellafield and had y = 4 cases of lymphoid malignancy among 0—14 year olds
during 1968-1982, compared with E = 0.25 expected cases (based on the number
of children in the region and registration rates for the overall northern region of
England). A question here is whether such a large number of cases could have
reasonably occurred by chance. There is substantial information available on the
incidence of childhood leukemia across the United Kingdom as a whole.

We assume the model Y | § ~ Poisson[E exp(6)], where 6 is the log relative
risk (the ratio of the risk in the study region, to that in the northern region), the
MLE of which is § = log(16) = 2.77 with asymptotic standard error 0.25.
We assume an N(p, 0?) normal prior for §, which is equivalent to a lognormal
prior LogNorm(u, o) for exp(#). To choose the prior parameters, we assume, for
illustration, that the median relative risk is 1 and the 90% point of the prior is 10,
which leads, from (3.15) and (3.16), to u = 0 and 02 = 1.382.
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We will estimate

I, :/ 6" Pr(y | 0)m(6) df
y 2\—1/2 — -
- %/exp {Tloge—EeXp(m +0y - % “
Yy 2\—1/2
I il i / exp[hy (0)] df
y.

forr = 0, 1, 2, to give the normalizing constant and posterior mean and variance as

p(y) =1Io

I

B0 1) = 7
I 112
var(9 | y) = I_ — I_g

We choose to calculate the posterior variance not because it is a quantity of particular
interest but because it provides a summary that is not particularly easy to estimate
and so reveals some of the complications of the various methods.

To apply the Laplace method, we first give the first and second derivatives of
h.(6):

hD () = g — Eexp(6) +y — Hb;Qa

T 1
for r = 0,1, 2. The estimates based on the Laplace approximation are shown in
Table 3.2. The mean and variance are accurately estimated, but the variance is
underestimated for these data. We implemented Gauss—Hermite rules using m =
9,10, 15, 20 points, with the grid centered and scaled by the Laplace approximations
of the mean and variance of the posterior. Table 3.2 shows that Pr(y) and E[¢ | ]
are well estimated across all grid sizes, while there is more variability in the
estimate of var(f | y), though it is more accurately estimated then with the Laplace
approximation.

We now turn to importance sampling. We have

L= rei-g|L
| swya—e =0,

9(9)

with f,.(0) = 6"Pr(y | )7 (6).

We take as proposal, g(+), a normal distribution scaled via the Laplace estimates
of location and scale. Table 3.2 shows estimates resulting from the use of m = 5,000
points and the estimator
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Table 3.2 Laplace, Gauss—Hermite, and Monte Carlo approximations for Poisson lognormal
model with an observed count of y = and an expected count of £ = 0.25

Pr(y) (x10%) E[6 | y] var(6 | y)
Truth 1.37 2.27 0.329
Laplace 1.35 2.29 0.304
Gauss—-Hermite m = 5 1.36 2.27 0.328
Gauss—Hermite m = 10 1.37 2.27 0.331
Gauss—Hermite m = 15 1.37 2.27 0.331
Gauss—Hermite m = 20 1.37 2.27 0.331
Importance sampling 1.37 [1.35,1.38] 2.27[2.24,2.29] 0.336 [0.310,0.362]
Rejection algorithm 1.37 2.27[2.25,2.28] 0.332[0.319,0.346]
Metropolis—Hastings - 2.27[2.22,2.32] 0.328 [0.294,0.361]

The importance sampling and rejection algorithms are based on samples of size m = 5,000.
The Metropolis—Hastings algorithm was run for 51,000 iterations, with the first 1,000
discarded as burn-in. 95% confidence intervals for the relevant estimates are displayed (where
available) in square brackets in the last three lines of the table

- L
t)
mia 9 9(
where 6(*) are independent samples from the normal proposal. The variance of the
estimator is
var (E ) _ var(fr/g)

m

The delta method can be used to produce measures of accuracy for the posterior
mean and variance, though these measures are a little cumbersome. The variance of
the normalizing constant is

~

var F’\r(y)} = var(lp).

To evaluate the variances of the posterior mean and posterior variance estimates we
need the multivariate delta method. We must also include covariance terms if the
same samples are used to evaluate all three integrals. The formulas are:

o I,
var {E(G | y)} = var [ =
Io
var(l,) I2var(ly) 2L ~
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Fig. 3.3 Histogram
representations of posterior T
distributions in the Sellafield
example for (a) the log
relative risk 6 and (b) the
relative risk exp(6), with
priors superimposed as solid
lines. The prior on 0 is
normal, so that the prior on
exp(0) is lognormal
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Using these forms we obtain the interval estimates displayed in Table 3.2. The
estimates of each of the three summaries are accurate though the interval estimate
for the posterior variance is quite wide, because of the inherent instability associated
with estimating the standard error.

Finally we implement a rejection algorithm, sampling from the prior distribution
and estimating Pr(y) using the importance sampling estimator, (3.29). The mean
and variance of the samples was used to evaluate E[f | y] and var(d | y), with
the standard error of the latter based on (3.27). The acceptance probability was
0.07, the small value being explained by the discrepancy between the prior and the
likelihood, which is illustrated in Fig. 3.3(a) which gives a histogram representation,
based on 5000 points, of p(6 | y), along with the prior drawn as a solid curve.
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Panel (b) displays the marginal posterior distribution of the relative risk, p(e? | ),
which is of more substantive interest, and is simply produced via exponentiation of
the 6 samples. The rejection estimates in Table 3.2 have relatively narrow interval
estimates.

3.8 Markov Chain Monte Carlo

3.8.1 Markov Chains for Exploring Posterior Distributions

The fundamental idea behind MCMC is to construct a Markov chain over the
parameter space, with invariant distribution the posterior distribution of interest.
Specifically, consider a random variable @ with support R? and density m(-). We
give a short summary of the essence of discrete time Markov chain theory.

A sequence of random variables X 0 X™ . is called a Markov chain on a
state space RP if for all ¢ and for all measurable sets A:

Pr (X<t+1> cA|X®, x| X<°>) — Pr (X““) cAl X<t>)

so that the probability of moving to any set A at time ¢ + 1 only depends on where
we are at time ¢. Furthermore, for a homogeneous Markov chain,

Pr (X<t+1> cA| X<t>) — Pr (X<1> cA| X<0>) :

If there exists p(x, y) such that

Pr(X; € A|2) = / p(@,y) dy,
A

then p(x, y) is called the transition kernel density. A probability distribution 7 (+)
on RP? is called an invariant distribution of a Markov chain with transition kernel
density p(x, y) if so-called global balance holds:

w(w) = | m(@ple.y) de.
RP
A Markov chain is called reversible if

m(z)p(z,y) = 7(y)p(y, x) (3.31)

for x,y € R?, x # y. It can shown (Exercise 3.5) that if (3.31) holds, then 7 (-) is
the invariant distribution which is useful since (3.31) can be easy to check.

A key idea is that if we have an invariant distribution, then we can evaluate
long-term, or ergodic, averages from realizations of the chain. This is crucial for
making inference in a Bayesian setting since it means we can estimate quantities of
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interest such as posterior means and medians. In Markov chain theory, conditions on
the transition kernel under which invariant distributions exist is an important topic.
Within an MCMC context, this is not important since the posterior distribution is
the invariant distribution and we are concerned with constructing Markov chains
(transition kernels) with 7(-) as invariant distribution. Only very mild conditions
are typically required to ensure that 7r(+) is the invariant distribution, typically ape-
riodocity and irreducibility. A chain is periodic if there are places in the parameter
space that can only be reached at certain regularly spaced times; otherwise, it is
aperiodic. A Markov chain with invariant distribution 7(-) is irreducible if for any
starting point, there is positive probability of entering any set to which 7 (-) assigns
positive probability.

Suppose that (M) ... (™) represents the sample path of the Markov chain.
Then expectations with respect to the invariant distribution

may be approximated by i, = = 37", g(z"). Monte Carlo standard errors are
more difficult to obtain than in the independent sampling case. The Markov chain
law of large numbers (the ergodic theorem) tells us that

ﬁm —a.s. b

as m — 00, and the Markov chain central limit theorem states that

ﬁ(ﬁm - :U') —d N(07 7—2)

where

7% = var {g(m(t))} +2 Z cov [g(w(t)), g(x+R) (3.32)
k=1

and the summation term accounts for the dependence in the chain. Chan and Geyer
(1994) provide assumptions for validity of this form. Section 3.8.6 describes how
72 may be estimated in practice. We now describe algorithms that define Markov

chains that are well suited to Bayesian computation.

3.8.2 The Metropolis—Hastings Algorithm

The Metropolis—Hastings algorithm (Metropolis et al. 1953; Hastings 1970) pro-
vides a very flexible method for defining a Markov chain. At iteration ¢ of the
Markov chain’s evolution, suppose the current point is (*). The following steps
provide the new point (*+1):
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1. Sample a point y from a proposal distribution g( - | *)).
2. Calculate the acceptance probability:

m(y) =" ]y)
m(x®) "~ gy [ 2®)

a(:v(t),y) = min [ 1. (3.33)

3. Set

L+ _ [y with probability alz®,y)
x® otherwise.

In a Bayesian context, the term 7(y) /7 (x®)) in (3.33) is the ratio of the posterior
densities at the proposed to the current point; since we are taking the ratio, the
normalizing constant in the posterior cancels, which is crucial since this is typically
unavailable. The second term in (3.33) is the ratio of the density of moving from
y — x® to the density of moving from ) — w, and it is this term that
guarantees global balance and hence that the Markov chain has the correct invariant
distribution; see Exercise 3.6. In an independence chain, the proposal distribution
does not depend on the current point, that is, ¢(y | ) is independent of 2(*). We
now consider a special case of the algorithm that is particularly easy to implement
and widely used.

3.8.3 The Metropolis Algorithm

Suppose the proposal distribution is symmetric in the sense that
gy |2V) = g(z" | y).
In this case the product of ratios in (3.33) simplifies to

seon]

a(z® y) = min [

so that only the ratio of target posterior densities is required. In the random walk,
Metropolis algorithm q(y | z(¥)) = ¢( |y — ®| ), with common choices for ¢(-)
being normal or uniform distributions. In a range of circumstances, an acceptance
probability of around 30% is optimal (Roberts et al. 1997), which may be obtained
by tuning the proposal density, the variance in a normal proposal, for example. The
balancing act is between having high acceptance rates with small movement and
having low acceptance rates with large movement.

3.8.4 The Gibbs Sampler

We describe a particularly popular algorithm for simulating from a Markov chain,
the Gibbs sampler. We describe two flavors: the sequential Gibbs sampler and the
random scan Gibbs sampler. In the following, let _; represent the vector  with
the ith variable removed, that is, €_; = [Z1,...,%i—1, Tit1,-- -, Tp)-
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The sequential scan Gibbs sampling algorithm starts with some initial value z(©)

[argt), . (t)] undertakes the following p steps
[ 2l

and then, with current point (") =
to produce a new point z(*+1) =

* Sample :chl) ~ T ( | z ))

* Sample :céHl) ~ Ty (:cz | argtﬂ),:z:gt), . ,:cét))
* Sample :c,(,Jr ) (:Cp | Hl))

The beauty of the Gibbs sampler is that the often hard problem of sampling for
the full p-dimensional variable & has been broken into sampling for each of the p
variables in turn via the conditional distributions.

We now illustrate that the Gibbs sampling algorithm produces a transition kernel
density that gives the required stationary distribution. We do this by showing that
each component is a Metropolis—Hastings step. Consider a single component move
in the Gibbs sampler from the current point 2(*) to the new point **+1), with 2(*+1)

obtained by replacing the ith component in 2*) with a draw from the full conditional

(®)

T (a:l |zt ) We view this move in light of the Metropolis—Hastings algorithm

in which the proposal density is the full conditional itself. Then the Metropolis—
Hastings acceptance ratio becomes

(t) (t+1) [ T ($§t+1),w(jz_) T (l’ t) | (t+1))
alz\, x ) = min N
T (Igt),m(_tg) . (xz(‘Hl) | m(—tZ)

w( “3)

because 7 (cc(_tz) =7 (x z )) /71'( el

= min

)

Consequently, when we use full condltlonals as our proposals in the Metropolis—
Hastings step, we always accept. This means that drawing from a full conditional
distribution produces a Markov chain with stationary distribution (). Clearly, we
cannot keep updating only the ¢th component, because we will not be able to explore
the whole state space this way, that is, we do not have an irreducible Markov chain.
Therefore, we can update each component in turn, though this is not the only way to
execute Gibbs sampling (though it is the easiest to implement and the most common
approach). We can also randomly select an component to update. This is called
random scan Gibbs sampling:

e Sample a component ¢ by drawing a random variable with probability mass
function [vq, ..., ;] where a; > Oand >0, oy = 1.

* Sample xEHl) ~ T (x | t)) .
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Roberts and Sahu (1997) examine the convergence rate of the sequential and random
scan Gibbs sampling schemes and show that the sequential scan version has a better
rate of convergence in the Gaussian models they examine.

In many cases, conjugacy (Sect. 3.7.1) can be exploited to derive the conditional
distributions. Many examples of this are given in Chaps. 5 and 8. It is also common
for sampling from a full conditional distribution to not require knowledge of the
normalizing constant of the target distribution. For example, we saw in Sect. 3.7.7
that rejection sampling does not require the normalizing constant.

3.8.5 Combining Markov Kernels: Hybrid Schemes

Suppose we can construct m transition kernels, each with invariant distribution
7(+). There are two simple ways to combine these transition kernels. First, we can
construct a Markov chain, where at each step we sequentially generate new states
from all kernels in a predetermined order. As long as the new Markov chain is
irreducible, then it will have the required invariant distribution, and we can, for
example, use the ergodic theorem on the samples from the new Markov chain.
Hence, we can combine Gibbs and Metropolis—Hastings steps. One popular form
is Metropolis within Gibbs in which all components with recognizable conditionals
are sampled with Gibbs steps with Metropolis—Hastings for the remainder. In the
second method of combining Markov kernels, we first create a probability vector
[, ..., auy], then randomly select kernel ¢ with probability «;, and then use this
kernel to move the Markov chain.

In general, one can be creative in the construction of a Markov chain, but care
must be taken to ensure the proposed chain is “legal,” in the sense of having the
required stationary distribution. As an example, a chain with a Metropolis step that
keeps proposing points until the kth point, with k£ > 1, is accepted does not have
the correct invariant distribution.

A final warning is that care is required to ensure that the posterior of interest is
proper since there is no built in check when an MCMC scheme is implemented.
For example, one may be able to construct a set of proper conditional distributions
for Gibbs sampling, even when the joint posterior distribution is not proper; see, for
example, Hobert and Casella (1996).

3.8.6 Implementation Details

Although theoretically not required, many users remove an initial number of
iterations, the rationale being that inferential summaries should not be influenced
by initial points that might be far from the main mass of the posterior distribution.
Inference is then based on samples collected subsequent to this “burn-in” period.



126 3 Bayesian Inference

In order to obtain valid Monte Carlo standard errors for empirical averages,
some estimate for 72 in (3.32) is required. Time series methods exist to estimate
72, but we describe a simple approach based on batch means (Glynn and Iglehart
1990). The basic idea is to split the output of length m into K batches each of
length B, with B chosen to be large enough so that the batch means have low serial
correlation; B should not be too large, however, because we want K to be large
enough to provide a reliable estimate of 72. The mean of the function of interest is
then estimated within each of the batches:

KB

. 1
e =5 Z g(fv(t))
t=(k—1)B+1
for k = 1,..., K. The combined estimate of the mean is the average of the batch

means

=)

1 K
-
k=1

Then v/B(fiy, — p), k = 1,..., K are approximately independently distributed as
N(0, 72), and so 72 can be estimated by

B K
~2 ~ ~\2
T ERo1 kZ_lw -

and
72

K
K K Z Mk —
k:l

Normal or Students ¢ confidence intervals can be calculated based on the square
root of this quantity. The construction of these intervals has the advantage of
being simple, but the output should be viewed with caution as the above derivation
contains a number of approximations.

MCMC approaches provide no obvious estimator of the normalizing constant
p(y), but a number of indirect methods have been proposed (Meng and Wong 1996;
DiCiccio et al. 1997)

Aside from directly calculating integrals, we may also form graphical summaries
of parameters of interest, essentially using the dependent samples in the same way
that we would independent samples. For example, a histogram of :vl(-t) provides an
estimate of the posterior marginal distribution, m;(z;), i = 1,...,p

In practice, there are a number of important issues that require thought when
implementing MCMC. A crucial question is how large m should be in order to
obtain a reliable Monte Carlo estimate. The Markov chain will display better mixing
properties if the parameters are approximately independent in the posterior. In an
extreme case, if we have independence, then

() =
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w(z1,...,2p) = HTF(Il)

and Gibbs sampling via the conditional distributions 7(x;),i = 1, ..., p, equates to
direct sampling from the posterior.

Dependence in the Markov chain may be greatly reduced by sampling simul-
taneously for variables that are highly depend, a strategy known as blocking.
Reparameterization may also be helpful in this regard. As the blocks become larger,
the acceptance rate (if a Metropolis-Hastings algorithm is used) may be reduced
to an unacceptably low level in which case there is a trade-off with respect to the
size of blocks to use. Some chains may be very slow mixing, and an examination
of autocorrelation aids in deciding on the number of iterations required. If storage
of samples is an issue, then one may decide to “thin” the chain by only collecting
samples at equally spaced intervals.

A number of methods have been proposed for “diagnosing convergence.” Trace
plots provide a useful method for detecting problems with MCMC convergence and
mixing. Ideally, trace plots of unnormalized log posterior and model parameters
should look like stationary time series. Slowly mixing Markov chains produce trace
plots with high autocorrelation, which can be further visualized by plotting the
autocorrelation at different lags. Slow mixing does not imply lack of convergence,
however, but that more samples will be required for accurate inference (as can be
seen from (3.32)). When examining trace plots and autocorrelations, it is clearer to
work with parameters transformed to R. Running multiple chains from different
starting points is also very useful since one may compare inference between
the different chains. Gelman and Rubin (1992) provide one popular convergence
diagnostic based on multiple chains. As with the use of diagnostics in regression
modeling, convergence diagnostics may detect evidence of poor behavior, but there
is no guarantee of good behavior of the chain, even if all convergence diagnostics
appear reasonable.

Example: Poisson Likelihood, Lognormal Prior

Recall the Poisson lognormal example in which y = 4 and E' = 0.25 with a single
parameter, the log relative risk 6. Gibbs sampling corresponds to direct sampling
from the univariate posterior for 6, which we have already illustrated using the
rejection algorithm.

We implement a random walk Metropolis algorithm using a normal kernel and
the asymptotic variance of the MLE for 6 multiplied by 3 as the variance of the
proposal, to achieve a reasonable acceptance probability of 0.32. This multiplier
was found by trial and error, based on preliminary runs of the Markov chain. It is
important to restart the chain when the proposal is changed based on past real-
izations to ensure the chain is still Markovian. Table 3.2 gives estimates of the
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posterior mean and variance based on a run length of 51,000, with the first 1,000
discarded as a burn-in. The confidence interval for the estimates of the posterior
mean and posterior variance is based on the batch means method, with K =50
batches of size B = 1,000.

Example: Lung Cancer and Radon

We return to the lung cancer and radon example, first introduced in Sect. 1.3.3, to
demonstrate the use of the Metropolis random walk algorithm in a situation with
more than one parameter. For direct comparison with methods applied in Chap. 2,
we assume an improper flat prior on 3 = [fp, $1] so that the posterior p(3 | y) is
proportional to the likelihood.

We begin by implementing a Metropolis random walk algorithm based on a
pair of univariate normal distributions. In this example, the Gibbs sampler is less
appealing since the required conditional distributions do not assume known forms.
The first step is to initialize B((JO) = B\j, where B\j, j = 0,1, are the MLEs. We then
iterate, at iteration ¢, between:

1. Generate 35 ~ N(ﬁét),co%), where 170 is the asymptotic variance of 30.
Calculate the acceptance probability:

« p(t)
o (g, ((Jt)) = min [p(ﬁo’—lly) 1‘|

p(B. 8" | y)
and set

+1) | B with probability o (B, B\),
Bo =19 L0 .
By~ otherwise.

2. Generate 37 ~ N(B%t),clf/l), where 171 is the asymptotic variance of Bl.
Calculate the acceptance probability:

(t+1) 54
o (A7, Y)):min[p(ﬁo 61 y) 1]

p(B8Y. 81 | y)
and set

(t+1) | B with probability oy (8%, 8\),
e =9 5@ .
1 otherwise.

The constants ¢y and c; are chosen to provide a trade-off between gaining a
high proportion of acceptances and moving around the support of the parameter
space; this is illustrated in Fig.3.4 where the realized parameters from the first
1,000 iterations of two Markov chains are plotted. In panels (a) and (d), we chose
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Fig. 3.4 Sample paths from Metropolis—Hastings algorithms for 3¢ (fop row) and 1 (bottom row)
for the lung cancer and radon data. In the left column the proposal random walk has small variance;
in the center column large variance and in the right column, we use a bivariate proposal

co = ¢ = ¢ = 0.1 and in panels (b) and () co = ¢; = ¢ = 2. Forc = 0.1
the acceptance rate is 0.90, but movement around the space is slow, as indicated by
the meandering nature of the chain, while for ¢ = 2 the moves tend to be larger,
but the chain sticks at certain values, as seen by the horizontal runs of points (the
acceptance rate is 0.14).

Figure 3.6a shows a scatterplot representation of the joint distribution p(5p,
B1]y) and clearly shows the strong negative dependence; the asymptotic correlation
between the MLEs B\o and 31 is —0.90, and the posterior correlation between
Bo and (1 is —0.90 also (the correspondence between these correlations is not
surprising since the sample size is large and the prior is flat). The strong negative
dependence is evident in each of the first two columns of Fig. 3.4. Figure 3.5 shows
the autocorrelations between sampled parameters at lags of between 1 and 40. The
top row is for 3y, and the bottom is for 5. In panels (a) and (d), the autocorrelations
are high because of the small movements of the chain.

The dependence in the chain may be reduced via reparameterization or by
generation from a bivariate proposal. We implement the latter with variance—
covariance matrix equal to ¢ x var(3). The acceptance rate for the bivariate proposal
with ¢ = 2 is 0.29, which is reasonable. We then iterate the following:
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Fig. 3.5 Autocorrelation functions for 8y (top row) and 81 (bottom row) for the lung cancer and
radon data. First column: univariate random walk, ¢ = 0.1, second column: univariate random
walk, ¢ = 2, third column: bivariate random walk, c = 2

1. Generate 3* ~ Na (B(t),c‘Af), where V is the asymptotic variance of the
MLE 3.
2. Calculate the acceptance probability

By

(", 8%) = min pBY ()’

and set

g+ — B*  with probability a(3*, 31,
B ﬁ(t) otherwise.

Note that the choice of ¢ and the dependence in the chain do not jeopardize the
invariant distribution, but rather the length of chain until practical convergence is
reached and the number of points required for summarization. More points are
required when there is high positive dependence in successive iterates, which is clear
from (3.32). The final column of Fig. 3.4 shows the sample path from the bivariate
proposal, with good movement and little dependence between the parameters.
Panels (c) and (f) show that the autocorrelation is also greatly reduced.
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Fig. 3.6 Posterior summaries for the lung cancer and radon data: (a) p(Bo,B1|v),
(b) p(log 0o, log 61 | y), (¢) p(Bo | y), (d) p(fo | y), (&) p(B1 | ¥), ) p(61 | y)

Figure 3.6 shows inference for the reparameterized model
Y; | 0 ~inq Poisson(E;0,07 ")

where 6y = exp(8o + £1Z) > 0 and 61 = exp(B1) > 0 along with summaries
for the 3y, 1 parameterization. Figure 3.6(b) shows the bivariate posterior for
log 6y, log 61 and demonstrates that the parameters are virtually independent (the
correlation is —0.03). By comparison there is strong negative dependence between
Bo and ;1 (panel (a)). Panels (d) and (f) show histogram representations of the
posteriors of interest p(6y | y) and p(6; | y).

The posterior median (95% credible interval) for exp(3;) is 0.965 [0.954, 0.975]
which is almost identical to the asymptotic inference under a Poisson model
(Table 2.4), which is again not surprising given the large sample size.
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Fig. 3.7 (a) Mean—variance relationships, in the negative binomial model, for values of b between
50 and 200, in increments of 10 units. The dashed line is the line of equality corresponding to the
Poisson model, which is recovered as b — oo. (b) Lognormal prior for b

The Poisson model should be used with caution since the variance is determined
by the mean, with no additional parameter to soak up excess-Poisson variability,
which is often present in practice. To overcome this shortcoming we provide a
Bayesian analysis with a negative binomial likelihood, parameterized so that

E[Y; [ 8,0] = pi(B), var(Yi | B,b) = pi(B)[1 + n(B)/b]. (3.34)

We will continue with an improper flat prior for 3, but a prior for b requires more
thought. To determine a prior, we plot the mean—variance relationship in Fig. 3.7a,
for different values of b. In this example the regression model does not include
information on confounders such as smoking. The absence of these variables will
certainly lead to bias in the estimate of exp(/1) due to confounding, but with
respect to b, we might expect considerable excess-Poisson variability due to missing
variables. The sample average of the observed counts is 158, and we specify a
lognormal prior for b by giving two quantiles of the overdispersion, (1 + 1/b), at
1 = 158, and then solve for b. Specifically, we suppose that there is a 50% chance
that the overdispersion is less than 1.5 X p and a 95% chance that it is less than 5 x p.
Formulas (3.15) and (3.16) give a lognormal prior with parameters 3.68 and 1.262
and 5%, 50%, and 95% quantiles of 4.9, 40, and 316, respectively. Figure 3.7(b)
gives the resulting lognormal prior density.

A random walk Metropolis algorithm with a normal proposal was constructed
for Bo, 81, b with the variance—covariance matrix taken as 3 times the asymptotic
variance—covariance matrix (b is asymptotically independent of BO and [31) based
on the expected information. The posterior median and 95% credible interval for
exp(/1) are 0.970 [0.955,0.987], and for b the summaries are 57.8 [34.9,105]. The
MLEis b = 61.3, with asymptotic 95% confidence interval (calculated on the log b
scale and then exponentiated) of [35.4,106]. Therefore, likelihood and Bayesian
inference for b are in close agreement for these data. Histograms of samples from
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Fig. 3.8 Univariate and bivariate summaries of the posterior p(8o, 81,b | y), arising from the
negative binomial model

the univariate posteriors for 3y, 31, and b are shown in the first row of Fig. 3.8, while
bivariate scatterplots are shown in the second row. The posterior marginals for 3
and (31 are very symmetric, while that for b is slightly skewed.

3.8.7 Implementation Summary

While MCMC has revolutionized Bayesian inference in terms of the breadth of
applications and complexity of models that can now be considered, other methods
may still be preferable in some situations, in particular when the number of
parameters is small. Direct sampling from the posterior is particularly appealing
since one retains all of the advantages of sample-based inference (e.g., the ability
to simply examine generic functions of interest), without the need to worry about
the convergence issues associated with MCMC. Quadrature methods are also
appealing for low-dimensional problems, since they are highly efficient. The latter
is particularly important if the calculation of the likelihood is expensive. Importance
sampling Monte Carlo methods are appealing in that error assessment may be
carried out; analytical approximations are, in general, poor in this respect.

INLA is very attractive due to its speed of computation, though a reliable measure
of accuracy is desirable and there are practical situations in which the method
is not accurate. For example, the method is less accurate for binomial data with
small denominators (Fong et al. 2010). In exploratory situations, one may always
use quick methods such as INLA for initial modeling, with more computationally
demanding approaches being used when a set of finals models are honed in upon.
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INLA is also useful for performing simulation studies to examine the properties of
model summaries. In general, comparing results across different methods is a good
idea. When deciding upon a method of implementation, there is often a clear trade-
off between efficiency and the time taken to code prospective methods. MCMC
methods are often easy to implement, but are not always the most efficient (at least
not for basic schemes) and are difficult to automate. For many high-dimensional
problems, MCMC may be the only method that is feasible, although INLA may be
available if the model is of the required form (a small number of “non-Gaussian”
parameters).

An important paper in the history of MCMC is that of Green (1995) in which
reversible jump MCMC was introduced. This method can be used in situations in
which the parameter space is of varying dimension across different models.

3.9 Exchangeability

We now provide a brief discussion of de Finetti’s celebrated representation theorem
which describes the form of the marginal distribution of a collection of random
variables, under certain assumptions. As we will see, this provides one way in which
important modeling questions can be framed. We first require the introduction of a
very important concept in Bayesian inference, exchangeability.

Definition. Let p(y1,. ..,y ) be the joint density of Y3,...,Y,. If

p(yla LR 73/71) = p(yrr(l)a e ayrr('n,))
for all permutations, 7, of {1,2,...,n},then Y7, ... Y, are (finitely) exchangeable.

This definition essentially says that the labels identifying the individual com-
ponents are uninformative. Obviously if a collection of n random variables is
exchangeable, this implies that the marginal distribution of all single random
variables are the same, as are the marginal distributions for all pairs, all triples, etc. A
collection of random variables is infinitely exchangeable if every finite subcollection
is exchangeable.

As a simple example, consider Bernoulli random variables, Y;, for ¢ = 1
2,3 = n. Under exchangeability,

3

Pr(Y1=a,Y2=0,Y3=¢) =Pr(Y1 =a, Yo =¢, Y3 =0)
=Pr(Y1 =b,Yo =a,Y; =¢)
=Pr(Y1 =bYo=¢,Y;=qa)
=Pr(Y1 =¢,Yo=a,Y; =0)
=Pr(Y1 =¢,Y2=5b,Y; =a)

forall a,b,c =0, 1.
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Result. If @ ~ p(0) and Y7,...,Y,, are conditionally independent and identically
distributed given 0, then Y7, ..., Y,, are exchangeable.

Proof. By definition:

PY1, -5 Yn) :/p(y1,---,yn | 0)(6) d6
-/ [Hp@iw)] 7(0) o
=1
-/ lnmﬁm |0>] () do
=1

= p(yﬂ'(l)7 s 7y7r(n))
We now present the converse of this result.

Theorem. de Finetti’s representation theorem for 0/1 random variables.

If Y;,Y5,. .. is an infinitely exchangeable sequence of 0/1 random variables, there
exists a distribution 7(-) such that the joint mass function Pr(yi,...,y,) has
the form

1 n
Pr(yl,---,yn)=/ [0 —0)vx(0) do,
0 =1

0 Z
/ m(u) du = lim Pr (—n < 9) ,
0 n—00 n

with Z, = Y1 + ...+ Y,, and 0 = lim,,_,oc Z,, /1.

where

Proof. The following is based on Bernardo and Smith (1994). Let z,, = y1+. . .4+yn
be the number of 1’s (which we label “successes”) in the first n observations. Then,
due to exchangeability,

n

Pr(yi + ...+ yn =2n) = ( ) Pr(Yrys -5 Yr(m))s

Zn

for all permutations 7 of {1,2,...,n} such that g1y + ... + Yr(n) = 2». We can
embed the eventy; + ... 4+ y, = 2, within a longer sequence and

N—(n—z,) N—(n—z,)
Pr(Y1+...4Y,=2,)= Z Pr(zp, 2n)= Z Pr(zy | 2n) Pr(zn),
ZIN=2n ZN=2n

where Pr(zy) is the “prior” belief in the number of successes out of N. To obtain
the conditional probability, we observe that it is “as if” we have a population of N
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items of which z are successes and [N — z failures, from which we draw n items.
The distribution of z,, | z) successes is therefore hypergeometric so that

ZN N—ZN
N—(n—zn) P n— =2

ZN=Zn N
n

We now let II(#) be the step function which is 0 for 6 < 0 and has jumps of Pr(zy)
at = zy/N, zy = 0,...,N. We now let N — oco. Then the hypergeometric
distribution tends to a binomial distribution with parameters n and 6 and the prior
Pr(zy) is translated into a prior for 8, which we write as 7(6). Consequently,

Pr(zn).

Pr(ys + ...+ yn = 24) = ( " ) /9Zn(1 — )" (B) df,
Zn

as N — oo. O

The implications of this theorem are of great significance. By the strong law of
large numbers, § = lim,,_, o, Z,/n, so that 7(-) represents our beliefs about the
limiting relative frequency of 1’s. Hence, we have an interpretation of . Further,
we may view the Y; as conditional independent, Bernoulli random variables,
conditional on the random variable 6.

In conventional language, we have a likelihood function

n n

Pr(yr....oyn | 0) = [ plwi 10) = [T 0 (1 — 0) .,

i=1 =1

where the parameter 0 is assigned a prior distribution 7(0).
In general, if Y;,Ys,... is an infinitely exchangeable sequence of random
variables, there exists a probability density function 7(-) such that

por,-v) = [ T[ ot | 0)x(6) de. (3:35)
=1

with p(Y | 0) denoting the density function corresponding to the “unknown
parameter” 6. A sketch proof of (3.35) may be found in Bernardo and Smith
(1994). This result tells us that a conditional independence model can be justified
via an exchangeability argument. In this general case, further assumptions on
Y1,Ys, ... are required to identify p(Y" | 6). Bernardo and Smith (1994) present
the assumptions that lead to a number of common modeling choices. For example,
suppose that Y7, Y5, ... is an infinitely exchangeable sequence of random variables
such thatY; > 0,7 = 1, 2,.. .. Further, suppose that for any event Ain R x ... x R,
and for all n,

Pr[(yla" 7yn) € A] = Pr[(y17'~ 7yn) € A+a]
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foralla € R x ... x Rsuchthata™l = 0and A+ aisaneventin R x ... x R.
Then the joint density for yi, ..., yn is

P, n) / He exp(—0~Ly) x 7(0) o

where [ m(u) du = limp— oo Pr(y, < 0) andy, = (y1 + ...+ yn)/n. Fora
proof, see Diaconis and Ylvisaker (1980). Hence, a belief in exchangeability and a
“lack of memory” property leads to the integral of the predictive distribution being
the marginal distribution that is constructed from the product of a conditionally
independent set of exponential random variables and a prior. The parameter is
identified as the sample mean from a large number of observations.

This kind of approach is of theoretical interest, but in practice the choice
of likelihood will often be based more directly on the context and previous
experience with similar data types. Exchangeability is very useful in practice for
prior specification, however. Before one uses a particular conditional independence
model, one can think about whether all units are deemed exchangeable. If some
collection of units are distinguishable, then one should not assume conditional
independence for all units, and one may instead separate the units into groups within
which exchangeability holds. For further discussion, see Sect. 8.6.

In terms of modeling, if we believe that a sequence of random variables is
exchangeable, this allows us to write down a conditional independence model.
We emphasize that independence is a very different assumption since it implies that
we learn nothing from past observations:

p(ym+17"'7yn | yla"'uym) :p(ym-l-lu"'ayn)

In a regression context, the situation is slightly more complicated. Informally,
exchangeability within covariate-defined groups gives the usual conditional inde-
pendence model, where we now condition on parameters and covariates; Bernardo
and Smith (1994, Sect. 4.64) contains details.

3.10 Hypothesis Testing with Bayes Factors

We now turn to a description of Bayes factors, which are the conventional Bayesian
method for comparison of hypotheses/models. Let the observed data be denoted y =
[y1, - - -, yn), and assume two hypotheses of interest, Hy and H;. The application of
Bayes theorem gives the probability of the hypothesis Hy, given data y, as

p(y | Ho) Pr(Ho | Ho U Hy)
p(y | HoU Hy)

PI‘(HO | y,HQ U Hl) =
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Table 3.3 Losses corresponding to the
decision &, when the truth is H and L,
and Ly are the losses associated with type
I and II errors, respectively

Decision
L(s,H) 6=0 6=1
Truth H Hy 0 L
H, Ly 0

where
p(y | HoU Hy) = p(y | Ho) Pr(Ho | HoU Hy) +p(y | Hy) Pr(Hy | Ho U Hy)

is the probability of the data averaged over Hy and H;. The prior probability that H
is true, given one of Hy and H is true, is Pr(Hy | Ho U H1), and Pr(H; | Hy U
H,) =1-Pr(Hy | HyU H,) is the prior on the alternative hypothesis. This simple
calculation makes it clear that to evaluate the probability that the null is true, one is
actually calculating the probability of the null given that Hy or H; is true. Therefore,
we are calculating the “relative truth”; Hy may provide a poor fit to the data, but H;
may be even worse. Although conditioning on Hy U H; is crucial to interpretation,
we will drop it for compactness of notation.

If we wish to compare models Hy and H;, then a natural measure is given by the
posterior odds

= X (3.36)

where the Bayes factor

~ ply | Ho)
BF= p(y | Hi)

is the ratio of the marginal distributions of the data under the two models, and
Pr(Hy)/ Pr(H) is the prior odds. Care is required in the choice of priors when
Bayes factors are calculated; see Sect. 4.3.2 for further discussion.

Depending on the nature of the analysis, we may: simply report the Bayes factor;
or we may place priors on the hypotheses and calculate the posterior odds of Hy; or
we may go a step further and derive a decision rule. Suppose we pursue the latter
and let § = 0/1 represent the decision to pick Hy/H;. With respect to Table 3.3,
the posterior expected loss associated with decision § is

E[L(d, H)] = L(6, Ho) Pr(Ho | y) + L(6, Hy) Pr(H; | y)
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so that for the two possible decisions (accept/reject Hy) the expected losses are

E[L(6=0,H)]=0x Pr(Hp | y) + Ly x Pr(Hy | y)
E[L(6 =1,H)] =L xPr(Hy | y) + 0 x Pr(H; | y).
To find the decision that minimizes posterior expected cost, let v = Pr(H; | y)
so that
E[L(5 = 0,H)] = Ly x v (3.37)
E[L(6=1,H)] =L x (1 —wv). (3.38)

We should choose § = 1if Ly, x v > L,(1 — v), thatis, if v/(1 — v) > L,/ Ly, or
v > L,/(L, + Ly). Hence, we report Hy if

L, 1
Pr(H, | y) > - ,
W) 2 T = T L

illustrating that we only need to specify the ratio of losses. If incorrect decisions
are equally costly, we should therefore report the hypothesis that has the greatest
posterior probability, in line with intuition. These calculations can clearly be
extended to three or more hypotheses. The models that represent each hypothesis
need not be nested as with likelihood ratio tests, though careful prior choice is
required so as to not inadvertently favor one model over another. One remedy to
this difficulty is described in Sect. 6.16.3.

To evaluate the Bayes factor, we need to calculate the normalizing constants
under Hy and H;. A generic normalizing constant is

I=py) = / Py | 0)7(8) db. (3.39)

We next derive a popular approximation to the Bayes factor. The integral (3.39)
is an integral of the form (3.18) with

nh(0) =logp(y | 8) + logw(6).

Letting 6 denote the posterior mode, we may apply (3.20) with nh(é) = logp(y |

0) + log 7(0) to give the Laplace approximation

~ ~ 1 ~
logp(y) =logp(y | 8) +logm(0) + ‘glog27r— glogn—i— §log |v].

As n increases, the prior contribution will become negligible, and the posterior
mode will be close to the MLE 6. Dropping terms of O(1), we obtain the crude
approximation

—2logp(y) ~ —2logp(y | 5) + plogn.
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Let hypothesis H; be indexed by parameters 8; of length p; and aj denote the
MLEs for 5 = 0,1. Without loss of generality, assume pg < p;. We may
approximate twice the log Bayes factor by

2[logp(y | Ho) — logp(y | Hi)]

=2 [logp(y | 80) —logp(y | 51)} + (p1 — po) logn
—9 [1(50) _ 1(51)} + (p1 — po) logn (3.40)

which is the log-likelihood ratio statistic (see Sect.2.9.5) with the addition of
a term that penalizes complexity; (3.40) is known as the Bayesian information
criteria (BIC). The Schwarz criterion (Schwarz 1978) is the BIC divided by 2. If
the maximized likelihoods are approximately equal, then model Hj is preferred
if po < p1, as it contains fewer parameters. As n increases, the penalty term
increases in size showing the difference in behavior with frequentist tests in which
significance levels are often kept constant with respect to sample size. A more
detailed comparison of Bayesian and frequentist approaches to hypothesis testing
will be carried out in Chap. 4.

3.11 Bayesian Inference Based on a Sampling Distribution

We now describe an approach to Bayesian inference which is pragmatic and
computationally simple and allows frequentist summaries to be embedded within
a Bayesian framework. This is useful in situations in which one would like to
examine the impact of prior specification. It is also appealing to examine frequentist
procedures with no formal Bayesian justification from a Bayesian slant. Suppose
we are in a situation in which the sample size n is sufficiently large for accurate
asymptotic inference and suppose we have a parameter 0 of length p. The sampling
distribution of the estimator is

0,6 ~N,(6,V,),

where V/, is assumed known. The notation here is sloppy; it would be more accurate
to state the distribution as

V,Y2(8,, — ) ~ N,(0,1).

Appealing to conjugacy, it is then convenient to combine this “likelihood” with the
prior 8 ~ N,,(m, W) to give the posterior

66, ~N,(m:, W) (3.41)
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where
Wy=W'+V, H)!
m: =W (W 'm+V,0,)

The posterior distribution is therefore easy to determine since we only require a
point estimate 8,,, with an associated variance—covariance matrix, and specification
of the prior mean and variance—covariance matrix.

An even more straightforward approach, when a single parameter is of interest, is
to ignore the remaining nuisance parameters and focus only on this single estimate
and standard error. There are a number of advantages to this approach, not least
of which is the removal of the need for prior specification over the nuisance
parameters. Let 6 denote the parameter of interest and o the (p x 1) vector of
nuisance parameters. Following Wakefield (2009a), we give a derivation beginning
with the asymptotic distribution (we drop the explicit dependence on n for notational

convenience):
~ -1
a o" Ioo Ins
~| ~N 42
{9} p+1<[9]7[1—51]11:| ) G4

where Iy is the p x p expected information matrix for o, /11 is the information
concerning 6, and I; is the p x 1 vector of cross terms. We now reparameterize the
model and consider (o, §) — (v, 6) where

I
y=a+29
Ipo

-1
A .
[g] Ny (m | [ o ﬂ ) 3.43)

where ¥ = a + (Lo1/Ioo) 6 and 0is ap x 1 vector of zeros. Hence, asymptotically,
the “likelihood” factors into independent pieces

p(7,0 | ~.0) = p(F | 7) x p(@ | 6).

We now assume independent priors on «y and 6, w(~, 8) = 7(~)7(6), to give

p(7.017,8) = pH | V)7(v)p(@ | )7 (8)

=p(v [ ¥)p(0 | 0)

which yields

~

so that the posterior factors also and we can concentrate on p(6 | #) alone. The
simple model

66 ~N(0,V)
0 ~ N(m, W)
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therefore results in the posterior
010 ~N|W L+ VY)W lhm+ Vo), W +V ). (344)

The above approach is similar to the “null orthogonality” reparameterization of Kass
and Vaidyanathan (1992). The reparameterization is also that which is used when
the linear model

Yi=a+x;0+¢
18 written as
Y; :’Y+($i —5)94‘61'

which, of course, yields uncorrelated least squares estimators 7, 9. The reparame-
terization trick works because of the assumption of independent priors on ~ and
6 which, of course, does not imply independent priors on « and 6. However, we
emphasize that we do not need to explicitly specify priors on -, because the terms
involving -y cancel in the calculation.

Bayes factors can also be simply evaluated under either of the approxima-
tions, (3.41) or (3.44). To illustrate for the latter, suppose 6 is univariate, and we
wish to compare the hypotheses

H()ZGZO, H1:97é0,

with the prior under the alternative, # ~ N(0, W). The Bayes factor is

_ ]2(§| bo)
fp(@ | )7 (0) db

/V+We
= X
v p

This approach allows a Bayesian interpretation of published results, since all that
is required for calculation of (3.45) is 6 and V, which may be derived from a
confidence interval or the estimate with its associated standard error.

More controversially, an advantage of the use of the asymptotic distribution of
the MLE only is that the Bayes factor calculation may be based on nonstandard
likelihoods or estimating functions which do not have formal Bayesian justifica-
tions. For example, the estimate and standard error may arise from conditional or
marginal likelihoods (as described in Sect.2.4.2), or using sandwich estimates of
the variance. As discussed in Chap.2, a strength of modern frequentist methods
based on estimating functions is that estimators are produced that are consistent
under much milder assumptions than were used to derive the estimators (e.g., the
estimator may be based on a score equation, but the variance estimate may not
require the likelihood to be correctly specified). The use of a consistent variance
estimate with (3.45) allows the benefits of frequentist sandwich estimation and

1w
2VV+W

. (3.45)
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Bayesian prior specification to be combined. Bayesian hypothesis testing may also
be based on frequentist summaries. Exercises 3.10 and 3.11 give further details on
the approach described in this section, including the extension to having estimators
and standard errors from multiple studies.

3.12 Concluding Remarks

Bayesian analyses should not be restricted to convenient likelihoods and like-
lihood/prior combinations; this is especially true with the advent of modern
computational approaches. However, one still needs to be careful that the sampling
scheme (i.e., the design) is acknowledged by the likelihood specification and that
the likelihood/prior combination leads to a proper posterior.

We now follow up on Sect. 1.6 and describe situations in which frequentist
and Bayesian methods are likely to agree and when one is preferable over the
other. We concentrate on estimation since point and interval estimation are directly
comparable under the two paradigms. For model comparison, the objectives of
Bayes factors and hypothesis tests are fundamentally different (see, e.g., Berger
(2003)), and so comparison is more difficult. Chapter 4 compares and critiques
frequentist and Bayesian approaches to hypothesis testing.

On a philosophical level, the Bayesian approach is satisfying since one simply
follows the rules of probability as applied to the unknowns whether they be
parameters or hypotheses. This is in stark contrast to the frequentist approach in
which the parameters are fixed. Consequently, credible intervals are probabilistic
and easily interpretable, and posterior distributions on parameters of interest are
obtained through marginalization. Another appealing characteristic is that the
Bayesian approach to inference may be formally derived via decision theory; see,
for example, Bernardo and Smith (1994). A concept that has received a lot of
discussion is the likelihood principle (Berger and Wolpert 1988; Royall 1997)
which states that the likelihood function contains all relevant information. So two
sets of data with proportional likelihoods should lead to the same conclusion. The
likelihood principle leads one toward a Bayesian approach since all frequentist
criteria invalidate this principle, and a true likelihood approach as followed by,
for example, Royall (1997) is difficult to calibrate. The likelihood principle is a
cornerstone of many Bayesian developments, but in this book we follow a far more
pragmatic approach and so do not provide further details on this topic.

In contrast, the frequentist approach is more difficult to justify on philosophical
grounds. Instead, much theory has been developed in terms of optimality within
a frequentist set of guidelines. For example, as discussed in Sect. 2.8, there is a
Gauss—Markov theorem for linear estimating functions (Godambe and Heyde 1987;
McCullagh 1983), while Crowder (1987) considers the optimality of quadratic
estimating functions.

We have seen that, so long as the prior does not exclude regions of the parameter
space, Bayesian estimators have similar frequentist properties to MLEs. The greatest
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drawback of the Bayesian approach is the need to specify both a likelihood and
a prior distribution. Sensitivity to each of these components can be examined,
but carrying out such an endeavor in practice is difficult and one is then faced
with the difficulty of how results should be reported. The frequentist approach to
model misspecification is quite different, and the use of sandwich estimation to
give a consistent standard error is very appealing. There is no Bayesian approach
analogous to sandwich estimation, but see Szpiro et al. (2010) for some progress on
a Bayesian justification of sandwich estimation.

For small n, Bayesian methods are desirable; in an extreme case if the number of
parameters exceeds n, then a Bayesian approach (or some form of penalization, see
Chaps. 10-12) must be followed. In this situation there is no way that the likelihood
can be checked and inference will be sensitive to both likelihood and prior choices.
When the model is very complex, then Bayesian methods are again advantageous
since they allow a rigorous treatment of nuisance parameters; MCMC has allowed
the consideration of more and more complicated hierarchical models, for example.
Spatial models, particularly those that exploit Markov random field second stages,
provide a good example of models that are very naturally analyzed using MCMC
or INLA, where the conditional independencies may be exploited; see Sect.9.7
for an illustrative example. Unfortunately, assessments of the effects of model
misspecification are difficult for such complex models; instead sensitivity studies
are again typically carried out. Consistency results under model misspecification
are difficult to come by for complex models (such as those discussed in Chap.9).
Bayesian methods are also appealing in situations in which the maximum likelihood
estimator provides a poor summary of the likelihood, for example, in variance
components problems.

If n is sufficiently large for asymptotic normality of the sampling distribution to
be accurate, then frequentist methods have advantages over Bayesian alternatives.
In particular, as just mentioned, sandwich estimation can be used to provide a
consistent estimator of the variance—covariance matrix of the estimator. Hence, if
the estimator is consistent, reliable confidence coverage will be guaranteed. We
stress that n needs to be sufficiently large for the sandwich estimator to be stable.
A typical Bayesian approach would be to increase model complexity, often through
the introduction of random effects. The difficulty with this is that although more
flexibility is achieved, a specific form needs to be assumed for the mean—variance
relationship, in contrast to sandwich estimation.

We briefly mention two topics which have not been discussed in this chapter.
The linear Bayesian method (Goldstein and Wooff 2007) is an appealing approach
in which Bayesian inference is carried out on the basis of expectation rather than
probability. The appeal comes from the removal of the need to specify complete
prior distributions, rather the means and variances of the parameters only require
specification. The deviance information criterion (DIC) is a popular approach for
comparison of models that was introduced by Spiegelhalter et al. (1998). The
method is controversial, however, as the discussion of the aforementioned paper
makes clear; see also Plummer (2008).
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3.13 Bibliographic Notes

Bayes’ original paper was published posthumously as Bayes (1763). The book by
Jeffreys was highly influential: the original edition was published in 1939 and the
third edition as Jeffreys (1961). Other influential works include Savage (1972) and
translations of de Finetti’s books, De Finetti (1974, 1975).

Bernardo and Smith (1994) provide a thorough description of the decision-
theoretic justification of the Bayesian approach. O’Hagan and Forster (2004) give a
good overview of Bayesian methodology and Gelman et al. (2004) and Carlin and
Louis (2009) descriptions with a more practical flavor. Robert (2001) provides a
decision-theoretic approach. Hoff (2009) is an excellent introductory text.

Approaches to addressing the sensitivity of inference to different prior choices,
are described in O’Hagan (1994, Chap.7). A good overview of methods for
integration is provided by Evans and Swartz (2000). Lindley (1980), Tierney and
Kadane (1986), and Kass et al. (1990) provide details of the Laplace method in
a Bayesian context. Devroye (1986) provides an excellent and detailed overview
of random variate generation. Smith and Gelfand (1992) emphasize the duality
between samples and densities and illustrate the use of simple rejection algorithms
in a Bayesian context. Gamerman and Lopes (2006) provides an introduction
to MCMC; an up-to- date summary may be found in Brooks et al. (2011).
Computational techniques that have not been discussed include reversible jump
Markov chain Monte Carlo (Green 1995) which may be used when the parameter
space changes dimension across models, variational approximations (Jordan et al.
1999; Ormerod and Wand 2010), and approximate Bayesian computation (ABC)
(Beaumont et al. 2002; Fearnhead and Prangle 2012). Kass and Raftery (1995) give
a review of Bayes factors, including a discussion of computation and prior choice.
Johnson (2008) discusses the use of Bayes factors based on summary statistics.

3.14 Exercises

3.1 Derive the posterior mean and posterior quantiles as the solution to quadratic
and linear loss, respectively, as described in Sect. 3.2.

3.2 Consider arandom sample Y; | @ ~;;q N(6,02),i = 1,...,n, with § unknown
and o2 known.

(a) By writing the likelihood in exponential family form, obtain the conjugate
prior and hence the posterior distribution.

(b) Using the conjugate formulation, derive the predictive distribution for
a new univariate observation Z from N(6,0?), assumed conditionally
independent of Y7,...,Y,.

3.3 Consider the Neyman-Scott problem in which Y;; | i, 02 ~ina N(ui, 0?),
i=1,...n =12
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Table 3.4 Case-control data: Y = 1 cor-
responds to the event of esophageal cancer,
and X = 1 exposure to greater than 80 g of

alcohol per day

X=0 X=1
Y =1 104 96 200
Y =0 666 109 775

(a) Show that Jeffreys prior in this case is

ﬂ-(ulu ceey Mny 02) X 0_777.72

(b) Derive the posterior distribution corresponding to this prior and show that

n . _V..\2
E[02|y]=2(n1_ 1)21(3/;1 2}/;2) )

(c) Hence, using Exercise 2.6, show that E[o? | y] — 02/2 as n — oo, so
that the posterior mean is inconsistent.
(d) Examine the posterior distribution corresponding to the prior

Ty ooy fin, 02) X 02,

(e) Is the posterior mean for o2 consistent in this case?

Consider the data given in Table 3.4, which are a simplified version of
those reported in Breslow and Day (1980). These data arose from a case-
control study (Sect.7.10) that was carried out to investigate the relationship
between esophageal cancer and various risk factors. There are 200 cases and
775 controls. Disease status is denoted Y with Y = 0/1 corresponding
to without/with disease, and alcohol consumption is represented by X with
X = 0/1 denoting < 80g/ > 80 g on average per day. Let the probabilities
of high alcohol consumption in the cases and controls be denoted

pr=Pr(X=1|Y=1) and py=Pr(X=1]Y =0),

respectively. Further, let X; be the number exposed from n; cases and X5 be
the number exposed from ns controls. Suppose X; | p; ~ Binomial(n;, p;) in
the case (¢« = 1) and control (¢ = 2) groups.

(a) Of particular interest in studies such as this is the odds ratio defined by

Pr(Y =1| X =1)/Pr(Y =0| X =1)
Pr(Y =1| X =0)/Pr(Y =0| X =0)’

9:
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Show that the odds ratio is equal to

,_PrX=1]Y =1)/PrX =0V =1) _pi/(1-p)
PrX =1|Y =0)/Pr(X =0]Y =0)  po/(1—p2)°

(b) Obtain the MLE and a 90% confidence interval for 6, for the data of
Table 3.4.

(c) We now consider a Bayesian analysis. Assume that the prior distribution
for p; is the beta distribution Be(a, b) for ¢ = 1, 2. Show that the posterior
distribution p; | ; is given by the beta distribution Be(a + x;, b+ n; — x;),
1=1,2.

(d) Consider the case a = b = 1. Obtain expressions for the posterior mean,
mode, and standard deviation. Evaluate these posterior summaries for the
data of Table 3.4. Report 90% posterior credible intervals for p; and ps.

(e) Obtain the asymptotic form of the posterior distribution and obtain 90%
credible intervals for p; and py. Compare this interval with the exact
calculation of the previous part.

(f) Simulate samples pgt),pg), t =1,...,7 = 1,000 from the posterior
distributions p; | 21 and py | 2. Form histogram representations of the
posterior distributions using these samples, and obtain sample-based 90%
credible intervals.

(g) Obtain samples from the posterior distribution of § | x1,x2 and provide
a histogram representation of the posterior. Obtain the posterior median
and 90% credible interval for 6 | 21, x5 and compare with the likelihood
analysis.

(h) Suppose the rate of esophageal cancer is 17 in 100,000. Describe how this
information may be used to evaluate

¢ =Pr(Y=1|X=1) and ¢=Pr(Y=1|X =0).

3.5 Prove that if global balance, as given by (3.31), holds then 7(-) is the invariant
distribution, that is,

for all measurable sets A.

3.6 Prove that the Metropolis—Hastings algorithm, defined through (3.33), has
invariant distribution 7(+), by showing that detailed balance (3.31) holds.

3.7 We consider the data described in the example at the end of Sect.3.7.7
concerning the leukemia count, Y, assumed to follow a Poisson distribution
with mean E x §. Consider the y = 4 observed leukemia cases in Seascale,
with expected number of cases © = 0.25. Previously in this chapter, a
lognormal prior was assumed for §. In this exercise, a conjugate gamma prior
will be used.
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(a) Show that with a Ga(a,b) prior, the posterior distribution for § is a
gamma distribution also. Hence, determine the posterior mean, mode,
and variance. Show that the posterior mean can be written as a weighted
combination of the MLE and the prior mean. Similarly write the posterior
mode as a weighted combination of the MLE and the prior mode.

(b) Determine the form of the prior predictive Pr(y) and show that it
corresponds to a negative binomial distribution.

(c) Obtain the predictive distribution Pr(z | y) for the number of cases z in a
future period of time with expected number of cases E*.

(d) Obtain the posterior distribution under gamma prior distributions with
parameters a = b = 0.1, a = b = 1.0, and a = b = 10. Determine
the 5%, 50%, and 95% posterior quantiles in each case and comment on
the sensitivity to the prior.

Consider a situation in which the likelihood may be summarized as

\/ﬁ(?n - ,LL) —d N(Ov 02)7

where Y,, = 1 3" 'Y}, with o known, and the prior for 41 is the Cauchy
distribution with parameters O and 1, that is,

1

= —o<p< .
(1 + p?) a

p(p)

We label this likelihood-prior combination as model M.

(a) Describe a rejection algorithm for obtaining samples from the posterior
distribution, with the proposal density taken as the prior.

(b) Implement the rejection algorithm for the case in which 7 = 0.2, 02=2
and n = 10. Provide a histogram representation of the posterior, and
evaluate the posterior mean and variance. Also obtain an estimate of the
normalizing constant, p(y | M.).

(c) Describe an importance sampling algorithm for evaluating p(y | M.),
Elu | y, M.], and var(u | y, M..).

(d) For the data of part (b), implement the importance sampling algorithm,
and calculate p(y | M.) and E[u | y, M.] and var(p | y, M.).

(e) Now assume that the prior for y is the normal distribution N(0,0.4).
Denote this model M,,. Obtain the form of the posterior distribution in
this case.

(f) For the data of part (b), obtain the normalizing constant p(y | M,,) and
the posterior mean and variance. Compare these summaries with those
obtained under the Cauchy prior. Interpret the ratio

p(y | My)
p(y | MC)7

that is, the Bayes factor, for these data.
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Table 3.5 Genetic data from an experiment carried out
by Mendel that concerned the numbers of peas that were
classified by their shape and color

Round Wrinkled Round Wrinkled

yellow yellow green green Total
ni n2 n3 n4 ny
315 101 108 32 556

3.9 The data in Table 3.5 result from one of the famous experiments carried out
by Mendel in which pure bred peas with wrinkled green seeds were crossed
with pure bred peas with wrinkled green seeds. These data are given on page
15 of the English translation (Mendel 1901) of Mendel (1866). All of the
first-generation hybrids had round yellow seeds (since this characteristic is
dominant), but when these plants were self-pollinated, four different pheno-
types (characteristics) were observed and are displayed in Table 3.5.

A model for these data is provided by the multinomial My (n,p) where
P = [p1, P2, p3,pa]", and p; denotes the probability of falling in cell j, j =

1,...,4, thatis,
Pr(N =n | )—Lﬁ i
=n|p)= I j:1pj :
where N = [Ny, ..., Ny]" and n = [ny,...,n4]". In this exercise a Bayesian

analysis of these data will be carried out using the conjugate Dirichlet prior
distribution, Dir(ay, as, as, a4):

where a; > 0,5 =1,...,4, are specified a priori.

(a) Show that the marginal prior distributions for p; are the beta distributions
Be(aj,a — aj), where a = Zj:l a;.

(b) Obtain the distributional form, and the associated parameters, of the
posterior distribution p(p | n).

(c) For the genetic data and under a prior for p that is uniform over the simplex
(i.e., a1 = a2 = a3 = a4 = 1), evaluate E[p; | n] and s.d.(p; | n),

j=1,...,4
(d) Obtain histogram representations and 90% credible intervals for p; | n,
j=1,...,4

(e) Determine the form of the predictive distribution for [N1, No, N3, N4]
given ny = Zj n;. Describe how a sample from this predictive distri-
bution could be obtained.
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A particular model of interest is that which states that genes are
inherited independently of each other, so that the ratio of counts is
9:3:3:1, or

9 3 3 1
Hy :pio= —%,P20 = ==,P30 = 7=, P40 = T=-

16 16 16 16

The evidence in favor of this model, versus the alternative of H; : p
unspecified, will now be determined.

(f) For the data in Table 3.5, carry out a likelihood ratio test comparing H
and H,.

(g) Obtain analytical expressions for Pr(n | Hy) and Pr(n | Hy).

(h) Evaluate the Bayes factor Pr(n | Hy)/Pr(n | H;) for the genetic data.
Comment on the evidence for/against /1y and compare with the conclusion
from the likelihood ratio test statistic.

3.10 With respect to Sect. 3.11, consider the “likelihood,” § | & ~ N(0,V) and the
prior 6 ~ N(0, W). Show that 6 | § ~ N(r, V) where r = W/(V + W).

3.11 Again consider the situation discussed in Sect.3.11 in which a Bayesian
analysis is carried out based not on the full data but rather on summary
statistics.

(a) Suppose data are to be combined from two studies with a common
underlying parameter 6. The estimates from the two studies are 61,0
with standard errors v/V; and vV, (with the two estimators being
conditionally independent given #). Show that the Bayes factor that
summarizes the evidence from the two studies, that is,

p(61,05 | Hp)
p(61,02 | Hy)'

takes the form

S W 1
BF(0,,0,) = /RV% exp [—5 (ZIQRVQ + 27, Z,R\/ViV; + Z;“va)]

where R = W/(ViW + VoW + ViVa) and Z; = 61 /y/V; and Z, =
02 /+/V> are the usual Z-statistics.

(b) Suppose now there are K studies with estimates §k and asymptotic
variances Vi, k = 1,..., K, and again assume a common underlying
parameter 6. Show that the Bayes factor

p(0y,...,0x | Ho)
p(ela"'aef(|£[l)7
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takes the form

k=1

B ) ]

Further, show that the posterior summarizing beliefs about 6 given the K
estimates is
7. 0 2
0 | 91,...,6‘KNN([J,,O' )

where

k=1

and



Chapter 4
Hypothesis Testing and Variable Selection

4.1 Introduction

In Sects. 2.9 and 3.10, we briefly described the frequentist and Bayesian machinery
for carrying out hypothesis testing. In this chapter we extend this discussion,
with an emphasis on critiquing the various approaches and on hypothesis testing
in a regression setting. We examine both single and multiple hypothesis testing
situations; Sects.4.2 and 4.3 consider the frequentist and Bayesian approaches,
respectively. Section 4.4 describes the well-known Jeffreys—Lindley paradox that
highlights the starkly different conclusions that can occur when frequentist and
Bayesian hypothesis testing is carried out. This is in contrast to estimation, in which
conclusions are often in agreement. In Sects. 4.5-4.7, various aspects of multiple
testing are considered. The discussion includes situations in which the number of
tests is known a priori and variable selection procedures in which the number
of tests is driven by the data. Section 4.9 provides a discussion of the impact
on inference that the careless use of variable selection can have. Section 4.10
describes a pragmatic approach to variable selection. Concluding remarks appear
in Section 4.11.

4.2 Frequentist Hypothesis Testing

Early in this chapter we will consider a univariate parameter § € R. Suppose we are
interested in evaluating the evidence in the data with respect to the null hypothesis:

H0:9:90

using a statistic 7. By convention, large values are less likely under the null.
The observed value of the test statistic is f,,. As discussed in Sect.2.9, there
are various possibilities for 7" including squared Wald, likelihood ratio, and score

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series 153
in Statistics, DOI 10.1007/978-1-4419-0925-1_4,
© Springer Science+Business Media New York 2013
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statistics. Under regularity conditions, T —4 X7 under the null, as n — oo.
If » is not large, or regularity conditions are violated, permutation or Monte Carlo
tests (perhaps based on bootstrap samples, as described in Sect.2.7) can often be
performed to derive the empirical distribution of the test statistic under the null.
A type I error is said to occur when we reject Hy when it is in fact true, while a type
II error is to not reject Hy when it is false.

4.2.1 Fisherian Approach

Under the null, for continuous sample spaces, the tail-area probability Pr(T > ¢ |
Hy) is uniform. This is not true for discrete sample spaces, but in the following,
unless stated otherwise, we will assume we are in situations in which uniformity
holds. Let

p=Pr(T >t | Ho)

denote the observed p-value, the probability of observing ¢, or a more extreme
value, with repeated sampling under the null.

Fisher advocated the pure test of significance, in which the observed p-value is
reported as the measure of evidence against the null (Fisher 1925a), with Hj being
rejected if p is small. Alternative hypotheses are not explicitly considered and so
there is no concept of rejecting the null in favor of a specific alternative; ideally, the
test statistic will be chosen to have high power under plausible alternatives, however.

4.2.2 Neyman—Pearson Approach

In contrast to the procedure of Fisher, the Neyman—Pearson approach is to specify an
alternative hypothesis, H;, with Hj nested in H;. The celebrated Neyman—Pearson
lemma of Neyman and Pearson (1933) proved that, for fixed type I error

a=Pr(T > t, | Ho),
the most powerful procedure is provided by the likelihood ratio test (Sect.2.9.5).

The decision rule is to reject the null if p < «a. Due to the fixed threshold, this
procedure controls the type I error at .

4.2.3 Critique of the Fisherian Approach

A common explanation for seeing a “small” p-value is that either Hy is not true
or Hy is true and we have been “unlucky.” A major practical difficulty is on
defining “small.” Put another way, how do we decide on a threshold for significance?
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The p-value is uniform under the null, but with a large sample size, we will be able
to detect very subtle departures from the null and so will often obtain small p-values
because the null is rarely “true.” To rectify this a confidence interval for 6 is often
reported, along with the p-value, so that the scientific significance of the departure of
0 from 6y can be determined. The ability to detect smaller and smaller differences
from the null with increasing sample size suggests that the p-value threshold rule
used in practice should decrease with increasing n, but there are no universally
recognized rules. In a hypothesis testing context a natural definition of consistency
is that the rule for rejection is such that the probability of the correct decision being
made tends to 1 as the sample size increases. So the current use of p-values, in
which typically 0.05 or 0.01 is used as a threshold for rejection, regardless of sample
size, is inconsistent; by construction, the probability of rejecting the null when it is
true does not decrease to zero with increasing sample size. By contrast, the type 11
error will typically decrease to zero with increasing sample size. A more balanced
approach than placing special emphasis on the type I error would be to have both
type I and type II errors decrease to zero as n increases.

There are two common misinterpretations of p-values. The most basic is to
interpret a p-value as the probability of the null given the data, which is a serious
misconception. Probabilities of the truth of hypotheses are only possible under a
Bayesian approach. More subtly, using the observed value of the test statistic £,
does not allow one to say that following the general procedure will result in control
of the type I error at p, because the threshold is data-dependent and not fixed.
The key observation is that the p-value is associated with, “observing ¢, or a more
extreme value,” so that the tail area begins at the observed value of the statistic. For
example, if p = 0.013, we cannot say that the procedure controls the type I error
at 1.30%. Such control of the type I error is provided by a fixed « level procedure
which is based on a fixed threshold, ¢;, with & = Pr(T > ¢, | Hyp).

There is some merit in the consideration of a tail area when one wishes to
control the type I error rate, but when no such control is sought, the use of a tail
area seems simply of mathematically convenience. As an alternative the ordinate
p(T = tg | Ho) may be considered, which brings one closer to a Bayesian
formulation (see Sect.4.3.1), but from a frequentist perspective, it is not clear how
to scale the observed statistic without an alternative hypothesis.

4.2.4 Critique of the Neyman—Pearson Approach

As with the use of p-values we need to decide on a size « for the test. The historical
emphasis has been on fixing « and then evaluating power, but as with a threshold for
p-values, practical guidance on how « should depend on sample size is important
but lacking. With an « level that does not change with sample size, one is implicitly
accepting that type II errors become more important with increasing sample size,
and in a manner which is implied rather than chosen by the investigator. Pearson
(1953, p. 68) expressed the desirability of a decreasing o as sample size increases:
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“. .. the quite legitimate device of reducing « as n increases.” As we have already
noted, a fixed significance level with respect to n gives an inconsistent procedure.

By merely stating that p < «, information is lost, but if we state an observed
p-value, then we lose control of the type I error because control requires a fixed
binary decision rule. The procedure must also be viewed in the light of both
Hy and H; being “wrong” since no model is a correct specification of the data-
generating process.

For discrete data, the discreteness of the statistic causes difficulties, particularly
for small sample sizes. To achieve exact level « tests, so-called randomization
rules have been suggested. Under such rules, the same set of data may give
different conclusions depending on the result of the randomization, which is clearly
undesirable.

4.3 Bayesian Hypothesis Testing with Bayes Factors

4.3.1 Overview of Approaches

In the Bayesian approach, all unknowns in a model are treated as random variables,
even though they relate to quantities that are in reality fixed. Therefore, the “true”
hypothesis is viewed as an unknown parameter for which the posterior is derived,
once the alternatives have been specified. The latter step is essential since we require
a sample space of hypotheses. In the case of two hypotheses, we have the following
candidate data-generating mechanisms:

Hy = BolHo = y|Bo
H, = ,31|H1 = y|,31

The posterior probability of H; is, via Bayes theorem,

py | Hj) x 7;

Pr(H; |y) = LT

with 7; the prior probability of hypothesis H;, j = 0, 1. The likelihood of the data is

ply| Hj) = /p(y | Bj)p(B; | Hj) dB; 4.1

with p(8; | H;) the prior distribution over the parameters associated with
hypothesis H;, j = 0,1, and

p(y) =p(y | Ho) x mo +p(y | H1) x m1.
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The posterior odds in favor of Hj is therefore

. Pr(Ho | y) .
Posterior Odds = —————= = Bayes factor x Prior Odds 4.2
P y) O :
where the
p(y | Ho)
Bayes factor = ————, “4.3)
p(y | Hi)

and the prior odds are mp/m; with m; = 1 — m. The Bayes factor is the ratio of
the density of the data under the null to the density under the alternative and is an
intuitively appealing summary of the information the data provide concerning the
hypotheses. The Bayes factor was discussed previously in Sect. 3.10. From (4.2),
we also see that

Posterior Odds
Prior Odds

which emphasizes that the Bayes factor summarizes the information in the data and
does not involve the prior beliefs about the hypotheses. As can be seen in (4.1),
priors on the parameters are involved in each of the numerator and denominator of
the Bayes factor, since these provide the distributions over which the likelihoods are
averaged.

When it comes to reporting/making decisions, various approaches based on
Bayes factors are available for different contexts. Most simply, one may just report
the Bayes factor. Kass and Raftery (1995), following Jeffreys (1961), present a
guideline for the interpretation of Bayes factors. For example, if the negative log
base 10 Bayes factor lies between 1 and 2 (so that the data are 10-100 times
more likely under the alternative, as compared to the null), then there is said to
be strong evidence against the null hypothesis. Such thresholds may be useful in
some situations, but in general one would like the guidelines to be context driven.
Going beyond the consideration of the Bayes factor only, one may include prior
probabilities on the null and alternative, to give the posterior odds (4.2). Stating the
posterior probabilities may be sufficient, but one may wish to derive a formal rule
for deciding upon which of Hy or H; to report.

Recall from Sect.3.10 that, under a Bayesian decision theory approach to
hypothesis testing, the “decision” ¢ is taken that minimizes the posterior expected
loss. Following the notation of Table 3.3, the losses associated with type I and type
II errors are L, and L, respectively. Minimization of the posterior expected loss
then results in the rule to choose § = 1 if

Bayes Factor =

Pr(Hi |y) L
Pr(Hy |y) = Ly’
or equivalently if
1
Pr(H; | y) (4.4)

> .
1+ Ly/L,
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For example, if a type I error is four times as bad as a type II error, we should report
H, only if Pr(H; | y) > 0.8. In contrast, if the balance of losses is reversed, and a
type Il error is four times as costly as a type I error, we report Hy if Pr(H; | y)>0.2.

Discreteness of the sample space does not pose any problems for a Bayesian
analysis, since one need only consider the data actually observed and not other
hypothetical realizations.

4.3.2 Critique of the Bayes Factor Approach

As always with the Bayesian approach, we need to specify priors for all of the
unknowns, which here correspond to each of the hypotheses and all parameters
(including nuisance parameters) that are contained within the models defined under
the two hypotheses. It turns out that placing improper priors upon the parameters
that are the focus of the hypothesis test leads to anomalous behavior of the Bayes
factor. We give an informal discussion of the fundamental difference between
estimation and hypothesis testing with respect to the choice of improper priors.
Suppose we have a model that depends on a univariate unknown parameter,  with
improper prior p(#) = ¢, for arbitrary ¢ > 0. The posterior, upon which estimation
is based, is

p(y | 0)p(0)
[ p(y | 0)p(6) do

and so the arbitrary constant in the prior cancels in both numerator and denominator.
Now suppose we are interested in comparison of the hypotheses Hy : 8 = 6,
H;y : 0 # 0y with 8 € R. The Bayes factor is

(4.5)

ply[Ho) _ _ p(y|bo)
py | H)  [p(y|0)p(6) do’

so that the denominator of the Bayes factor depends, crucially, upon c. Hence, in
this setting the Bayes factors with an improper prior on 6 is not well defined.

Specifying prior distributions for all of the parameters under each hypothesis can
be difficult, but Sect. 3.11 describes a strategy based on test statistics which requires
a prior distribution for the parameter of interest only.

In principle, one can compare non-nested models using a Bayesian approach,
but in practice great care must be taken in specifying the priors under the two
hypotheses, in order to not inadvertently favor one hypothesis over another. One
possibility is to specify priors on functions of the parameters that are meaningful
under both hypotheses; for an example of this approach, see Sect. 6.16.

As with the Neyman—Pearson approach, all of the calculations have to be
conditioned upon Hy U H;. In a Bayesian context, we need to emphasize that
we are obtaining the posterior probability of the null given one of the null or
alternative is true and under the assumed likelihood and priors. Consequently,
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posterior probabilities on hypotheses must be viewed in a relative, rather than an
absolute, sense since the truth will rarely correspond to Hy or H;. Hence, the precise
interpretation is that the posterior probability of Hy is the posterior probability of
Hy, given that one of Hy or H; is true.

If one follows the decision theory route, one must also specify the ratio of losses
which is usually difficult. In general, Bayes factor calculation requires analytically
intractable integrals over the null and alternative parameter spaces, to give the two
normalizing constants p(y | Hp) and p(y | Hi). Further, Markov chain Monte
Carlo approaches do not simply supply these normalizing constants. Analytical
approximations exist under certain conditions, see Sect. 3.10.

4.3.3 A Bayesian View of Frequentist Hypothesis Testing

We consider an artificial situation in which the only available data in a Bayesian
analysis corresponds to knowing that the event T' > ¢, has occurred. This means
that the likelihood of the data, Pr( data | Hy) coincides with the « level. To obtain
Pr(Hp | data ) we must specify the alternative hypothesis. We consider the simple
case in which the model contains a single parameter § with null Hy : § = 6y and
alternative Hy : 6 = 6. Then

PI‘( data | Ho) X T
Pr(Hy | data) = 4.6
H(Ho | data) = 5 T o) % 7o+ Pr(data [ ) < 1 (4.6)

where 7; = Pr(H;), j = 0, 1. Dividing by Pr(H, | data) gives

Pr( data | Hy)

Posterior Odds = m X Prior Odds
— % _ « PriorOdds (4.7)
power at 6,

which depends, in addition to the « level, on the prior on Hy, 7y, and on the power,
Pr(data | H;). Equation (4.7) implies that, for two studies that report a result as
significant at the same « level, the one with the greater power will, in a Bayesian
formulation, provide greater evidence against the null. The power is never explicitly
considered when reporting under the Fisherian or Neyman—Pearson approaches.
An important conclusion is that to make statements about the “evidence” that the
data contain with respect to a hypothesis, as summarized in an « level, one would
want to know the power or, as a minimum, the sample size (since this is an important
component of the power).

The prior is also important which seems, as already noted, reasonable when one
considers the usual interpretation of a tail area in terms of “either Hy, is true and we
were unlucky or H is not true.” A prior on H) is very useful in weighing these two
possibilities. A key observation is that although a particular dataset may be unlikely
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under the null, it may also be unlikely under chosen alternatives, so that there may
be insufficient evidence to reject the null, at least in comparison to these alternatives.

Sellke et al. (2001) summarize a number of different arguments that lead to the
following, quite remarkable, result. For a p-value p < e~! = 0.368:

-1
Pr(Hy | data) > [1—< LI ﬂ) ] . (4.8)
eplogp mg

Hence, given a p-value, one may calculate a lower bound on the posterior probability
of the null. Figure 4.1 illustrates this lower bound, as a function of the p-
value, for three different prior probabilities, 9. We see, for example, that with
a p-value of 0.05 and a prior probability on the null of my=0.75, we obtain
Pr(Hy | data) > 0.55.

The discussion of Sect. 4.2.3, combined with the implications of (4.7) and (4.8),
might prompt one to ask why p-values are still in use today, in particular with
the almost ubiquitous application of a 0.05 or 0.01 decision threshold. With these
thresholds, which are often required for the publication of results, the relationship
(4.8), with mp = 0.5, gives Pr(H, | data)>0.29 and 0.11 with p = 0.05 and
0.01, respectively. Rejection of H with such probabilities may not be unreasonable
in some circumstances but the difference between the p-value and Pr(H | data) is
apparent.

Small prior probabilities, my, were not historically the norm since, particularly in
experimental situations, data would not be collected if there were little chance the
alternative were true.

In some disciplines scientists may calibrate p-values to the sample sizes with
which they are familiar, as no doubt Fisher did when the 0.05 rule emerged.
For example, in Tables 29 and 30 of Statistical Methods for Research Workers
(Fisher 1990), the sample sizes were 30 and 17, and Fisher discusses the 0.05 limit
in each case, though in both cases he concentrates more on the context than on the
absolute value of 0.05.
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Poor calibration of p-values could be one of the reasons why so many “findings”
are not reproducible, along with the other usual suspects of confounding, data
dredging, multiple testing, and poorly measured covariates.

4.4 The Jeffreys—Lindley Paradox

We now discuss a famous example in which Bayesian and frequentist approaches
to hypothesis testing give starkly different conclusions. The example has been
considered by many authors, but Lindley (1957) and Jeffreys (1961) provide early
discussions; see also Bartlett (1957). To illustrate the so-called Jeffreys—Lindley
“paradox,” we assume that Y,, | § ~ N(6,0?/n) with ¢ known and # unknown.
Suppose the null is Hy : 6 = 0, with alternative H, : 6 # 0. Let

Un = Z1—as2 X 0/\/n

where « is the level of the test and Pr(Z < z1_4/2) = 1 — /2, with Z ~ N(0, 1).
We define 3, in this manner, so that for different values of n the a level remains
constant. For a Bayesian analysis, assume 79 = Pr(Hj), and under the alternative
6 ~ N(0,72). In the early discussions of the paradox, a uniform prior over a finite
range was assumed, but the message of the paradox is unchanged with the use of a
normal prior. Then

Pr(Hy | 7,) Bayes Factor x Prior Odds
T =
01 Yn 1 + Bayes Factor x Prior Odds

where the Bayes factor is

p(@, | Ho)
p(¥, | Hi)

and the Prior Odds = my/(1 — 7). The prior predictive distributions, the ratios of
whose densities give the Bayes factor (4.9), are

Bayes Factor = 4.9

T, | Ho ~ N(0,0%/n) (4.10)
T, | Hi ~N(0,0°%/n 4 72). 4.11)

Figure 4.2 shows these two densities, as a function of 7,,, foro? = 1,72 = 0.22, and
n = 100. An « level of 0.05 gives 7,, = 1.96 X o/+/n = 0.20, the value indicated in
the figure with a dashed-dotted vertical line. For this value, the Bayes factor equals
0.48, so that the data are roughly twice as likely under the alternative as compared
to the null. The Sellke et al. (2001) bound on the Bayes factor is BF > —eplogp
which for p = 0.05 gives BF > 0.41.
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Fig. 4.2 Numerator (solid < J— Under the null
line) and denominator
(dashed line) of the Bayes
factor for n = 100. The
model is Yy, | 6 ~
N(8,02/n) with o2 = 1.
The null and alternative are
Hy:60=0and H; : 6 # 0,
and the prior under the
alternative is 6 ~ N(0, 72)
with 72 = 0.22. The
dashed-dotted vertical line
corresponds to g,, = 0.20
which for this n gives

a = 0.05

- - Under the alternative

The Bayes factor is the ratio of (4.10) and (4.11):

(2mo? /n)~ Y2 exp {— —2(?;‘/"}

(2o /n -+ 72]) "2 exp [~ st

Bayes Factor =

2
exp |— . 4.12)
n

This last expression reveals that, as n — 0o, the Bayes factor — oo, so that Pr(Hj |
7, ) — 1. Therefore, the “paradox” is that for a level of significance «, chosen to
be arbitrarily small, we can find datasets which make the posterior probability of
the null arbitrarily close to 1, for some n. Hence, frequentist and Bayes procedures
can, for sufficiently large sample size, come to opposite conclusions with respect to
a hypothesis test.

Figure 4.3 plots the posterior probability of the null as a function of n for
o2 =1,72 =0.22, 19 = 0.5, = 0.05. From the starting position of 0.5 (the prior
probability, indicated as a dashed line), the curve Pr(Hy | 7,,) initially falls,
reaching a minimum at around n = 100, and then increases towards 1, illustrating
the “paradox.” For large values of n, j,, is very close to the null value of 0, but there
is high power to detect any difference from 0, and so an « of 0.05 is not difficult
to achieve. The Bayes factor also incorporates the density under the alternative and
values close to 0 are more likely under the null, as illustrated in Fig.4.2.

We now consider a Bayesian analysis of the above problem but assume that the
data appear only in the form of knowing that |Y,,| > %,,, a censored observation.
This is clearly not the usual situation since a Bayesian would condition on the actual
value observed, but it does help to understand the paradox. The Bayes factor is
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Fig. 4.4 Bayes factor based on a tail area with null and alternative of Hy : 6 = 0 and Hy : 6 # O:
(a) Average power, which corresponds to the denominator of the Bayes factor, under a N(0, 0.22)
prior and for a fixed o level of 0.05 and (b) Bayes factor based on the tail area, with o = 0.05; the
horizontal dashed line indicates a tail-area Bayes factor value of 0.05

that is, the type I error rate divided by the power averaged over the prior p(6).
Figure 4.4a gives the average power as a function of n. We see a monotonic increase
with sample size towards the value 1, as we would expect with fixed a.

Since the Bayes factor is the ratio of « to the average power, we see in Fig. 4.4b
that the Bayes factor based on the tail-area information is monotonic decreasing
towards « as n increases (and with g = 0.5, this gives the posterior probability of
the null also). For our present purposes, the calculation with the tail area illustrates
that when a Bayesian analysis conditions on a tail area, the conclusions are in line
with a frequentist analysis.
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The difference in behavior between a genuine Bayesian analysis that conditions
on the actual statistic and that based on conditioning on a tail area is apparent.
As noted by Lindley (1957, p. 189-190), “... the paradox arises because the
significance level argument is based on the area under a curve and the Bayesian
argument is based on the ordinate of the curve.”

Ignoring now the comparison with tests of significance, it is informative to
examine the Bayes factor for fixed %/,,. Upon rearrangement of (4.12),

[o2 + nr2 72 n/o?
Bayes Factor = /| ———— e e 1
Y gz P { 2 1+ 02/n7?

As 72 — oo, the Bayes Factor — oo so that Pr(Hy | %,,) — 1, which is at first
sight counter intuitive since increasing 72 places less prior mass close to § = 0.
However, this behavior occurs because averaging with respect to the prior on 6 with
large 72 produces a small Pr(7,, | H1), because the prior under the alternative is
spreading mass very thinly across a large range; 72 > 0 suggests very little prior
belief in any 6 # 0. Hence, even if the data point strongly to a particular 6 # 0, we
still prefer Hy. More generally, 72 >> 0 should not be interpreted as “ignorance”
since it supports very big effects. Said another way, as 72 — 0, the Bayes factor
favors the alternative, even though as 72 gets smaller and smaller the prior under the
alternative becomes more and more concentrated about the null.

4.5 Testing Multiple Hypotheses: General Considerations

In the following sections we examine how inference proceeds when more than a
single hypothesis test is performed. There are many situations in which multiple
hypothesis testing arises, but we concentrate on just two. In the first, which we refer
to as a fixed number of tests scenario, we suppose that the number of hypotheses
to be tested is known a priori, and is not data driven, which makes the task of
evaluating the properties of proposed solutions (both frequentist and Bayesian) more
straightforward. This case is discussed in Sect.4.6. As an example, we will shortly
introduce a running example that concerns comparing, between two populations,
expression levels for m = 1,000 gene transcripts (during transcription, a gene
is transcribed into (mutiple) RNA transcripts). In the second situation, which we
refer to as variable selection, and which is discussed in Sect. 4.7, the number of
hypotheses to be tested is random, which makes the evaluation of properties more
difficult.

One of the biggest abuses of statistical techniques is the unprincipled use of
model selection. Two examples of this are separately testing the significance of
a large number of variables and then reporting only those that are nominally
“significant” (the problem considered in Sect. 4.6), and testing multiple confounders
to see which ones to control for (the problem considered in Sect.4.7). In each
of these cases, even if the exact procedure is described, unless care is exercised,
interpretation is extremely difficult.
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4.6 Testing Multiple Hypotheses: Fixed Number of Tests

Suppose we wish to examine the association between a response and m different
covariates. In a typical epidemiological study, many potential risk factors are
measured, and an exploratory, hypothesis-generating procedure may systematically
examine the association between the outcome and each of the risk factors. In
general, the covariates may not be independent, which complicates the analysis.
Another fixed number of tests scenario is when m responses are examined with
respect to a single covariate. Recently, there has been intense interest in so-called
high throughput techniques in which thousands, or tens of thousands, of variables
are measured, often as a screening exercise in which the aim is to see which of
the variables are associated with some biological endpoint. For example, one may
examine whether the expression levels of many thousands of genes are elevated or
reduced in samples from cancer patients, as compared to cancer-free individuals.

When m tests are preformed, the aim is to decide which of the nulls should
be rejected. Table 4.1 shows the possibilities when m tests are performed and K are
flagged as requiring further attention. Here my is the number of true nulls, B is the
number of type I errors, and C' is the number of type II errors, and each of these
quantities is unknown. The aim is to select a rule on the basis of some criterion and
this in turn will determine K. The internal cells of Table 4.1 are random variables,
whose distribution depends on the rule by which K is derived.

Example: Microarray Data

To illustrate the multiple testing problem in a two-group setting, we examine a
subset of microarray data presented by Kerr (2009). The data we analyze consist
of expression levels on m = 1,000 transcripts measured in Epstein-Barr virus-
transformed lymphoblastic cell line tissue, in each of two populations. Each
transcript was measured on 60 individuals of European ancestry (CEU) and 45
ethnic Chinese living in Beijing (CHB). The data have been normalized, and log,
transformed, so that a one-unit difference between recorded values corresponds to a
doubling of expression level.

Let Y, be the measured expression level for transcript i in population &, with
i=1,...,m,and k = 0/1 representing the CEU/CHB populations. Then define

Table 4.1 Possibilities when Not flagged Flagged
m tests are performed and K
are flagged as worthy of Ho A B mo

further attention H; C D mi
m— K K m
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Fig. 4.5 (a) Z scores and (b) p-values, for 1,000 transcripts in the microarray data

Y, =Y, — Yo, and let sii be the sample variance in population k, for transcript ,
1 =1,...,m. We now assume

Yi | pi ~iia N(pi, 07)

where 02 = s%,/60 + s3,/45 is the sample variance, which is reliably estimated

for the large sample sizes in the two populations and therefore assumed known.
The null hypotheses of interest are that the difference in the average expression
level between the two populations is zero. We let H; = 0 correspond to the null for
transcript ¢, that is, u; = 0 for ¢ = 1,..., m. Figure 4.5a gives a histogram of the
Z scores Y; /o, along with the reference N(0, 1) distribution. Clearly, unless there
are problems with the model formulation, there are a large number of transcripts
that are differentially expressed between the two populations, as confirmed by the
histogram of p-values displayed in Fig. 4.5b.

4.6.1 Frequentist Analysis

In a single test situation we have seen that the historical emphasis has been on
control of the type I error rate. We let H; = 0/1 represent the hypotheses for the
1 =1,...,mtests. In a multiple testing situation there are a variety of criteria that
may be considered. With respect to Table 4.1, the family-wise error rate (FWER)
is the probability of making at least one type I error, that is, Pr(B > 1 | H; =
0,...,H, = 0). Intuitively, this is a sensible criteria if one has a strong prior
belief that all (or nearly all) of the null hypotheses are true, since in such a situation
making at least one type I error should be penalized (this is made more concrete
in Sect. 4.6.2). In contrast, if one believes that a number of the nulls are likely to
be false, then one would be prepared to accept a greater number of type I errors,
in exchange for discovering more true associations. As in all hypothesis testing
situations, we want a method for trading off type I and type II errors.
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Table 4.2 True FWER as a

. . p True FWER
function of the correlation p T e—
between two bivariate normal 0 0.0497
test statistics 0.3 0.0484

0.5 0.0465
0.7 0.0430
0.9 0.0362

Let B; be the event that the ¢th null is incorrectly rejected, so that, with respect
to Table 4.1, B, the random variable representing the number of incorrectly rejected
nulls, corresponds to U™ ; B;. With a common level for each test a*, the FWER is

0y =Pr(B>1| H =0,...,Hy, =0)=Pr(U",B; | H =0,...,Hy =0)

<> Pr(Bi|H =0,...,Hy =0)
i=1

= ma”. (4.13)

The Bonferroni method takes a* = «;/m to give FWER < ay. For example, to
control the FWER at a level of a = 0.05 with m = 10 tests, we would take o* =
0.05/10 = 0.005. Since it controls the FWER, the Bonferroni method is stringent
(i.e., conservative in the sense that the bar is set high for rejection) and so can result
in a loss of power in the usual situation in which the FWER is set at a low value,
for example 0.05. A little more conservatism is also introduced via the inequality,
(4.13). The Sidak correction, which we describe shortly, overcomes this aspect.
If the test statistics are independent,

Pr(B>1)=1-Pr(B=0)
=1-Pr( i:le{)

=1- ﬁPr(BZ{)
=1- (I —a*)™.

Consequently, to achieve FWER = a; we may take o* = 1 — (1 — o)™, the
so-called Sidak correction (Sidak 1967).

With dependent tests, the Bonferroni approach is even more conservative; we
demonstrate with m = 2 and bivariate normal test statistics with correlation
p. Suppose we wish to achieve a FWER of 0.05. Table 4.2 gives the FWER
achieved using Bonferroni and illustrates how the test becomes more conservative
as the correlation increases. The situation becomes worse as m increases in size.
The k-FWER criteria (Lehmann and Romano 2005) extends FWER to the incorrect
rejection of k or more nulls (Exercise 4.2).
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A simple remedy to the conservative nature of the control of FWER is to increase
ar. An intuitive measure to calibrate a procedure is via the expected number of false
discoveries:

EFD = mg x o

<mxa*

where o is the level for each test. If mg is close to m, this inequality will be
practically useful. As an example, one could specify a* such that the EFD < 1
(say), by choosing o* = 1/m.

Recently there has been interest in a criterion that is particularly useful in
multiple testing situations. We first define the false discovery proportion (FDP) as
the proportion of incorrect rejections:

L ifB>0

FDP = )
{o if B =0.

Then the false discovery rate (FDR), the expected proportion of rejected nulls that
are actually true, is

FDR = E[FDP] = E[B/K | B > 0] Pr(B > 0).

Consider the following procedure for independent p-values, each of which is
uniform under the null:

1. Let Py < ... < P) denote the ordered p-values.
2. Define [; = ia/m and R = max{i : Py < l;} where « is the value at which
we would like FDR control.
. Define the p-value threshold as pr = Pg.
4. Reject all hypotheses for which P; < Pr, that is, set H; = 1 in such cases,
t=1,...,m.

W

Benjamini and Hochberg (1995) show that if this procedure is applied, then
regardless of how many nulls are true (mg) and regardless of the distribution of
the p-values when the null is false,

FDR < ¢ < a.
m

We say that the FDR is controlled at .

Example: Hypothetical Data

We simulate data from m = 100 hypothetical tests in which mo = 95 tests are
null, to give m; = 5 tests for which the alternative is true. Figure 4.6 displays
the sorted observed — log;, (p-values) versus the expected — log; o (p-values), along
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Fig. 4.6 Observed versus [¢)
expected — log(p-values) e
for a simulated set of data .
with 95 nulls and 5 2
alternatives. Three criteria for
rejection, based on
Bonferroni, the expected
number of false discoveries
(EFD), and the false
discovery rate (FDR), are
included on the plot - - - Bonferroni 5%

-log10(observed)

~~~~~ EFD=1
o ‘== FDR5%

I I I
0 1 2 3

—log10(expected)

with a line of equality (solid line). Also displayed are three approaches to calling
significance. The top dashed line corresponds to a Bonferroni correction at the 5%
level (so that the line is at — log;,(0.05/100) = 3.30). This criterion calls a single
test as significant illustrating the conservative nature of the control of FWER at a
low value. If we choose instead to control the expected number of false discoveries
at 1, then the dotted line at —log,,(1/100) = 2 results. We see that all 5 true
alternatives are selected, along with a single false positive. Finally, we examine
those hypotheses that would be rejected if we control the FDR at o = 0.05, via
the Benjamini—-Hochberg procedure. On the log to the base 10 scale, the potential
thresholds I; = ia/m, i = 1,...,m correspond to a line with slope 1 and intercept
—log; (). The dotted-dashed line gives the FDR threshold (recall the FDR is
an expectation) corresponding to o = 0.05. The use of this threshold gives three
p-values as significant, for an empirical FDR of zero.

O

The algorithm of Benjamini and Hochberg (1995) begins with a desired FDR
and then provides the p-value threshold. Storey (2002) proposed an alternative
method by which, for any fixed rejection region, a criteria closely related to FDR,
the positive false discovery rate pFDR = E[B/K | K > 0], may be estimated.
We assume rejection regions of the form 7" > ¢;, and consider the pFDR associated
with regions of this form, which we write as pFDR (¢, ). We define, fori = 1,...,m
tests, the random variables H; = 0/1 corresponding to null/alternative hypotheses
and test statistics 7;. Then, with 79 = Pr(H = 0) and m = 1 — 7 independently
for all tests,

Pr(T > t, | H = 0) x mo
H =0) x m+ Pr(T > t,

FDR(t,,) =
PFDR(t) = 5=,

H:1)X7T1'
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Note the similarity with (4.6). Consideration of the false discovery odds:

PFDR(t) _ Pr(T >ty |H=0)
H = 1) 1

1 —pFDR(¢s)  Pr(T >t

explicitly shows the weighted trade-off of type I and type II errors, with weights
determined by the prior on the null/alternative; this expression mimics (4.7). Storey
(2003) rigorously shows that

PFDR(t,) = Pr(H =0 | T > t,.).

giving a Bayesian interpretation. In terms of p-values, the rejection region corre-
sponding to T > t, is of the form [0,~]. Let P be the random p-value resulting
from a test. Under the null, P ~ U(0, 1), and so

Pr(P <~ |H=0)xm
Pr(P <7)

Y X To
=t - 4.14
Pr(P <~) 19

PFDR (i)

From this expression, the crucial role of mg is evident. Storey (2002) estimates
(4.14), using uniformity of p-values under the null, to produce the estimates

= _ #pi> A
O 7 (1 =)
Pr(P <) = W (4.15)

with X\ chosen via the bootstrap to minimize the mean-squared error for prediction
of the pFDR. The expression (4.15) calculates the empirical proportion of p-values
to the right of A and then inflates this to account for the proportion of null p-values
in [0, A].

This method highlights the benefits of using the totality of p-values to estimate
fundamental quantities of interest such as 7. In general, information in all of the
data may also be exploited, and in Sect. 4.6.2, we describe a Bayesian mixture model
that uses the totality of data.

The g-value is the minimum FDR that can be attained when a particular test is
called significant. We give a derivation of the ¢g-value and, following Storey (2002),
first define a set of nested rejection regions {t, }._, where « is such that Pr(7T >
to | H=0) = a. Then

p-value(t) = infy_ .1, Pr(T >t | H =0)
is the p-value corresponding to an observed statistic ¢. The g-value is defined as

g-value(t) = infy_.4es, Pr(H =0 | T > t4). (4.16)
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Therefore, for each observed statistic t;, there is an associated g-value. It can be
shown that (Exercise 4.3)

Pr(Ho | T > tw) < Pr(Ho | T = tu) 4.17)

so that the evidence for H, given the exact ordinate is always greater than that
corresponding to the tail area.

When one decides upon a value of FDR (or pFDR) to use in practice, the sample
size should again be taken into account, since for large sample size, one would not
want to tolerate as large an FDR as with a small sample size. Again, we would prefer
a procedure that was consistent. However, as in the single test situation, there is no
prescription for deciding how the FDR should decrease with increasing sample size.

Example: Microarray Data

Returning to the microarray example, application of the Bonferroni correction to
control the FWER at 0.05 produces a list of 220 significant transcripts. In this
context, it is likely that there are a large proportion of non-null transcripts (Storey
et al. 2007) and there are relatively large sample sizes for each test (so the power
is good), and so this choice is likely to be very conservative. The procedure of
Benjamini and Hochberg with FDR control at 0.05 gives 480 significant transcripts.
Applying the method of Storey gives an estimate of the proportion of nulls as
o = 0.33. At a pFDR threshold of 0.05, 603 transcripts are highlighted.

4.6.2 Bayesian Analysis

In some situations, a Bayesian analysis of m tests may proceed in exactly the same
fashion as with a single test, that is, one can apply the same procedure m times;
see Wakefield (2007a) for an example. In this case the priors on each of the m null
hypotheses will be independent. In other situations, however, one may often wish
to jointly model the data so that the totality of information can be used to estimate
parameters that are common to all tests.

In terms of reporting, as with a single test (as considered in Sect. 4.3), the Bayes
factors

i | Hy =0
Bayes Factor;, = M, (4.18)
p(yi | Hi=1)
1 =1,...,m are a starting point. These Bayes factors may then be combined with
prior probabilities wo; = Pr(H; = 0), to give
Posterior Odds; = Bayes Factor; x Prior Odds;, 4.19)

where Prior Odds; = mg;/(1 — 7o;)-
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Proceeding to a decision theory approach. Suppose for simplicity common
losses, L, and L, associated with type 1 and type 2 errors, for each test. The aim is
to define a rule for deciding which of the m null hypotheses to reject. The operating
characteristics, in terms of “false discovery” and “non-discovery,” corresponding
to this rule may then be determined. The loss associated with a particular set of
decisions § = [0y, ..., 0] and hypotheses H = [Hj, ..., H,,] is the expectation
over the posterior

BIL(6,H)] = L) [a» Pr(H; = 0] yi) + 741~ 8) Pr(H; = 1| )

1

L
=L [EFP + f“ X EFN}
where EFP is the expected number of false positives and EFN is the expected

number of false negatives. These characteristics of the procedure are given, respec-
tively, by

EFD = Za Pr(H; =0 | y;)

=1

EFN = 21— H; =1y,

where Pr(H; = 0 | y;) and Pr(H; = 1 | y;) are the posterior probabilities on the
null and alternatlve. We should report test ¢ as significant if
1
Pr =1|vy; T
( | Yi ) 14 LII/ L’

which is identical to the expression derived for a single test, (4.4).

Define K = Zﬁl 0; as the number of rejected tests. Then dividing EFD by
K gives an estimate, based on the posterior, of the proportion of false discoveries,
and dividing EFN by m — K gives a posterior estimate of the proportion of false
non-discoveries. Hence, for a given ratio of losses, we can determine the expected
number of false discoveries and false non-discoveries, and the FDR and FNR. As
n;, the sample size associated with test ¢, increases, under correct specification of
the model, the power for each test increases, and so EFD/ K and EFEN/(m — K) will
tend to zero (assuming the model is correct). This is in contrast to the frequentist
approach in which a fixed (independent of sample size) FDR rule is used so that the
false non-discovery rate does not decrease to zero (even when the model is true).

Notice that the use of Bayes factors does not depend on the number of tests, m, so
that, for example, we could analyze the data in the same way regardless of whether
m is 1 or 1,000,000. Similarly, for the assumed independent priors, the posterior
probabilities do not depend on m, and for the loss structure considered, the decision
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does not depend on m. Hence, the Bayes procedure gives thresholds that depend
on n (since the Bayes factor will depend on sample size, see Exercise 4.1 for an
example) but not on m, while the contrary is true for many frequentist procedures
such as Bonferroni.

There is a prior that results in a Bayesian Bonferroni-type correction. If the prior
probabilities of each of the nulls are independent with mg; = 7 fori = 1,...,m.
Then the prior probability that all nulls are true is

Ho—PI‘(Hl—O m—O)—?TO

which we refer to as prior P;. For example, if 1y = 0.5 and m = 10, 115 = 0.00098,
which may not reflect the required prior belief. Suppose instead that we wish to fix
the prior probability that all of the nulls are true at I/,. A simple way of achieving
this is to take mg; = Hé / ™ a prior specification we call P,. Westfall et al. (1995)
show that for independent tests

ag =Pr(H; =0 y;, o) ®=m xPr(H; =0 | y;, P\) =m x a}

so that a Bayesian version of Bonferroni is recovered.

An alternative approach is to specify a full model for the totality of data.
These data can then be exploited to estimate common parameters. In particular,
the proportion of null tests 7 can be estimated, which is crucial for inference since
posterior odds and decisions are (unsurprisingly) highly sensitive to the value of
mo. The decision is still based on the posterior, and there continues to be a trade-off
between false positive and false negatives depending on the decision threshold used.
We illustrate using the microarray data.

Example: Microarray Data

Recall that we assume Y; | f; ~ina N(pi,02), 4 = 1,...,m where m = 1,000.
We first describe a Bayesian analysis in which the m transcripts are analyzed
separately. We assume under the null that p; = 0, while under the alternative

Wi ~iida N0, 72) with 72 fixed. For illustration, we assume that for non-null genes,
a fold change in the mean greater than 10%, that is, log, p1; > 0.138, only occurs
with probability 0.025. Given

Pr (—oo <M %) —0.975

T

we can solve for 7 to give

_logy(1.1)

=0.070
~1(0.975) ’
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where @(-) is the distribution function of a standard normal random variable.
The prior on p; is therefore

_Jo with probability 7
i = 1 N(0,0.1382) with probability m =1 — 7o

The Bayes factor for the ith transcript is

o? + 72 z:
Bayes Factori = T exp |:—7 m] (420)
where Z; = Y;/o; is the Z score for the ith transcript. Therefore, we see that

the Bayes factor depends on the power through o (which itself depends on the
sample sizes), as well as on the Z-score, while the p-value depends on the latter
only. In Fig. 4.7, we plot the ordered — log;,( Bayes factors) (so that high values
correspond to evidence against the null). A reference line of 0 is indicated and, using
this reference, for 487 transcripts the data are more likely under the alternative than
under the null.

To obtain the posterior odds, we need to specify a prior for the null. We assume
7o = Pr(H; = 0) so that the prior is the same for all transcripts. The posterior odds
are the product of the Bayes factor and the prior odds and are highly sensitive to
the choice of 7. For illustration, suppose the decision rule is to call a transcript
significant if the posterior odds of H = 0 are less than 1 (which corresponds
to a ratio of losses, Ly/L, = 1). Figure 4.8 plots the number of such significant
transcripts under this rule, as a function of the prior, mg. The sensitivity to the
choice of  is evident. To overcome this problem, we now describe a joint model
for the data on all m = 1,000 transcripts that allows estimation of parameters that
are common across transcripts, including 7. Notice that for virtually the complete
range of 7y more transcripts would be called as significant under the Bayes rule than
under the FWER.
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We use mixture component indicators H; = 0/1 to denote the zero/normal
membership model for transcript 7. Collapsing over p; gives the three-stage model:

Stage One:

N(0,02)  ifH; =0

}/i Hia(sv ) ~in .
| o d{N(é,aerr?) if H; = 1.

Stage Two:  H; | w1 ~q Bernoulli(my), i =1,...,m.

Stage Three: Independent priors on the common parameters:
p(6,7,m) = p(0)p(T)p(mo).

We illustrate the use of this model with

p(d) < 1,
p(r) x 1/7
p(mo) =1,

so that we have improper priors for § and 72. The latter choice still produces a
proper posterior because we have fixed variances at the first stage of the model
(see Sect. 8.6.2 for further discussion). Implementation is via a Markov chain Monte
Carlo algorithm (see Sect. 3.8). Exercise 4.4 derives details of the algorithm.
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Fig. 4.9 Posterior distributions for selected parameters of the mixture model, for the microarray
data: (@) p(6 | y), (b) p(72 | y), (©) p(mo | ), (d) (5,72 | y), (&) p(8, 70 | y), (O) p(72, 70 | y)

The posterior median and 95% interval for § (x1073) is —6.8 [—9.4, —0.40],
while for 72 (x1073), we have 1.1 [0.92,1.2]. Of more interest are the posterior
summaries for mg: 0.29 [0.24,0.33], giving a range that is consistent with the pFDR
estimate of 0.33. Figure 4.9 displays univariate and bivariate posterior distributions.
The distributions resemble normal distributions, reflecting the large samples within
populations and the number of transcripts.
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For transcript ¢, we may evaluate the posterior probabilities of the alternative
Pr(H; =1|y;) = E[H; | y]
= Esr2.mly [Pr(Hi K2 7'2,7T0)]

= Ej 2 moly [Pr(H; = 1] 9,6, T2,7T0)}
R— ply | Hi =1,0,7%) x m ]
T ply| Hi=1,6,72) xm +p(y | H; =0) x mg
4.21)

where

2
s ) = 202 4 72~V exp | - Ym0
p(y | Hz 17677— =7T0) [27T(Uz +7 )] exp |: 2(03 —|—7’2)

2
0;

2
p(y | H;=0,4, T277T0) = [27701'2]_1/2 exp |:_2y_l] '

Expression (4.21) averages Pr(H; = 1 | y,§,72,m) with respect to the posterior
p(0, 72, mo | ¥) and may be simply evaluated via

Ly ply | Hy = 1,30, 720)r)
r =1 Py | H; =1, 5(t)77—2(t)77r(gt))7r§t) +p(y | H; = O)T‘—((Jt)
given samples 6, 72(t) w(()t), t=1,...,T, from the Markov chain.
Figure 4.10 displays the ordered posterior probabilities, Pr(H; = 1 | y), i =
1,...,m, along with a reference line of 0.5. Using this line as a threshold, 689

transcripts are flagged as “significant,” and the posterior estimate of the proportion
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of false discoveries is 0.12. Interestingly, the posterior estimate of the proportion
of false negatives (i.e., non-discoveries) is 0.35. The latter figure is rarely reported
but is a useful summary. Previously, using a pFDR threshold of 0.05, there were
603 significant transcripts. Interestingly, using a rule that picked the 603 transcripts
whose posterior probability on the alternative was highest yielded an estimate of the
posterior probability of the proportion of false discoveries as 0.07, which is not very
different from the pFDR estimate. This is reassuring for both the Bayesian and the
pFDR approaches.

For this example, sensitivity analyses might relax the independence between
transcripts and, more importantly, the normality assumption for the random ef-
fects p;.

The Bayes factor, (4.20), was derived under the assumption of a normal sampling
likelihood. In general, if we have large sample sizes, we may take as likelihood
the sampling distribution of an estimator and combine this with a normal prior, to
give a closed-form estimator. The latter is an approximation to a Bayesian analysis
with weakly informative priors on the nuisance parameters and was described in
Sect. 3.11, with Bayes factor (3.45).

4.7 Testing Multiple Hypotheses: Variable Selection

A ubiquitous issue in regression modeling is deciding upon which covariates to
include in the model. It is useful to distinguish three scenarios:

1. Confirmatory: In which a summary of the strength of association between a
response and covariates is required. We include in this category the situation
in which an a priori hypothesis concerning a particular response/covariate
relationship is of interest; additional variables have been measured and we wish,
for example, to know which to adjust for in order to reduce confounding.

2. Exploration: In which the aim is to gain clues about structure in the data.
A particular example is when one wishes to gain leads as to which covariates
are associated with a response, perhaps to guide future study design.

3. Prediction: In which we are not explicitly concerned with association but merely
with predicting a response based on a set of covariates. In this case, we are
not interested in the numerical values of parameters but rather in the ability to
predict new outcomes. Chapters 10—12 examines prediction in detail, including
the assessment of predictive accuracy.

For exploration, formal inference is not required and so we will concentrate on the
confirmatory scenario. As we will expand upon in Sect.5.9, a trade-off must be
made when deciding on variables for inclusion and it is often not desirable to fit
the full model. To summarize the discussion, as we include more covariates in the
model, bias in estimates is reduced, but variability may be increased, depending on
how strong a predictor the covariate is and on its association with other covariates.
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Example: Prostate Cancer

To illustrate a number of the methods available for variable selection, we consider
a dataset originally presented by Stamey et al. (1989) and introduced in Sect. 1.3.1.
The data were collected on n = 97 men before radical prostatectomony. We take
as response the log of prostate-specific antigen (PSA) which was being forwarded
in the paper as a preoperative marker, that is, a predictor of the clinical stage of
cancer. The authors examined log PSA as a function of eight covariates: log(can
vol); log(weight) (where weight is prostate weight); age; log(BPH); SVI; log(cap
pen); the Gleason score, referred to as gleason; and percentage Gleason score 4 or
5, referred to as PGS45.

Figure 1.1 shows the relationships between the response and each of the
covariates and indicates what look like a number of strong associations, while
Fig. 1.2 gives some idea of the dependencies among the more strongly associated
covariates. After Sect. 4.9, we will return to this example, after describing a number
of methods for selecting variables in Sect. 4.8 and discussing model uncertainty in
Sect. 4.9.

4.8 Approaches to Variable Selection and Modeling

We now review a number of approaches to variable selection. Let & be the number
of covariates, and for ease of exposition, assume each covariate is either binary or
continuous, so that the association is summarized by a univariate parameter. We also
exclude interactions so that the largest model contains k& + 1 regression coefficients.
Allowing for the inclusion/exclusion of each covariate only, there are 2* possible
models, a number which increases rapidly with k. For example, with £ = 20 there
are 1,048, 576 possible models. The number of models increases even more rapidly
with the number of covariates, if we allow variables with more than two levels and/or
interactions.

The hierarchy principle states that if an interaction term is included in the model,
then the constituent main effects should be included also. If we do not apply the
hierarchy principle, there are 22" =1 interaction models (i.e., models that include
main effects and/or interactions), where k is the number of variables. For example,
k = 2 leads to 8 models. Denoting the variables by A and B, these models are

1, A, B, A+ B, A+B+AB, A+AB, B+A.B, AB.

The class of hierarchical models includes all models that obey the hierarchy
principle. Applying the hierarchy principle in the £k = 2 case reduces the number
from 8 to 5, as we lose the last three models in the above list. With £ = 5
variables, there are 2,147,483,648 interaction models, illustrating the sharp increase
in the number of models with k. There is no general rule for counting the number



180 4 Hypothesis Testing and Variable Selection

of models that satisfy the hierarchy principle for a given dimension. For some
discussion, see Darroch et al. (1980, Sect. 6). The latter include a list of the number
of hierarchical models for kK = 1,...,5; for &k = 5, the number of hierarchical
models is 7,580.

We begin by illustrating the problems of variable selection with a simple
example.

Example: Confounder Adjustment

Suppose the true model is
Yi = Bo + Bix1i + Pazai + €, (4.22)

with €; | 02 ~jqa N(0,0%),i = 1,...,n. We take 71 as the covariate of interest,
so that estimation of 3y is the focus. However, we decide to “control” for the
possibility of 32 # 0 via a test. For simplicity, we assume that o2 is known and
assess significance by examining whether a 95% confidence interval for 3 contains
zero (which is equivalent to a two-sided hypothesis test with a« = 0.05). If the
interval contains zero, then the model,

E[Y; | 1, z2i] = B3 + Bizus,

is fitted; otherwise, we fit (4.22). We illustrate the effects of this procedure through
a simulation in which we take By = 81 = B2 = 1, 02> = 32, and n = 10.
The covariates x; and x5 are simulated from a bivariate normal with means zero,
variances one and correlation 0.7. N

In Fig.4.11a, we display the sampling distribution of 3, given the fitting of
model (4.22). The mean and standard deviation of the distribution of ; are 1.00
and 1.23, respectively. Unbiasedness follows directly from least squares/likelihood
theory (Sect. 5.6).

Figure 4.11b displays the sampling distribution of the reported estimator when
we allow for the possibility of adjustment according to a test of 83 # 0. The mean
and standard deviation of the distribution of the reported estimator of 3; are 1.23 and
1.01, respectively, showing positive bias and a reduced variance. This distribution
is a mixture of the sampling distribution of ; (the estimator obtained from the
full model), and the sampling distribution of 37, with the mixing weight on the
latter corresponding to one minus the power of the test of 82 = 0. The sampling
distribution of 7 is shifted because the effects of both 2 and x5, are being included
in the estimate and the distribution is shifted to the right because z; and x, are
positively correlated. Using the conditional mean of a bivariate normal (given as
(D.1) in Appendix D) we have
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E[Y | z1] = o + Bix1 + B2E[ X | @]
=fo+ (61 +0.7) x 21
= B + Bz

illustrating the bias,
E[B{] - f1=0.7 (4.23)

when the reduced model is fitted. Allowing for the possibility of adjustment gives
an estimator with a less extreme bias, since sometimes the full model is fitted (if
the null is rejected). The reason for the lower reported variance in the potentially
adjusted analysis is the bias-variance trade-off intrinsic to variable selection. In
model (4.22), the information concerning $; and s is entangled because of the
correlation between x; and x3, which results in a higher variance. Section 5.9
provides further discussion. The reported variance is not appropriate, however,
since it does not acknowledge the model building process, an issue we examine
in Sect.4.9. As n — oo, the power of the test to reject 2 = 0 tends to 1, and we
recover an unbiased estimator with an appropriate variance.

O

4.8.1 Stepwise Methods

A number of methods have been proposed that proceed in a stepwise fashion,
adding or removing variables from a current model. We describe three of the most
historically popular approaches.

Forward selection begins with the null model, E[Y | ] = 9, and then fits each
of the models

ElY | z] = 5o + By,

7 =1,..., k. Subject to a minimal requirement (i.e., a particular p-value threshold),
the model that contains the covariate that provides the greatest “improvement” in fit
is then carried forward. This procedure is then iterated until no covariates meet the
minimal requirement (i.e., all the p-values are greater than the threshold), or all the
variables are in the model.

Backward elimination has the same flavor but begins with the full model, and
then removes, at each stage, the covariate that is contributing least to the fit. For
example, the variable with the largest p-value, so long as it is bigger than some
prespecified value, is removed from the model.

Each of these approaches can miss important models. For example, in forward
selection, x; may be the “best” single variable, but x; and any other variable
may be “worse” than x5 and z3 together (say), but the latter combination will
never be considered. Related problems can occur with backward elimination. Such
considerations lead to Efroymson’s algorithm (Efroymson 1960) in which forward
selection is followed by backward elimination. The initial steps are identical to
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forward selection, but with three or more variables in the model, the loss of fit
of each of the variables (excluding the last one added) is examined, in order to
avoid the scenario just described, since in this case if the order of variables being
added was z1, z2, x3, it would then be possible for x; to be removed. The “p-value
to enter” value (i.e., the threshold for forward selection) is chosen to be smaller
than the “p-value to remove” value (i.e., the threshold for backward elimination),
to prevent cycling in which a variable is continually added and then removed.
The choice of inclusion/exclusion values is contentious for forward selection,
backward elimination and Efroymson’s algorithm.
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The Efroymson procedure, although overcoming some of the deficiencies of
forward selection and backwards elimination, can still miss important models.
The overall frequentist properties of any subset selection approach are difficult to
determine, as we discuss in Sect. 4.9.

Each of the stepwise approaches may miss important models. A popular
alternative is to examine all possible models and to then select the “best” model.
We next provide a short summary of some of the criteria that have been suggested
for this selection.

4.8.2 All Possible Subsets

We first consider linear models and again suppose there are k potential regressors,
with the full model of the form

y=xB+e (4.24)

with E[e] = 0, var(e) = 0°I,,, and where y isn x 1, z isn x (k + 1), and 3 is
(k+1) x1.
The R? measure of variance explained is

RSS

2 _ —_—
R = CTSS

where the residual and corrected total sum of squares are given, respectively, by

RSS = (y — 28)"(y — xP)
CTSS = (y — 19)"(y — 17).

Consequently, R? can be interpreted as measuring the closeness of the fit to the data,
with R? = 1 for a perfect fit (RSS = 0) and R? = 0 if the model does not improve
upon the intercept only model. In terms of a comparison of nested models, the R>
measure is nondecreasing in the number of variables, and so picking the model with
the smallest R? will always produce the full model.

Let P represent a model constructed from covariates whose indices are a subset
of {1,2,...,k}, with p = | P| 4+ 1 regression coefficients in this model. The number
of parameters p accounts for the inclusion of an intercept so that in the full model
p = k + 1. Suppose the fit of model P yields estimator 3, and residual sum
of squares RSS . For model comparison, a more useful measure than R? is the
adjusted R? which is defined as

RSSP/(n — p)

R2=1-— 20 "7
a CTSS/(n— 1)
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Maximization of RZ leads to the model that produces the smallest estimate of o
across models.

A widely used statistic, known as Mallows C}p, was introduced by Mallows
(Mallows 1973).! For the model associated with the subset P

_ RSS,

where RSS, = (y — 28,)"(y — 3,) is the residual sum of squares and 52 =
RSSy/(n—k—1) is the error variance estimate from the full model that contains all &
covariates. This criteria may be derived via consideration of the prediction error that
results from choosing the model under consideration (as we show in Sect. 10.6.1).
It is usual to plot C'» versus p and for a good model C will be close to, or below,
p, since E[RSS ;] = (n — p)o? and so E[C] = p for a good model.

Lindley (1968) showed that Mallows C'» can also be derived from a Bayesian
decision approach to multiple regression in which, among other assumptions, the
aim is prediction and the X’s are random and multivariate normal.

We now turn to more general models than (4.24). Consideration of the likelihood
alone is not useful since the likelihood increases as parameters are added to the
model, as we saw with the residual sum of squares in linear models. A number
of penalized likelihood statistics have been proposed that penalize models for their
complexity. A large number of statistics have been proposed, but we concentrate
on just two, AIC and BIC. An Information Criteria (AIC, Akaike 1973) is a
generalization of Mallows C'» and is defined as

AIC = —21(8,) + 2p (4.26)

where Z(BP) denotes the maximized log-likelihood of, and p the number of
parameters in, model P. A derivation of AIC is presented in Sect. 10.6.5. We have
already encountered the Bayesian information criterion (BIC) in Sect.3.10 as an
approximation to a Bayes factor. The BIC is given by

BIC = —2I(B,) + plogn.

For the purposes of model selection, one approach is to choose between models by
selecting the one with the minimum AIC or BIC. In general, BIC penalizes larger
models more heavily than AIC, so that in practice AIC tends to pick models that are
more complicated. As an indication, for a single parameter (p = 1 in (4.26)), the
significance level is = 0.157 corresponding to Pr(x? < 2), which is a very liberal
threshold. Given regularity conditions, BIC is consistent (Haughton 1988, 1989;
Rao and Wu 1989), meaning if the correct model is in the set being considered,
it will be picked with a probability that approaches 1 with increasing sample size,

'Named in honor of Cuthbert Daniel with whom Mallows initially discussed the use of the Cp
statistic.
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while AIC is not. The appearance of n in the penalty term of BIC is not surprising,
since this is required for consistency.

4.8.3 Bayesian Model Averaging

Rather than select a single model, Bayesian model averaging (BMA) places priors
over the candidate models, and then inference for a function of interest is carried
out by averaging over the posterior model probabilities. Section 3.6 described
this approach in detail, and we will shortly demonstrate its use with the prostate
cancer data.

4.8.4 Shrinkage Methods

An alternative approach to selecting a model is to consider the full model but
to allow shrinkage of the least squares estimates. Ridge regression and the lasso
fit within this class of approaches and are considered in detail in Sects. 10.5.1
and 10.5.2, respectively. Such methods are often used in situations in which the
data are sparse (in the sense of k being large relative to n).

4.9 Model Building Uncertainty

If a single model is selected on the basis of a stepwise method or via a search over
all models, then bias will typically result. Interval estimates, whether they be based
on Bayesian or frequentist approaches, will tend to be too narrow since they are
produced by conditioning on the final model and hence do not reflect the mechanism
by which the model was selected; see Chatfield (1995) and the accompanying
discussion.

To be more explicit, let P denote the procedure by which a final model M is
selected, and suppose it is of interest to examine the properties of an estimator
¢ of a univariate parameter ¢, for example, a regression coefficient associated
with a covariate of interest. The usual frequentist unbiasedness results concern
the expectation of an estimator within a fixed model. We saw an example of bias
following variable selection, with the bias given by (4.23). In general, the estimator
obtained from a selection procedure will not be unbiased with respect to the final
model chosen, that is,

E[¢ | P] = By, »[E(¢ | M)] (4.27)
#E(o | M), (4.28)
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where M is the final model chosen. In addition,

var(¢ | P) = By p[var(¢ | M)] + var,, - (E[¢ | M]) (4.29)
# var(¢ | M) (4.30)

where the latter approximates the first term of (4.29) only. Hence, in general, the
reported variance conditional on a chosen model will be an underestimate. The bias
and variance problems arise because the procedure by which M was chosen is not
being acknowledged.

From a Bayesian standpoint, the same problem exists because the posterior
distribution should reflect all sources of uncertainty and a priori all possible models
that may be entertained should be explicitly stated, with prior distributions being
placed upon different models and the parameters of these models. Model averaging
should then be carried out across the different possibilities, a process which is
fraught with difficulties not least in placing “comparable” priors over what may
be fundamentally different objects (see Sect.6.16.3 for an approach to rectifying
this problem). Suppose there are m potential models and that p; = Pr(M; | y) is
the posterior probability of model j, 7 = 1,..., m. Then

k

E[¢ |yl = > El¢| Mj,y] x p;

j=1
#Elo | M,y), (4.31)

where the latter is that which would be reported, based on a single model M. The
“bias” is E[¢ | M, y] — E[¢ | y]. In addition,

var(¢ | y) = Zvar(sb | Mj,y) x p; +Z(E[¢ | Mj,y] —E[¢ ] y])* x p;

(4.32)
# var(¢ | M, y), (4.33)

so that the variance in the posterior acknowledges both the weighted average of the
within-model variances, via the first term in (4.32), and the weighted contributions
to the between-model variability, via the second term. Note the analogies between
the frequentist and Bayesian biases, (4.28) and (4.31), and the reported variances,
(4.30) and (4.33).

The fundamental message here is that carrying out model selection leads to
estimators whose frequency properties are not those of the estimators without any
tests being performed (Miller 1990; Breiman and Spector 1992) and Bayesian
single model summaries are similarly misleading. This problem is not unique to
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Table 4.3 Parameter estimates, standard errors, and 7" statistics for the prostate cancer data. The
full model and models chosen by stepwise/BIC and C'»/AIC are reported

Full model Stepwise/BIC model C'p/AIC model

Variable Est. (Std. err.) T stat. Est. Std.err. T stat. Est. Std. err. T stat.
1 log(canvol)  0.59 (0.088) 6.7 0.55 (0.075) 74 0.57 (0.075) 7.6
2 log(weight) 0.46 0.17) 2.7 051 (0.15) 3.9 042 (0.17) 2.5
3 age -0.020 (0.011) -1.8 - - - —0.015 (0.011) —-1.4
4 log(BPH) 0.11 (0.058) 1.8 - - - 0.11  (0.058) 1.9
5 SVI 0.77 (0.24) 3.1 0.67 (0.21) 3.2 0.72  (0.21) 35
6 log(cap pen) —0.11 (0.091) -12 - - - - - -
7 gleason 0.045 (0.16) 0.29 - - - - - -
8 PGS45 0.0045 (0.0044) 1.0 - - - - - -

o 0.78 - - 0.72 - - 071 - -

variable selection. Similar problems occur when other forms of model refinement
are entertained, such as transformations of y and/or z, or experimenting with a
variety of variance models and error distributions.

Example: Prostate Cancer

We begin by fitting the full model containing all eight variables. Table 4.3 gives the
coefficients, standard errors, and 7' statistics. For this example, the forward selection
and backward elimination stepwise procedures all lead to the same model containing
the three variables log(can vol), log(weight), and SVI. The p-value thresholds were
chosen to be 0.05. The standard errors associated with the significant variables all
decrease for the reduced model when compared to the full model. This behavior
reflects the bias-variance trade-off whereby a reduced model may have increased
precision because of the fewer competing explanations for the data (for more
discussion, see Sect.5.9). We emphasize, however, that uncertainty in the model
search is not acknowledged in the estimates of standard error. We see that the
estimated standard deviation is also smaller in the reduced model.

Turning now to methods that evaluate all subsets, Figure 4.12 plots the Cp
statistic versus the number of parameters in the model. For clarity, we do not include
models with less than four parameters in the plot, since these were not competitive.
Recall that we would like models with a small number of parameters whose Cp
value is close to or less than the line of equality. The variable plotting labels are
given in Table 4.3. For these data, we pick out the model with variables labeled 1,
2,3, 4, and 5 since this corresponds to a model that is close to the line in Fig.4.12
and has relatively few parameters. The five variables are log(can vol), log(weight),
age, log(BPH), and SVI, so that age and log(BPH) are added to the stepwise model.

Carrying out an exhaustive search over all main effects models, using the adjusted
R? to pick the best model (which recall is equivalent to picking that model with
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Fig. 4.12 Mallows’ Cp
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the smallest 52), gives a model with seven variables (gleason is the variable not
included). The estimate of the error variance is ¢ = 0.70. The minimum BIC model
was the same model as picked by the stepwise procedures.

We used Bayesian model averaging with, for illustration, equal weights on each
of the 2% models and weakly informative priors. The most probable model has
posterior probability 0.20 and contains log(can vol), log(weight), and SVI, while
the second replaces log(weight) with log(BPH) and has posterior probability 0.09.
The third most probable model adds log(BPH) to the most probable model and
has probability 0.037. Cumulatively across models, the posterior probability that
log(can vol) is in the model is close to 1, with the equivalent posterior probabilities
for SVI, log(weight), and log(BPH) being 0.69, 0.66, and 0.27, respectively. A more
detailed practical examination of BMA is presented at the end of Chap. 10.

4.10 A Pragmatic Compromise to Variable Selection

One solution to deciding upon which variables for inclusion in a regression model
is to never refine the model for a given dataset. This approach is philosophically
pure but pragmatically dubious (unless one is in the context of, say, a randomized
experiment) since we may obtain appropriate inference for a model that is a very
poor description of the phenomenon under study. It is hard to state general strategies,
but on some occasions, it may be safest, and the most informative, to report multiple
models.

We consider situations that are not completely confirmatory and not completely
exploratory. Rather we would like to obtain a good description of the phenomena
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under study and also have some faith in reported interval estimates. The philosophy
suggested here is to think as carefully as possible about the model before the
analysis proceeds. In particular, context-specific models should be initially posited.
Hopefully the initial model provides a good description, but after fitting the model,
model checking should be carried out and the model may be refined in the face of
clear model inadequacy, with refinement ideally being carried out within distinct a
priori known classes. A key requirement is to describe the procedure followed when
the results are reported.

If amodel is chosen because it is clearly superior to the alternatives then, roughly
speaking, inference may proceed as if the final model were the one that was chosen
initially. This is clearly a subjective procedure but can be informally justified via
either frequentist or Bayesian approaches. From a frequentist viewpoint, it may be
practically reasonable to assume, with respect to (4.28), that El¢ | P] = E|[¢ |
M ] because M would be almost always chosen in repeated sampling under these
circumstances. In a similar vein, under a Bayesian approach, the above procedure
is consistent in which model averaging in which the posterior model weight on the
chosen model is close to 1 (since alternative models are only rejected on the basis
of clear inadequacy), that is, with reference to (4.31), E[¢ | y] =~ E[¢ | M, v,
because Pr(]\fi\ | y) &~ 1. The aim is to provide probability statements, from either
philosophical standpoints that are “honest” representations of uncertainty.

The same heuristic applies more broadly to examination of model choice, beyond
which variables to put in the mean model. As an example of when the above
procedure should not be applied, examining quantile—quantile plots of residuals for
different Student’s ¢ distributions and picking the one that produces the straightest
line would not be a good idea.

4.11 Concluding Comments

In this chapter, we have discussed frequentist and Bayesian approaches to hypothesis
testing. With respect to variable selection, we make the following tentative conclu-
sions. For pure confirmatory studies, one should not carry out model selection and
use instead background context to specify the model. Prediction is a totally different
enterprise and is the subject of Chaps. 10-12. In exploratory studies, stepwise and
all subsets may point to important models, but attaching (frequentist or Bayesian)
probabilistic statements to interval estimates is difficult. For studies somewhere
between pure confirmation and exploratory, one should attempt to minimize model
selection, as described in Sect. 4.10.

From a Bayesian or a frequentist perspective, regardless of the criteria used in
a multiple hypothesis testing situation, it is essential to report the exact procedure
followed, to allow critical interpretation of the results.

We have seen that when a point null, such as Hy : 8 = 0, is tested, then frequentist
and Bayesian procedures may well differ considerably in their conclusions. This
is in contrast to the testing of a one-sided null such as Hy : 6 < 0; see Casella
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and Berger (1987) for discussion. We conclude that hypothesis testing is difficult
regardless of the frequentist or Bayesian persuasion of the analysis. A particular
difficulty is how to calibrate the decision rule; many would agree that the Bayesian
approach is the most natural since it directly estimates Pr(H = 0 | y), but this
estimate depends on the choices for the alternative hypotheses (so is a relative
rather than an absolute measure) and on all of the prior specifications. The practical
interpretation of the p-value depends crucially on the power (sample size and
observed covariate distribution in a regression setting) and reporting point and
interval estimates alongside a p-value or an « level is strongly recommended.

Model choice is a fundamentally more difficult endeavor than estimation since
we rarely, if ever, specify an exactly true model. In contrast, estimation is concerned
with parameters (such as averages or linear associations with respect to a popula-
tion) and these quantities are well defined (even if the models within which they are
embedded are mere approximations).

4.12 Bibliographic Notes

There is a vast literature contrasting Bayesian and frequentist approaches to
hypothesis testing, and we mention just a few references. Berger (2003) summarizes
and contrasts the Fisherian (p-values), Neyman (« levels), and Jeffreys (Bayes
factors) approaches to hypothesis testing, and Goodman (1993) provides a very
readable, nontechnical commentary. Loss functions more complex than those
considered in Sect. 4.3 are discussed in, for example, Inoue and Parmigiani (2009).

The running multiple hypothesis testing example concerned the analysis of
multiple transcripts from a microarray experiment. The analysis of such data has
received a huge amount of attention; see, for example, Kerr (2009) and Efron (2008).

4.13 Exercises

4.1 Consider the simple situation in which Y; | 6 ~;;q N(6,02) with 02 known.
The MLE § = ¥ ~ N(0,V) with V' = ¢?%/n. The null and alternative
hypotheses are Hy : § = 0 and H; : 6 # 0, and under the alternative, assume
6 ~ N(0, W). Consider the case W = o

(a) Derive the Bayes factor for this situation.

(b) Suppose that the prior odds are PO = 7 /(1 — mg), with 7 the prior on
the null, and let R = L,/ L, be the ratio of losses of type II to type I errors.
Show that this setup leads to a decision rule to reject Hy of the form

Z2
VIt 7 xexp (——L> x PO < R (4.34)

2 1+n

where Z = 5 / \/V is the usual Z-statistic.
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(c) Rearrangement of (4.34) gives a Wald statistic threshold of
2(1 PO
22 200 (?\/1 n n) .
n

Form a table of the p-values corresponding to this threshold, as a function
of mg and n and with R = 1. Hence, comment on the use of 0.05 as a
threshold.

4.2 The k-FWER criteria controls the probability of rejecting k£ or more true null
hypotheses, with k& = 1 giving the usual FWER criteria. Show that the
procedure that rejects only the null hypotheses H;, « = 1,...,m for those
p-values with p; < ka/m, controls the k-FWER at level a.

4.3 Prove expression (4.17).

4.4 In this question, an MCMC algorithm for the Bayesian mixture model described
in Sect. 4.6.2 will be derived and applied to “pseudo” gene expression data that
is available on the book website.

The three-stage model is:

Stage One:

N(0,02)  ifH; =0

Yi | Hi,0,7,m0 ~in e . :

| oo d{N(a,a§+72)1in_1
Stage Two:  H; | w1 ~;;q Bernoulli(my ).

Stage Three: Independent priors on the common parameters:

p(6, 7, M) ox 1/7.

Derive the form of the conditional distributions

5|12 mo, H
72| 8,70, H
mo | 72,0, H
H; | 6,72 mo, Hy, i=1,...,m,
where H = [Hy,..., H,,]. The form for 72 requires a Metropolis—Hastings
step (as described in Sect. 3.8.2).

Implement this algorithm for the gene expression data on the book website.
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Chapter 5
Linear Models

5.1 Introduction

In this chapter we consider linear regression models. These models have received
considerable attention because of their mathematical and computational conve-
nience and the relative ease of parameter interpretation. We discuss a number of
issues that require consideration in order to perform a successful linear regression
analysis. These issues are relevant irrespective of the inferential paradigm adopted
and so apply to both frequentist and Bayesian analyses.

The structure of this chapter is as follows. We begin in Sect. 5.2 by describing
a motivating example, before laying out the linear model specification in Sect.5.3.
A justification for linear modeling is provided in Sect. 5.4. In Sect. 5.5, we discuss
parameter interpretation, and in Sects.5.6 and 5.7, we describe, respectively,
frequentist and Bayesian approaches to inference. In Sect.5.8, the analysis of
variance is briefly discussed. Section 5.9 provides a discussion of the bias-variance
trade-off that is encountered when one considers which covariates to include in the
mean model. In Sect. 5.10, we examine the robustness of the least squares estimator
to model assumptions; this estimator can be motivated from estimating function,
likelihood, and Bayesian perspectives. The assessment of assumptions is considered
in Sect.5.11. Section 5.12 returns to the motivating example. Concluding remarks
are provided in Sect. 5.13 with references to additional material in Sect. 5.14.

5.2 Motivating Example: Prostate Cancer

Throughout this chapter we use the prostate cancer data of Sect. 1.3.1 to illustrate
the main points. These data consist of nine measurements taken on 97 men.
Along with the response, the log of prostate-specific antigen (PSA), there are eight
covariates. As an illustrative inferential question, we consider estimation of the
linear association between log(PSA) and the log of cancer volume, with possible

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series 195
in Statistics, DOI 10.1007/978-1-4419-0925-1_5,
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Fig. 5.1 Logof
prostate-specific antigen
versus log cancer volume,
with smoother superimposed

log(PSA)

log(can vol)

adjustment for other “important” variables. Figure 5.1 plots log(PSA) versus log
cancer volume, along with a smoother. The relationship looks linear, but Figs. 1.1
and 1.2 showed that log(PSA) was also associated with a number of the additional
seven covariates and that there are strong associations between the eight covariates
themselves. Consequently, we might question whether some or all of the other seven
variables should be added to the model.

5.3 Model Specification

A multiple linear regression model takes the form
Yi=Bo+ Bz + ...+ Brxik + €, (5.1

where we begin by assuming that the error terms are uncorrelated with E[¢;] = 0 and
var(e;) = 0. In a simple linear regression model, & = 1 so that we have a single
covariate. Linearity here is with respect to the parameters, and so variables may
undergo nonlinear transforms from their original scale, before inclusion in (5.1).

In matrix form we write

Y =20 +¢€, 5.2)
where
Yl 1 11 ... L1k 60 €1
Yy 1xa1 ... T2 b1 €2
Y = y xr = y 6 = s € —

Yn 1 Tnl -+ - Tnk Bk €n
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with E[e] = 0 and var(€) = 0°L,,. We will also sometimes write
Yi=zi8 + €,

where ¢, = [l ;1 ... ay]fori=1,... n.

The covariates may be continuous or discrete. Discrete variables with a finite
set of values are known as factors, with the values being referred to as levels. The
levels may be ordered, and the ordering may or not be based upon numerical values.
For example, dose levels of a drug are associated with numerical values but may be
viewed as factor levels. Suppose x represents dose, with levels 0, 1, and 5. There are
two alternative models that are immediately suggested for such an x variable. First,
we may use a simple linear model in x:

E[Y | z] = Bo + Az (5.3)
Second, we may adopt the model
EY |z]=ao x I(x =0)4+ a1 x I(x =1) 4+ ag x I(x =5), (5.4)

where the indicator function

I(x_g)_{o ifrx£2x

1 ifze=2

and ensures that the appropriate level of x is picked. The mean function (5.4)
allows for nonlinearity in the modeled association between Y and the observed z
values, but does not allow interpolation to unobserved values of z. In contrast, (5.3)
allows interpolation but imposes linearity. For an ordinal variable, the order of
categories matters, but there are not specific values associated with each level
(though values will be assigned as labels for computation). An example of an ordinal
value is a pain score with categories none/mild/medium/severe. Alternatively, the
levels may be nominal (such as female/male). The coding of factors is discussed in
Sect. 5.5.2. Covariates may be of inherent were specific interest or may be included
in the model in order to control for sources of variability or, more specifically,
confounding; Sect. 5.9 provides more discussion.

The lower-/uppercase notation adopted here explicitly emphasizes that the
covariates x are viewed as fixed while the responses Y are random variables.
This is true regardless of whether the covariates were fixed by design or were
random with respect to the sampling scheme. In the latter case it is assumed that
the distribution of & does not carry information concerning 3 or o2, so that it is
ancillary (Appendix F). Specifically, letting v denote parameters associated with a
model for &, we assume that

py, x| B,0%~) =ply |z B,0°) xplx|v), (5.5)

so that conditioning on & does not incur a loss in information with respect to 3.
Hence, we can ignore the second term on the right-hand side of (5.5).
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Random covariates, as just discussed, should be distinguished from inaccurately
measured covariates. We will assume throughout that the  values are measured
without error, an assumption that must always be critically assessed. In an obser-
vational setting in particular, it is common for elements of x to be measured with
at least some error, but, informally speaking, we hope that these errors are small
relative to the ranges; if this is not the case, then we must consider so-called errors-
in-variables models; methods for addressing this problem are extensively discussed
in Carroll et al. (2006).

5.4 A Justification for Linear Modeling

In this section we discuss the assumption of linearity. In general, there is no reason
to expect the effects of continuous covariates to be causally linear,' but if we have
a “true” model, E[Y | z] = f(x), then a first-order Taylor series expansion about a
point x( gives

F@) ~ o)+ L) (o)

Zo

= fo + Bi(x — x0)

so that, at least for = values close to zy, we have an approximately linear
relationship.

As an example, Fig.5.2 shows the height of 50 children plotted against their
age. The true nonlinear form from which these data were generated is the so-called
Jenss curve:

E[Y | 2] = Bo + fiz — exp(f2 + PB3x),

where Y is the height of the child at year z. This model was studied by Jenss
and Bayley (1937), and the parameter values for the simulation were taken from
Dwyer et al. (1983). The solid line on Fig. 5.2 is the curve from which these data
were simulated, and the dotted and dashed lines are the least squares fits using data
from ages less than 1.5 years only and greater than 4.5 years only, respectively.
At younger ages, the association is approximately linear, and similarly for older
ages, but a single linear curve does not provide a good description over the complete
age range.

'In fact, as illustrated in Example 1.3.4, many physical phenomena are driven by differential
equations with nonlinear models arising as solutions to these equations.
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5.5 Parameter Interpretation

Before considering inference, we discuss parameter interpretation for the linear
model. This topic is of vital importance in many settings, in order to report analyses
in a meaningful manner. Interpretation is of far less concern in situations in which
we simply wish to carry out prediction; methods for this endeavor are described
in Chaps. 10-12. In a Bayesian analysis the specification of informative prior
distributions requires a clear understanding of the meaning of parameters.

5.5.1 Causation Versus Association

We begin with the simple linear regression model
E[Y | z] = fo + Bz (5.6)

Here we have explicitly conditioned upon x which is an important distinction since,
for example, the models

E[Y] =E[E(Y | z)] = S (5.7
and

are very different. In (5.7) no assumptions are made, and we are simply saying
that there is an average response in the population. However, (5.8) states that
the expected response does not vary with x, which is a very strong assump-
tion. Consequently, care should be taken to understand which situation is being
considered.

We first consider the intercept parameter 5y in (5.6), which is the expected
response at x = 0. The latter expectation may make little sense (e.g., suppose the
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response is blood pressure and the covariate is weight), and there are a number of
reasons to instead use the model

EY | z] = B8 + B1(z — x), (5.9)

within which 3 is the expected response at © = z*. By choosing z* to be a
meaningful value, we will, for example, be able to specity a prior for 53 more easily
in a Bayesian analysis (see Sect.3.4.2 for further discussion). Choosing z* = T
is dataset specific (which does not allow simple comparison of estimates across
studies) but provides a number of statistical advantages. Of course, models (5.6)
and (5.9) provide identical inference since they are simply two parameterizations of
the same model.

In both (5.6) and (5.9), the mathematical interpretation of the parameter f3; is
that it represents the additive change in the expected response for a unit increase
in x. Notice that the interpretation of 5, depends on the scales of measurement of
both x and Y. More generally, ¢3; represents the additive change in the expected
response for a c unit change in z. A difficulty with such interpretations is that it is
inviting to think that if we were to provide an intervention and, for example, increase
2 by one unit for every individual in a population, then the expected response would
change by (1. The latter is a causal interpretation and is not appropriate in most
situations, and never in observational studies, because unmeasured variables that
are associated with both Y and z will be contributing to the observed association,
B1, between Y and x. In a designed experiment in which everything proceeds as
planned, = is randomly assigned to each individual, and we may interpret 3; as
the expected change in the response for an individual following an intervention in
which z were increased by one unit. Even in this ideal situation we need to know
that the randomization was successfully implemented. It is also preferable to have
large sample sizes so that any chance imbalance in variables between groups (as
defined by different  values) is small.

We illustrate the problems with a simple idealized example. Suppose the “true”
model is

E[Y | z,2] = Bo + fiz + B2z, (5.10)
and let
E[Z | z] = a + bz, (5.11)
describe the linear association between x and z. Then, if Y is regressed on z, only
ElY | 2] =E; . [EY |z, 2)]
= o + Bz + B2E[Z | z]
=B + Bz (5.12)
where
B = Bo+ aB2
BT = B1+ 0B (5.13)
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showing that, when we observe z only and fit model (5.12), our estimate of 37
reflects not just the effect of x but, in addition, the effect of z mediated through its
association with x. If b = 0, so that X and Z are uncorrelated, or if S = 0, so that
Z does not affect Y, then there will be no bias. Here “bias” refers to estimation of
B1, and not to 5. So for bias to occur in a linear model, Z must be related to both Y’
and X which, roughly speaking, is the definition of a confounder. The simulation at
the end of Sect. 4.8 illustrated this phenomenon. A major problem in observational
studies is that unmeasured confounders can always distort the true association.
This argument reveals the beauty of randomization in which, by construction, there
cannot be systematic differences between groups of units randomized to different
x levels.

To rehearse this argument in a particular context, suppose Y represents the
proportion of individuals with lung cancer in a population of individuals with
smoking level (e.g., pack years) z. We know that alcohol consumption, z, is
also associated with lung cancer, but it is unmeasured. In addition, X and Z are
positively correlated. If we fit model (5.12), that is, regress Y on x only, then
the resultant 57 is reflecting not only the effect of smoking but that of alcohol
also through its association with smoking. Specifically, since b > 0 (individuals
who smoke are more likely to have increased alcohol consumption), then (5.13)
indicates that 57 will overestimate the true smoking effect 3;. If we were to
intervene in our study population and (somehow) decrease smoking levels by
one unit, then we would not expect the lung cancer incidence to decrease by 57
because alcohol consumption in the population has remained constant (assuming
the imposed reduction does not change alcohol patterns). Rather, from (5.10), the
expected decrease in the fraction with lung cancer will be 5y if there were no
other confounders (which of course is not the case). The interpretation of 3 is
the following. If we were to examine two groups of individuals within the study
population with levels of smoking of 41 and z, then we would expect lung cancer
incidence to be /57 higher in the group with the higher level of smoking.

To summarize, great care must be taken with parameter interpretation in
observational studies because we are estimating associations and not causal relation-
ships. The parameter estimate associated with x reflects not only the “true” effect
of z but also the effects of all other unmeasured variables that are related to both x
and Y.

5.5.2 Multiple Parameters

In the model
E[Y | z1,...,21] = Bo + Brz1 + ... + Brax,

the parameter §; is the additive change in the average response associated with a
unit change in z;, with all other variables held constant.
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In some situations the parameters of a model may be very difficult to interpret.
Consider the quadratic model:

E[Y | o] = fo + B + Boa®.

In this model, interpretation of 3y (and (32) is difficult because we cannot change
x by one unit and simultaneously hold 2 constant. An alternative parameterization
that is easier to interpret is v = [0, 71, 72], Where vo = 5o, 71 = —1/282, and
2 = Bo — 32/482. Here 71 is the = value representing the turning point of the
quadratic, and s is the expected value of the curve at this point.

We now discuss parameterizations that may be adopted when coding factors.
We begin with a simple example in which we examine the association between a
response Y and a two-level factor x;, which we refer to as gender, and code as
x1 = 0/1, for female/male. The obvious formulation of the model is

Bo+ B, if z1 = 0 (female),
E Y =
¥le] {ﬁé + B35 if x1 = 1 (male).

The parameters in this model are clearly not identifiable; the data may be summa-
rized as two means, but the model contains three parameters. This nonidentifiability
is sometimes referred to as (intrinsic) aliasing, and the solution is to place a
constraint on the parameters.

In the sum-to-zero parameterization, we impose the constraint 8] + 85 = 0, to
give the model

E[Y | 21] = { (:3: - é: %f x1 = 0 (female),
By + B7 if 1 =1 (male).

In this case E[Y | ] = x3", where the rows of the design matrix are = = [1, —1]
if female and « = [1, 1] if male. We write

E[Y] =E[Y |21 = 0] x po + E[Y | 21 = 1] x (1 — po)
=By + 87 (1 —2po),

where py is the proportion of females in the population. We therefore see that /3 is
the expected response if pg = 1/2, and

E[Y |z, = 1] — E[Y | 21 = 0] = 28/,

is the expected difference in responses between males and females.
An alternative parameterization imposes the corner-point constraint and assigns
B1 = 0 so that

_Jbo if 21 = 0 (female),
EY ] = {ﬂo + 61 ifx; =1 (male).
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For this parameterization, E[Y" | x] = &3, where x = [1, 0] if female and = [1, 1]
if male. In this model, /3y is the expected response for females, and /37 is the additive
change in the expected response for males, as compared to females.

A final model is

EIY | 2] {ﬂ% %f:cl = 0 (female)

By if x1 =1 (male).
In this case E[Y | 2] = 8" where 2 = [1, 0] if female and 2 = [0, 1] if male so that
B4 is the expected response for a female and /37 is the expected response for a male.
We stress that inference for each of the formulations is identical; all that changes is
parameter interpretation.

The benefits or otherwise of alternative parameterizations should be considered
in the light of their extension to the case of more than two levels and to multiple
factors. For example, the [ﬂg, BI] parameterization does not generalize well to
a situation in which there are multiple factors and we do not wish to assume
a unique mean for each combination of factors (i.e., a non-saturated model). It
is obviously important to determine the default parameterization adopted in any
particular statistical package so that parameter interpretation can be accurately
carried out.

In this book we adopt the corner-point parameterization. Unlike the sum-to-
zero constraint, this parameterization is not symmetric, since the first level of
each factor is afforded special status, but parameter interpretation is relatively
straightforward. If possible, one should define the factors so that the first level is
the most natural “baseline.” We illustrate the use of this parameterization with an
example concerning two factors, £ and x2, with 1 having 3 levels, coded as 0, 1,
2, and z9 having 4 levels coded as 0, 1, 2, 3. The coding for the no interaction (main
effects” only) model is

w ifIIZO,IQZO’
E[Y|$17$2]: ,U+Oéj ?fxl:]ajzl,z,IQZ()’
ot B ifor =022 =k k=1,2,3,

pto+ By ifrr=4,j=1,2,20=kk=1,23.
As shorthand, we write this model as
E[Y|$1 :jv'rQ:k]:H+OLJ XI(CCl :j)_'—ﬁk XI(ZCQZI{J),

forj=0,1,2,k=0,1,2,3, withag = 8o = 0.

2This terminology is potentially deceptive since “effects” invite a causal interpretation.
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Fig. 5.3 Expected values for various models with two binary factors z; and x2, “x” represents
z2 = 0 and “0” zg = 1: (a) Null model, (b) z; main effect only, (¢) z2 main effect only, (d) z1
and zo main effects, (e) interaction model 1, (f) interaction model 2. The dashed lines in panels
(e) and (f) denote the expected response under the main effects only model

When one or more of the covariates are factors, interest may focus on interac-
tions. To illustrate, suppose first we have two binary factors, x; and x5 each coded
as 0, 1. The most general form for the mean is the saturated model

E[Y | {E1,$2] :,u—l—ozl X I(Il = 1) —|—ﬂ1 X I(.IQ = 1)—|—’}/11 X I(Ilzl,I2:1)
(5.14)
where we have four unknown parameters and the responses may be summarized

as four mean values. Figure 5.3 shows a variety of scenarios that may occur with
this model. Panel (a) shows the null model in which the response does not depend
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Table 5.1 Corner-point notation for two-factor model with interaction

z2
0 1 2 3
z1 0 " w+ B p+ B2 u+ Bs

TR e p+ a1+ B+ 11 u+ a1+ B2 + 712 p+ a1+ B3+ 73
A+ a2 u+az+ P14 v21 u+ a2+ B2 4 22 w+ oz + B3 + 703

on either variable, and panels (b) and (c) main effects due to z; only and to z9
only, respectively. In panel (d) the response depends on both factors in a simple
additive main effects only fashion (which is characterized by the parallel lines on
the plot). The association with x5 is the same for both levels of x; and y1; = 0
in (5.14). Panels (e) and (f) show two different interaction scenarios. In panel (e),
when 21 = 1 and x5 = 1 simultaneously, the expected response is greater than
that predicted by the main effects only model (which is shown as a dashed line).
In panel (f), the effect of the interaction is to reduce the association due to x».
For the ;1 = 0 population, individuals with 5 = 1 have an increased expected
response over individuals with x5 = 0. In the x; = 1 population, this association is
reversed. In the saturated model (5.14), v11 is measuring the difference between the
average in the x; = 1, x5 = 1 population and that predicted by the main effects only
model. In the saturated model, o is the expected change in the response between
the 1 = 1 and the z; = 0 populations when xo2 = 0, oy + y11 is this same
comparison when zo = 1.

In this example we have a two-way (also known as first-order) interaction (a
terminology that extends in an obvious fashion to three or more factor). If an
interaction exists in a model, then all main effects that are involved in the interaction
will often be included in the model, which is known as the hierarchy principle
(see Sect. 4.8 for further discussion). Following this principle aids in interpretation,
but there are situations in which one would not restrict oneself to this subset of
models. For example, in a prediction setting (Chaps. 12-10), we may ignore the
hierarchy principle.

Table 5.1 illustrates the corner-point parameterization for the case in which there
are two factors with three and four levels and all two-way interactions are present.
The main effects model is obtained by setting v;, = 0 forj = 1,2,k = 1,2, 3. This
notation extends to generalized linear models, as we see in Chap. 6.

5.5.3 Data Transformations

Model (5.1) assumes uncorrelated errors with constant variance. If there is evidence
of nonconstant variance, the response may be transformed to achieve constant
variance, though this changes other characteristics of the model. Historically, this
was a popular approach due to the lack of easily implemented alternatives to
the linear model with constant variance, and it is still useful in some instances.
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For example, for positive data taking the log transform and fitting linear models is
a common strategy. An alternative approach that is often preferable is to retain the
mean—variance relationship and model on the original scale of the response (using
a generalized linear model, for example see Chap. 6).

Suppose we have

E[Y] = My
and
var(Y) = apg(py),

so that the mean—variance relationship is determined by g(-), which is assumed
known, at least approximately. Consider the transformed random variable, Z =
h(Y). Taking the approximation

Z = h(py) + (Y — py)h (py),
dh

where h'(py) = 2|, produces

E[Z] = h(py),

and
var(Z) ~ aZg(uy)h’(,uy)Q.

To obtain independence between the variance and the mean, we therefore require

h(-) = / g(y) "2 dy. (5.15)

For example, a commonly encountered relationship for positive responses is
var(Y) = ag /#12,, so that the coefficient of variation (which is the standard deviation
divided by the mean) is constant. In this case, the suggested transformation,
from (5.15), is Z = logY. As a second example, if var(Y') = opu,, the

recommended transformation is Z = /Y.

Transformations of Y, and/or covariates, may also be taken in order to obtain an
approximately linear association, though it is advisable to do this before seeing the
scatterplot of y versus z, since data dredging is a bad idea, as discussed in Sect. 4.10.

Parameter interpretation is usually less straightforward if we have transformed
the response and/or the covariates, as we illustrate with a series of examples. In this
section, for clarity, we explicitly state the base of the logarithm. Suppose we fit
the model

log, Y = Bo+ b1z +e (5.16)

or equivalently

Y = exp(Bo + Bix + €) = exp(fo + f17)J, (5.17)
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where § = exp(e). The expectation of Y depends on the distribution of €, but the
median of Y | z is exp(Bo + S12), so long as the median of e is zero. It will often
be more appropriate to report associations in terms of the median for a positive
response; exp(Sy) is the median response when = = 0, and exp(/3;) is the ratio
of median responses corresponding to a unit increase in z. We may interpret the
intercept in terms of the expected value for specific distributional choices for e.
For example, if € | 2 ~ N(0, 02), then since Y is lognormal (Appendix D),

E[Y | 2] = exp(Bo + frz + 0% /2),
giving E[Y | z = 0] = exp(Bo + 02/2) and

R = exp(5) (5.18)
so that exp(/1) can be interpreted as the ratio of expected responses between
subpopulations whose = values differ by one unit. The interpretation (5.18) is true
for other distributions, so long as E[exp(e) | x] does not depend on z. In general,
if (5.18) holds, exp(cf1) is the ratio of expected responses between subpopulations
with covariate values = + ¢ and x. An alternative interpretation follows from
observing that

LBV | 2] = BiE[Y | 2],

so that the rate of change of the mean function with respect to x is proportional to
the mean, with proportionality constant 3;.

Model (5.16), with the assumption of normal errors, is useful if the standard
deviation on the original scale is proportional to the mean (to give a constant
coefficient of variation) since, evaluating the variance of a lognormal distribution
(Appendix D),

var(Y | z) = E[Y | z]* [exp(0?) — 1],
and if o2 is small, exp(0?) ~ 1 + 02, and so
var(Y | z) =~ E[Y | 2]%0?,

showing that for this model we have, approximately, a constant coefficient of
variation. Hence, log transformation of the response is often useful for strictly
positive responses, which ties in with the example following (5.15).

A model that looks similar to (5.17) is

Y =E[Y | 2] + € = exp(fo + f1z) + €. (5.19)

In this model we have additive errors, whereas in the previous case, the errors were
multiplicative. For the additive model, exp (/) is the expected value at z = 0, and
exp(/41) is the ratio of expected responses between subpopulations whose x values
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differ by one unit, regardless of the error distribution (so long as it has zero mean).
In model (5.19), we may question whether additive errors are reasonable given that
the mean function is always positive, though if the responses are well away from
zero, there may not be a problem. Model (5.19) is nonlinear in the parameters,
whereas (5.16) is linear, which has implications for inference and computation, as
discussed in Chap. 6.

We now consider the model

Y = Bo+ frlogpx + € (5.20)

which can be useful if linearity of the mean is reasonable on a log scale. For
example, if we have dose levels of a drug z of 1, 10, 100, and 1,000, then we would
be very surprised if changing « from 1 to 2 produces the same change in the expected
response as increasing x from 1,000 to 1,001. Modeling on the original scale might
also result in extreme x values that are overly influential, though the appropriateness
of the description of the relationship between Y and x should drive the decision as to
which scale to model on. For model (5.20), the obvious mathematical interpretation
is that 31 represents the difference in the expected response for individuals whose
log,, « values differ by one unit. A more substantive interpretation follows from
observing that

E[Y | ca] — E[Y | 2] = By logy

so that for a ¢=10-fold increase in z, the expected responses differ by [;.
Therefore, taking log,, « gives an associated coefficient that gives the same change
in the average when going from 1 to 10, as when going from 100 to 1,000.

Similarly, if we consider a linear model in log, z, then k(; is the additive
difference between the expected response for two subpopulations with covariates
2%z and x. For example, if one subpopulation has twice the covariate of another,
the difference in the expected response is (31. In general, if we reparameterize via
log,, = (to give /3 as the change corresponding to an a-fold change), then the effect
of a b-fold change is 31 log, b. As an example, if we initially assume the model

E[Y | 2] = Bo + B log, z,

then 3; log, 10 = 2.30 x B is the expected change for a 10-fold change in x.
‘We now consider the model with both Y and z transformed

log, Y = Bo + Bilogpx + €.

Under this specification, exp(3; ) represents the multiplicative change in the median
response corresponding to a 10-fold increase in x.
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Example: Prostate Cancer

For the prostate data, a simple linear regression model that does not adjust for
additional variables is

log(PSA) = By + 1 x log,(can vol) + €

where the errors ¢ are uncorrelated with E[e] = 0 and var(e) = o2. In this model,
exp(1) is the multiplicative change in median PSA associated with an e-fold
change in cancer volume. Perhaps more usefully, 2.30 x [y is the multiplicative
change in median PSA associated with a 10-fold increase in cancer volume.

5.6 Frequentist Inference

5.6.1 Likelihood

Consider the model
Y =x3 +e€,

with € ~ N,(0,0%1,), * = [l,z1,...,2%], and B = [Bo, b1, -, Bk". The
complete parameter vector is @ = [3, o] and is of dimension p x 1 where p = k+ 2.
The likelihood function is

1

L(g) = (27r02)7”/2 exp —F(y —z0)"(y —x0)|,

with log likelihood
n 2 1 T
1(0) = _Elog(ZTrU )_ 252 (y_mﬁ) (y_mﬁ)v

which yields the score equations (estimating functions)

a1

ol n 1 .

Setting (5.21) and (5.22) to zero (and assuming x"x is of full rank) gives the MLEs

B=(z"z) 'a"Y
1 R 12
o= |ty By (v - ap)
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We now examine the properties of these estimators, beginning with B:
E[8] = (a'z) '@ "E[Y]
= (z"z) 'z"zpB
=0
so that B is an unbiased estimator for all n. Though S5 is an unbiased estimating
function, & is a nonlinear function of Sy and so has finite sample bias (but is

asymptotically unbiased).
Asymptotic variance estimators are obtained from the information matrix:

_ 3_5 o Iy I
1(6) = E[ao]_[lﬂfm

where S = [S1, S5]", and

I 081 z='z
1 = 28 o2
081
Io=1I), = — =
12 2 Oo 0
I 852 - 2n
27 95 o2

Taking Var(g) = I(0)~ " gives

2

In practice, o~ is replaced by its estimator to give

var(B) = o2 (a'z) !
~2
~ i~ g
ar = —.
var(o) = o

For [ to be unbiased, we need only assume E[Y | ] = «3, while for Var(,@) =
o?(xx)~!, we require var(Y | x) = o2I,, but not normality of errors. The
expression for the variance is also exact for finite n. R

The asymptotic distribution of the MLE based on n observations, 3,,, is

(') 2B, — B) —a Nit1(0,02T11), (5.23)
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and (by Slutsky’s theorem, Appendix G) is still valid if o is replaced by a consistent
estimator. It should be stressed that normality of Y is not required, just n sufficiently
large for the central limit theorem to apply. Since 3,, is a linear combination
of independent observations, the central limit theorem may be directly applied.
Another way of viewing this asymptotic derivation is of replacing the likelihood

o~

p(y | B) by p(B, | B).

For & to be asymptotically unbiased, we require var(Y | ) = 01, so that the
estimating function for o, (5.22), is unbiased. For var(c) = 52 /2n to hold, we need
the third and fourth moments to be correct and equal to zero and o2, respectively,
as with the normal distribution. The dependence on higher-order moments results in
inference for o being intrinsically more hazardous than inference for 3.

Intervals for 3;, the jth components of 3, are based upon the statistic

B — b
se.(B))

where the standard error in the denominator is & times the square root of the (3, j)th
element of (z"x)~!. The robustness to non-normality of the data is in part due to
the standardization via the estimated standard error. In particular, we only require
0 — 0. An asymptotic 100 x (1 — «)% confidence interval for §; is

B\j + Za)2 X 5/5(37)

where z, /5 = P(/2).
If we wish to make inference about o2, then we might be tempted to construct a
confidence interval for o2 by leaning on ¢; | 02 ~;;q N(0, o2). This leads to

RSS
—5 ™~ Xkt (5.24)

where RSS = X7 | (Y — x;8)? is the residual sum of squares. Intervals obtained
in this manner are extremely non-robust to departures from normality; however,
see van der Vaart (1998, p. 27). The chi-square statistic does not standardize in any
way, and any attempt to do so would require an estimate of the fourth moment of
the error distribution, an endeavor that will be difficult due to the inherent variability
in an estimate of the kurtosis (for a normal distribution, the kurtosis is zero, and so
we do not require an estimate). Consequently, an interval (or test) based on (5.24)
should not be used in practice unless we have strong evidence to suggest normality
(or close to normality) of errors.

If the errors are such that € | 02 ~ N,(0,0%I,), then combining (5.23)
with (5.24) gives, using (E.2) of Appendix E, the distribution

B~ Tin [B,s°(@'a) " in—k —1], (5.25)
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a (k + 1)-dimensional Student’s ¢ distribution with location (3, scale matrix
s?(x"x)~1, and n—k—1 degrees of freedom (Sect. D). A 100 x (1—«)% confidence
interval for 3; follows as

Bj%tny ! xse(B)

where tz/}kfl is the a/2 percentage point of a standard ¢ random variable with

n — k — 1 degrees of freedom. A more reliable approach to the construction of
confidence intervals for elements of 3 is to use the bootstrap or sandwich estimation,
though if n is small, the latter are likely to be unstable. For small n, a Bayesian
approach may be taken, though there is no way that the distributional assumption
made for the data (i.e., the likelihood) can be reliably assessed.

We have just discussed the non-robustness of (5.24) to normality. It is perhaps
surprising then that confidence intervals constructed from (5.25) are used, since they
are derived directly from (5.24). However, the resultant intervals are conservative in
the sense that they are wider than those constructed from (5.23), explaining their
widespread use.

Foratestof Hy: 8; =c,j=1,...,k, we may derive a t-test. Under Hy,

r-5C i, (526)
S5
J

where S; is the (j,7)th element of (z"x)~! and T},_j_1 denotes the univariate
t distribution with n — k — 1 degrees of freedom, location Bj, and scale SjEQ.
Although & can be very unstable, (5.26) it is an example of a self-normalized sum
and so is asymptotically normal (Giné et al. 1997). The test with ¢ = 0 is equivalent
to the partial F’' statistic

_ BSS(B; | Bo,---s Bi—1,Bjt1, -, Br)/1

F RSS(8)/(n —k — 1) ’

where RSS(3) is the residual sum of squares given the regression model E[Y | ] =
3 and the fitted sum of squares

FSS(8; | Bos -5 Bj—1:Bj+15---Bk) = RSS(Bos - - -, Bj—1, Bj+1, - -, Bk) — RSS(B),

is equal to the change in residual sum of squares when 3; is dropped from the
model. The “partial” here refers to the occurrence of 5, [ # j in the model. Under
Hy, F ~ Fi p—;—1. The link with (5.26) is that ' = T? with T evaluated at ¢ = 0.

Let B = [B, B5] be a partition with 3, = [bo, ..., B¢] and By = [Bg+1, - - -, Bkl
with 0 < ¢ < k. Interest may focus on simultaneously testing whether a set of
parameters is equal to zero, via a test of the null

Hy : 3, unrestricted, 3, =0 versus H; : 3 =[8,085] # [8;,0].
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Under Hy, the partial F’ statistic

_FSS(Byi1, - B | Bo, Br, -, Bg)/(k —q) _FSS(By | B1)/(k —q)

F = 5.27
RSS/(n—k—1) RSS/(n—k —1) (5.27)
is distributed as Fj,_, ,,—r—1 (Appendix D). Note that
FSS(B, | B:1) # FSS(B,),
unless [x1, ..., %, is orthogonal to [zg+1, ..., zk]. Such derivations are crucial to
the mechanics of analysis of variance models, which we describe in Sect. 5.8.
Extending the above with ¢ = —1 so that all £ + 1 parameters are being
considered, the 100 x (1 — )% confidence interval for 3 is the ellipsoid
(B-B)z'z(B—B) < (k+1)s’Firrn-r-1(l - a) (5.28)

where s> = RSS/(n — k — 1) and Fy41n—k—1(1 — ) is the 1 — o point of the
F distribution with £ + 1,n — k — 1 degrees of freedom. The total sum of squares
(TSS) may be partitioned as

TSS = (y —zPB)'(y — zP)
=(y—aB+azB—zB)(y - 26 +z6 - zp)
=(y-2zB8)'(y—=0)+(B-0)z'zB-05)
= RSS + FSS.

Such expressions are specific to the linear model.

We now consider prediction of both an expected and an observed response.
The latter require consideration of what we term measurement error, though we
recognize that the errors in the model in general represent not only discrepancies
arising from the measurement instrument but all manner of additional errors and
sources of model misspecification. For inference concerning the expected response

at covariate vector g, we define § = xy3. Then § = x¢3 and under correct first
and second moment specification and via the central limit theorem:

[zo(x'x) *xh] /26, — 0) —4 N(0,0?) (5.29)

from which confidence intervals may be constructed. For prediction of an observed
response at xg, we define ¢ = xo3 + € with estimator ¢ = a3 + €. It is now
crucial to make a distributional assumption for the errors. Under € ~ N(0, 0'2),

[+ @o(a'®) @] ~/2(6 — ¢) ~ N(0,0?). (5.30)

The accuracy of intervals based on this form will be extremely sensitive to the
normality assumption.
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5.6.2 Least Squares Estimation

We describe an intuitive method of estimation with a long history and attractive
properties. In ordinary least squares, the estimator is chosen to minimize the residual
sum of squares

n

RSS(B) = > (Vi —z:B)” = (Y —xB)" (Y — zP).

i=1
Differentiation (and scaling for convenience) gives

10 T

with solution
B=(x'x) '2'Y,

so long as "z is of full rank. If we assume E[Y | x] = x(3, then E[G(3)]=0
and so (5.31) corresponds to an estimating equation, and we may apply the
nonidentically distributed version of Result 2.1, summarized in (2.13), with
A, =E 3_G =—x'zx
B
B,, = var(G) = z"var(Y)zx.

Consequently, to obtain the variance—covariance matrix of B, we need to specify
var(Y'). Assuming var(Y') = oI, gives B = o?z"x and

(') /%(B — B) —a Npp1(0,0°T541).

More generally, sandwich estimation may be applied, as we discuss in Sect. 5.6.4.

In the method of generalized least squares, we assume E[Y | ] = x(3 and
var(Y | &) = 02V where V is a known matrix (weighted least squares corresponds
to diagonal V') and consider the function

RSSo(B) = (Y —zB)'V (Y —xp).
Minimization of RSS. () yields the estimating function
G:(B) =2V Y —zB),
and corresponding estimator

BG = (x"Vlz) 'V ly,
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with asymptotic distribution
('V'2) 2B, — B) —a Npg1(0,0°T4). (5.32)

This estimator also arises from a likelihood with € ~ N,,(0,0%V) with V =1,
giving the ordinary least squares estimator, as expected. An unbiased estimator of

o2 is

52 = ;(Y —xB)'V Y — zB), (5.33)
n—k—1
(see Exercise 5.1) and may be substituted for o2 in (5.32).
Given a particular dataset with n cases, a natural question is as follows: What
is the practical significance of a central limit theorem and the associated regularity
conditions? In the simple linear regression context, we require

n
—\2 —\2

1?%)(”(1'1 —7) /;(a@] —Z)° =0, (5.34)
as n — oo. Intuitively, the imaginary way in which the number of data points
is going to infinity is such that no single = value can dominate. In Sect.5.10 we
will present a number of simulations showing the behavior of the least squares
estimator as a function of n, the distribution of the errors, and the distribution of
the x values. Such simulations give one an indication of when asymptotic normality
“kicks in.” The required conditions indicate the sorts of = distributions that are
more or less desirable for valid asymptotic inference. A crucial observation is that
reliable asymptotic inference via (5.32) requires the mean—variance relationship to
be correctly specified. We now present a theorem that provides one justification for
the use of the least squares estimator.

5.6.3 The Gauss—Markov Theorem

Definition. The best linear unbiased estimator (BLUE) of 3:

¢ Is a linear function of Y, so that the estimator can be written B"Y, for an n x
(k + 1) matrix B

* Isunbiased so that E[B"Y| = 3

* Has the smallest variance among all linear estimators

We now state and prove a celebrated theorem.

The Gauss-Markov Theorem: Consider the linear model E[Y] = x3, where Y’
isnx1,zisnx (k+1),and Bis (k+1) x 1. Suppose further that cov(Y') = o1,.
Then B = (z"x)~'x"Y is the best linear unbiased estimator (BLUE) of ¢'S.
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Proof. The estimator 8 = (x'x)~'z"Y is clearly linear, and we have already
shown it is unbiased. We therefore only need to show the variance is smallest among
linear unbiased estimators.

Let 3 = AY be another linear unbiased estimator with A a (k + 1) X n matrix.

Since the estimator is unbiased, E[3] = AE[Y] = Az for any 3, which implies
Ax =T ;. Now

Var(B) — Var(B) = AUQIk_,_l AT — o2 (mT(L')_l
=0’ [AA" — Az(z'z) 2" A"].
At this point we define h = x(x"z) 'x", which is known as the hat matrix (see

Sect.5.11.2). The hat matrix is symmetric and idempotent so that " = h and
hh" = h. Further, I,, — h inherits these properties. Using these facts, we can write

~ o~

var(3) — var(B8) = 02 A(I, — h)A"
= 0?A(L, — h)(I, — h)"A"

and this (k + 1) x (k 4+ 1) matrix is positive definite, establishing that B has the
smallest variance among linear unbiased estimators. a

This result shows that B, which is the least squares estimate, the maximum
likelihood estimate with a normal model, and the Bayesian posterior mean with
normal model and improper prior 7(3,02) o< =2 (as we show in Sect.5.7), is
optimal among linear estimators. We emphasize that, in the above theorem, only
first and second moment assumptions were used with no distributional assumptions
being required.

5.6.4 Sandwich Estimation

We have already examined the properties of the ordinary least squares/maximum
likelihood estimator 3 = (x'x) " 'zY and have seen that var(3) = (z"z) 0?2, if
var(Y | ¢) = o*I,,. Suppose that the correct variance model is var(Y | ) = 02V
so that the model from which the estimator was derived was incorrect. Then the
estimator is still unbiased, but the appropriate variance estimator is

~

var(B) = (z'z) 'z'var(Y | z)z(z"x) !
= (z'z) 2" Va(z'z)"o?, (5.35)

Expression (5.35) can also be derived directly from the estimating function

GB) =2 (Y —z0),
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since we know

(A;'BLALYY2(B — B) —a Niet1(0,,1,),

where
n = var(G) = "V zo?
A, =E {%} =—z'x,

to give

Var(,@) = (z'z) " Va(x'z) o’

We now describe a sandwich estimator of the variance that relaxes the constant
variance assumption but assumes uncorrelated responses. When the variance is
not constant, the ordinary least squares estimator is consistent (since the mean
specification is correct), but the usual standard errors will be inappropriate.

Consider the estimating function G(8) = «"(Y — x3). The “bread” of the
sandwich A~! remains unchanged since A does not depend on Y. The “filling”
becomes

B = var(G) = x"var(Y)x = Z olxiz;, (5.36)

where 0 = var(Y;) and we have assumed that the data are uncorrelated. Unfortu-
nately, o2 is unknown, but various simple estimation techniques are available. An
obvious estimator stems from setting 57 = (Y; — z;3)? to give

Zw xz;(Y; wzﬁ) (5.37)

and its use provides a consistent estimator of (5.36). However, this variance
estimator has finite sample downward bias.
For linear regression, the MLE

5 1 1N
7= 2 Wimwhf =00 7

is downwardly biased (as we saw in Sect.5.6.1), with bias —(k + 1) /n, which
suggests using

ﬁn:n_ _12:“;1 —x,08)°. (5.38)

This simple correction provides an estimator of the variance that has finite bias, since
the bias in 52 changes as a function of the design points a;, but will often improve
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on (5.37). In linear regression, if var(Y;) = o2, then E[(Y; — :vlﬁ) ] o?(1 — hy;)
where h;; is the ith diagonal element of the hat matrix x(z" :c) x" (we derive this
result in Sect. 5.11.2). Therefore, another suggested correction is

mez 1__”?)) . (5.39)

For each of (5.37), (5.38), and (5.39), the variance of the estimator ﬁ is consistently
estimated by A; 1B, AL,

We report the results of a small simulation study, in which we examine the
performance of the sandwich estimator as a function of n, the distribution of x, and
the variance estimator. We carry out six sets of simulations with the = distribution
either uniform on (0,1) or exponential with rate parameter 1, and var(Y | z) =
E[Y | z]¢ x 02 with ¢ = 0,1,2, so that the variance of the errors is constant,
increases in proportion to the mean, or increases in proportion to the square of the
mean. The errors are normally distributed and uncorrelated in all cases (Sect.5.10
considers the impact of other forms of model misspecification).

In Table 5.2, we see that, as expected, confidence intervals obtained directly from
the usual variance of the ordinary least squares estimator, that is, (:13%)‘182, give
accurate coverage when the error variance is constant. When the x distribution is
uniform, the coverage is accurate even under variance model misspecification. There
is poor coverage for the exponential distribution, however, which worsens with
increasing n. The coverage of the sandwich estimator confidence intervals requires
large samples to obtain accurate coverage for the exponential x model. There is a
clear efficiency loss when using sandwich estimation, if the variance of the errors
is constant. The downward bias of the sandwich estimator based on the unadjusted
residuals is apparent, though this bias decreases with increasing n. Working with
residuals standardized by n/(n — k — 1), (5.38), improves the coverage, while the
use of the hat matrix version, (5.39), improves performance further.

If the errors are correlated, the sandwich estimators of the variance considered
here will not be consistent. Chapter 8 provides a description of sandwich estimators
for the correlated data situation that may be used when there is replication across
“clusters.”

Example: Prostate Cancer

We fit the model
logy; = fo + B1logyo(z) + € (5.40)

where y; is PSA and z; is the cancer volume for individual ¢ and ¢; are assumed

uncorrelated with constant variance o2.
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Table 5.2 Confidence interval coverage of nominal 95% intervals under a model-based
variance estimator in which the variance is assumed independent of the mean and under
three sandwich estimators given by (5.37)—(5.39)

n Model-based Sandwich 1 Sandwich 2 Sandwich 3
5 95 84 90 93
10 95 88 91 92
25 94 92 93 94
50 95 94 94 94
100 95 95 95 95
250 95 95 95 95
var(Y | £) = o2,  uniform

5 95 82 88 92
10 95 85 88 91
25 95 89 91 92
50 95 91 92 93
100 95 93 93 94
250 95 94 94 94
var(Y | ) = o2, = exponential

5 95 83 89 92
10 95 89 92 93
25 95 92 94 94
50 95 94 95 95
100 95 95 95 95
250 95 95 95 95
var(Y | z) = E[Y | ] x &2, = uniform

5 92 76 83 89
10 90 71 82 87
25 87 83 85 88
50 85 87 88 90
100 85 90 91 92
250 83 93 93 93
var(Y | z) = E[Y | ] x o2, = exponential

5 95 83 89 92
10 95 89 92 93
25 95 92 93 94
50 94 94 94 94
100 95 94 95 95
250 95 95 95 95
var(Y | z) = E[Y | #]% x 02, x uniform

5 89 70 78 86
10 81 71 75 82
25 75 78 80 85
50 73 85 86 88
100 71 89 90 91
250 68 92 92 93

var(Y | z) = E[Y | 2]? x o2, z exponential

The true values are 39 = 1, 81 = 1, and all results are based on 10,000 simulations. In
all cases, the errors are normally distributed and uncorrelated. The true variance model
and distribution of x are given in the last line of each block
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Table 5.3 Least squares/maximum likelihood parameter
estimates and model-based and sandwich estimates of the
standard errors, for the prostate cancer data

Model-based Sandwich
Parameter  Estimate standard error standard error
Bo 1.51 0.122 0.123
B1 0.719 0.0682 0.0728

Fig. 5.4 Logof
prostate-specific antigen
versus log of cancer volume,
along with the least
squares/maximum likelihood
fit, and 95% pointwise
confidence intervals for the
expected linear association
(narrow bands) and for a new
observation (wide bands)

log(PSA)

log(cancer volume)

where y; is PSA and x; is cancer volume for individual 7 and €; are assumed
uncorrelated with constant variance 2. Table 5.3 gives summaries of the linear
association under model-based and sandwich variance estimates. The point esti-
mates and model-based standard error estimates arise from either ML estimation
(assuming normality of errors) or ordinary least squares estimation of 3. The sand-
wich estimates of the standard errors relax the constancy of variance assumption
but assume uncorrelated errors. The standard error of the intercept is essentially
unchanged under sandwich estimation, when compared to the model-based version,
while that for the slope is slightly increased. The sample size of n = 97 is large
enough to guarantee asymptotic normality of the estimator. For a 10-fold increase
in cancer volume (in cc), there is a exp(/51) = 2.1 increase in PSA concentration.
Figure 5.4 plots the log of PSA versus the log of cancer volume and superimposes
the estimated linear association, along with pointwise 95% confidence intervals
for the expected linear association and for a new observation (assuming normally
distributed data). There does not appear to be any deviation in random scatter of
the data around the line (a residual plot would give a clearer way of assessing the
nonconstant variance assumption, as we will see in Sect. 5.10). In Fig. 5.5(a), we
plot PSA versus log cancer volume and clearly see the variance of PSA increasing
with increasing cancer volume on this scale. Figure 5.5(b) plots PSA versus cancer
volume. It is very difficult to assess the goodness of fit of the fitted relationship
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Fig. 5.5 (a) Prostate-specific antigen versus log cancer volume, (b) Prostate-specific antigen
versus cancer volume. In each case, the least squares/maximum likelihood fit is included

or assumptions concerning the mean—variance relationship when the response and
covariate are on their original scales. In both plots, the fitted line is from the fitting
of model (5.40).

5.7 Bayesian Inference

We now consider Bayesian inference for the linear model. As with likelihood

inference, we are required to specify the probability of the data and we assume

Y | B,0% ~ N, (z3,51,). The posterior distribution is
p(B,0% | y) < L(B, %) x n(B,0?). (5.41)

Closed-form posterior distributions for 3 and 2 are only available under restricted
prior distributions. In particular, consider the improper prior distribution

m(B8,0%) = p(B) x p(c?) x o> (5.42)

Under this prior and likelihood combination, the posterior is, up to proportionality,

p(B.0% | y) ox (02)" "2 exp |~ (y — 2B) (y — 2B)] .

5 (5.43)

To derive p(3 | y), we need to integrate o from the joint distribution. To achieve
this, it is useful to use an equality derived earlier, (2.23):

(y—zB)'(y—xB) = *(n—k—1)+ (B - B)'z"z(B - B),
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where B is the ML/LS estimate. Substitution into (5.43) gives
2\—(n+2)/2 [
p(Bly) < [(07) expq—55 [s°(n—k—1)
202

+ (B-Ba'2(B-P)|} do*.

The integrand here is the kernel of an inverse gamma distribution (Appendix D) for
o2 and so has a known normalizing constant, the substitution of which gives

n—k—1

~ ~ —n/2
m [ =k —1) + (B—B)a"a(B - B)
p(ﬁly)fxf’(g)l 3 ]
Ny @prs - ﬂ)] e

after some simplification. By inspection we recognize that this expression is the
kernel of a (k + 1)-dimensional ¢ distribution (Appendix D) with location 3, scale
matrix s?(z"x)~!, and n — k — 1 degrees of freedom, that is,

Bly~Ti [(x'2) 2"y, (@'x) 's*n—k—1]. (5.44)

Consequently, under the prior (5.42), the Bayesian posterior mean E[3 | y]
corresponds to the MLE, and 100(1 — )% credible intervals are identical to
100(1 — )% confidence intervals, though of course the two intervals have very
different interpretations.

Asymptotically, as with likelihood estimation, it is the covariance model
var(Y | x) that is most important for valid inference, and normality of the error
terms is unimportant. One way of thinking about this is as replacing y | 3, 0% by

B|B.5% ~ Ny |B,5%(x"z) V2.
We may derive the marginal posterior distribution of o2 as
o® [y~ (n—p—1)s* xx; 2,5, (5.45)

a scaled inverse chi-squared distribution. As in the frequentist development,
inference for o2 is likely to be highly sensitive to the normality assumption.

Although we can obtain analytic forms for p(3 | y) and p(c? | y) under the
prior (5.42), closed forms will not be available for general functions of interest.
Direct sampling from the posterior may be utilized for inference in this case
though. A sample from the joint distribution p(3,0? | y) can be generated using
the composition method (Sect. 3.8.4) via the factorization
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p(B,0% |y) =p(o” | y) x p(B | 0%, y),

where 3| 02,y ~ Ni11 {B, 02(:1?:13)_1} ,and 02 | y is given by (5.45). Independent
samples are generated via the pair of distributions

o?® ~ p(o? | y)
B~ p(B|a*D y),

fort = 1,...,T. Samples for functions of interest ¢ = g(3, o) are then available
as 1) = g(8V), 02)).

The conjugate prior (Sect. 3.7.1) here takes the form (3, 02) = 7(8 | 0?)7(c?)
with B | 02 ~ Njy1(m,0%V) and 02 ~ Ga(a, b). However, this specification
is not that useful in practice since the prior for 3 depends on ¢2. In particular, for
smaller and smaller o2, the prior for 3 becomes increasingly concentrated about m
which would not seem realistic in many contexts.

Under other prior distributions, analytic/numerical approximations or sampling-
based techniques are required. An obvious prior choice is

B~N(m,V), o2~ Gala,b)
which gives the posterior
p(B,0% | y) < U(B,0%)m(B)m(0?)

which is intractable, unless V'~ is the (k + 1) x (k + 1) matrix of zeroes, which
is the improper prior case, (5.42), already considered. Although the posterior is not
available in closed form under this prior, it is straightforward to construct a blocked
Gibbs sampling algorithm (Sect. 3.8.4). Specifically, letting L(3,0?) denote the
likelihood, one iterates between the pair of conditional distributions:

p(By,0°) x L(B,0°)m(8)
~ N(m*, V*) (5.46)

po™* |y, B) « L(B,o")m(c™?)

~ Ga (a + z, b+ 1(y —x8)" (y — mﬁ)) (5.47)

2 2
where
m* =W x B+ Iy — W) xm
V* =W x var(3)
and

W = (z'z+V 'o?) H(z'z).
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Conditional conjugacy is exploited in this derivation; for details, see Exercise 5.4.
For general prior distributions, the Gibbs sampler is less convenient because the
conditional distributions will be of unrecognizable form, but Metropolis—Hastings
steps (Sect. 3.8.2) for B | y, 0% and 02 | y, B3 are straightforward to construct.

5.8 Analysis of Variance

The analysis of variance, or ANOVA, is a method by which the variability in the
response is partitioned into components due to the various classifying variables and
due to error. At one level, the ANOVA model is just a special case of a multiple
linear regression model, but ANOVA does not simply have a role as an “outgrowth”
of linear models. Rather Cox and Reid (2000, p. 245) state that ANOVA has a role
“in clarifying the structure of sets of data, especially relatively complicated mixtures
of crossed and nested data. This indicates what contrasts can be estimated and the
relevant basis for estimating error. From this viewpoint the analysis of variance
table comes first, then the linear model, not vice-versa.” A study of the analysis of
variance is intrinsically linked to the study of the design of experiments. Numerous
books exist on ANOVA and the design of experiments; here we only give a brief
discussion and introduce the main concepts. Specifically, we distinguish between
crossed and nested (or hierarchical) designs and fixed and random effects modeling.

5.8.1 One-Way ANOVA

Consider the data in Table 5.4, taken from Davies (1967), which consist of the yield
(in grams) from six randomly chosen batches of raw material, with five replicates
each. The aim of this experiment was to find out to what extent batch-to-batch
variation is responsible for variation in the final product yield.

Data such as these correspond to the simplest situation in which we have a single
factor and a one-way classification. We may model the yield Y;; in the jth sample
from batch 7 as

Yij = p+a; + €, (5.48)

Table 5.4 Yield of dyestuff in grams of standard color, in each of six batches

Replicate Batch

observation 1 2 3 4 5 6

1 1,545 1,540 1,595 1,445 1,595 1,520
2 1,440 1,555 1,550 1,440 1,630 1,455
3 1,440 1,490 1,605 1,595 1,515 1,450
4
5

1,520 1,560 1,510 1,465 1,635 1,480
1,580 1,495 1,560 1,545 1,625 1,445
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with €;; | 0 ~q N(0,0%),i = 1,...,a, 5 = 1,...,n. We need a constraint
to prevent aliasing (Sect.5.5.2), with two possibilities being the sum-to-zero
constraint, Z?Zl a; = 0, and corner-point constraint: «; = 0. Model (5.48) is
an example of a multiple linear regression with mean

E[Y | ] = 28
in which
Yy
: 1 1 0 ...0T
Yin 11 .0
Y 10 1...0 2
v : aq
- }/v2n 5m_ 1 0 1 0 5/6_ . b
Yo, 100 1
: L1 0 0 1]
_Yll’ﬂ_

and where we adopt the corner-point constraint. Suppose we are interested in
whether there are differences between the strengths from different looms. No
differences correspond to the null hypothesis:

Hy:a01=...=a,=0. (5.49)

Carrying out a(a — 1)/2 t-tests leads to multiple testing problems (Sect.4.5).
Viewing this problem from a frequentist perspective and with @ = 6 batches, we
have 15 tests of pairs of batches, and with an individual type I error of 0.05, this gives
an overall type I error of 1 — 0.95'9 = 0.54. As an alternative, we may test (5.49)
using an F' test (Sect. 5.6.1). Specifically, the F’ statistic is given by

_ Fss(a|p)/(a—1)

F= 5.50
RSS(a)/a(n — 1) (5.50)
where
FSS(a | ) = RSS(1) — RSS (1, )
is the fitted sum of squares that results when & = [ayq,...,q,] is added to the

model containing p only. In (5.50), the F’ statistic is the ratio of two so-called mean
squares, which are average sum of squares, and under Hy, since the contributions in
numerator and denominator are independent, F' ~ F,,_1 4(,—1). The ANOVA table
associated with the test is given in Table 5.5. This table lays out the quantities that
require calculation and shows the decomposition of the total sum of squares into
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Table 5.5 ANOVA table for the one-way classification. The F statistic is for a test of Hp : a1 =
a2 = ... = agq = 0; DF is short for degrees of freedom and EMS for the expected mean square,
which is E[SS/DF]

Source Sum of squares DF EMS F statistic
— — a 2
Between SS1=n ¢ (Vi —-Y.)?2 a—1 02 4 ni=1 % SS, /(a—1)
i=1 a—1 SS2/a(n-1)
batches
Error SS2=>70, Z}L:l(yij -Y:)?2 aln—-1) o2
Total SSr=>"0 >0 (Yij — Y.)?2 an-—1

Table 5.6 One-way ANOVA table for the dyestuff data; DF is shorthand
for degrees of freedom

Source Sum of squares DF  Mean square F statistic

Between 56, 358 5 11,272 4.60 (0.0044)
batches

Error 58,830 24 2,451

Total 115,188 29

The quantity in brackets in the final column is the p-value

that due to groups (batches in this example) and that due to error. The intuition
behind the F' test is that if there are no group effects, then the average sum of
squares corresponding to the groups will, in expectation, equal the error variance.
Consequently, we see in Table 5.5 that the expected mean square is simply o2 when
a; = ... = a4 = 0. The success of the I test depends on the fact that we
may decompose the overall sum of squares into the sum of the constituent parts
corresponding to different components, and these follow independent y? random
variables.

Table 5.6 gives the numerical values for the dyestuff data of Table 5.4 and results
in a very small p-value. As discussed in Sect. 4.2, the calibration of p-values is
difficult, but for this relatively small sample size, a p-value of 0.0044 strongly
suggests that the null is very unlikely to be true, and we would conclude that there
are significant differences between batch means for these data. A Bayesian approach
to testing may be based on Bayes factors. In this linear modeling context, there are
close links between the Bayes factor and the [’ statistic (O’Hagan 1994, Sect. 9.34),
though as usual the interpretations of the two quantities differ considerably. It is
straightforward to extend the F’ test to the case of different sample sizes within
looms, that is, to the case of general n;, 7 =1,...,a.

If we are interested in the overall average yield, we would not want to ignore
batch effects if present (even if they are not of explicit interest), because a model
with no batch effects would not allow for the positive correlations that are induced
between yields within the same batch. This issue is discussed in far greater detail in
Chap. 8.
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Table 5.7 Data on clotting

X : . 8 Treatment

times (in minutes) for eight .

subjects, each of whom Subject 1 2 3 4 Mean

receives four treatments 1 8.4 9.4 9.8 12.2 9.95
2 12.8 15.2 12.9 14.4 13.82
3 9.6 9.1 11.2 9.8 9.92
4 9.8 8.8 9.9 12.0 10.12
5 8.4 8.2 8.5 8.5 8.40
6 8.6 9.9 9.8 10.9 9.80
7 8.9 9.0 9.2 10.4 9.38
8 7.9 8.1 8.2 10.0 8.55
Mean 9.30 9.71 9.94 11.02 9.99

5.8.2 Crossed Designs

We now consider two factors, which we label A and B, with a and b levels,
respectively. If each level of A is crossed with each level of B, we have a
factorial design. Suppose that there are n replicates within each of the ab cells.
The interaction model is

Yije = p+ i + Bj + vij + €iji,

fori=1,...,a,j=1,...,b,and k = 1,...,n. This model contains 1 + a + b +
ab parameters, while the data supply only ab sample means. Therefore, it is clear
that constraints on the parameters are required. In the corner-point parameterization
(Sect.5.5.2), the 1 + a + b constraints are

ap=Fi=71=...=%="1=-..%1 =0.

Alternatively, we may adopt the sum-to-zero constraints:

a b a b
Zai = Zﬁj = Z%’j = Z%j =0.
i=1 =1 =1 j=1

Table 5.7 reproduces data from Armitage and Berry (1994) in which clotting
times of plasma are analyzed. These data are from a crossed design in which each
of a = 8 subjects received b = 4 treatments. The design is crossed since each
patient receives each of the treatments. These data also provide an example of
a randomized block design in which the aim is to provide a more homogeneous
experimental setting within which to compare the treatments. Ignoring the blocking
factor increases the unexplained variability and reduces efficiency. Section 8.3
provides further discussion.
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Table 5.8 ANOVA table for the two-way crossed classification with one observation per cell; DF
is short for degrees of freedom and EMS for the expected mean square

Source Sum of squares DF EMS  F statistic
Factor A SSy = bY% (Vi —V.)? a—1 S8y ol4bris,of
Factor B SSg = ‘IZ?:1(?<J' -Y.)? b—1 % 702+GE%:1 LA
Error  SSg = (@a-Dp-1) 2% o

?:1 Z?:ﬂyij - ?23 - 7~j +?~~)2
Total SSr =3¢ 30 (Vi —Y.)? ab—1

Table 5.9 ANOVA table for the plasma clotting time data in Table 5.7; DF is short
for degrees of freedom. The quantity in brackets in the final column is the p-value

Source of variation ~ Sum of squares DF  Mean square  F’ statistic

Treatment 13.0 3 4.34 6.62 (0.0026)
Subjects 79.0 7 11.3 17.2 (2.2 x 10~7)
Error 13.8 21 0.656

Total 105.8 31

There are no replicates within each of the 8 x 4 cells in Table 5.7, and so it is not
possible to examine interactions between subjects and treatments. Consequently, we
concentrate on the main effects only model:

Yij = p+a; + B + €, (5.51)

fori = 1,...,4;5 = 1,...,8 and with ¢;; | 0% ~;;q N(0,0?). Here we adopt
the corner-point parameterization with ; = 0 and 81 = 0. Table 5.8 gives the
generic ANOVA table for a two-way classification with no replicates, and Table 5.9
gives the numerical values for the plasma data. For these data, primary interest is in
treatment effects (the «;’s), and Table 5.9 shows the steps to obtaining a p-value of
0.0026 for the null of Hy : g = a3 = a4 = 0 which, for this small sample size,
points strongly towards the null being unlikely. In passing, we note that there are
large between-subject differences for these data, so that the crossed design is very
efficient.

We now examine treatment differences using estimation. Under the improper
prior

1
Pl 0, 8,0%) o —

interval estimates obtained from Bayesian, likelihood, and least squares analyses
are identical. We take a Bayesian stance and report the posterior distribution for
each of the treatment effects. We let 8 = [u,a, 3] where @ = [ag, a3, (4]
and 3 = [Ba,...,3s]. The joint posterior for @ is multivariate Student’s ¢, with
n—k—1= 32— 11 = 21 degrees of freedom, posterior mean 0 (the least
squares estimate) and posterior scale matrix, (z'x)~ 52, where 52 is the usual
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Fig. 5.6 Marginal posterior
distributions for the treatment > @ |
contrasts, with treatment 1 as g ©
the baseline, for the plasma 8 —
clotting time data in Table 5.7 5 <
= o |
i)
[%] —]
o
o
o _|
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Treatment Difference

unbiased estimator of the residual error variance. Since treatment 1 is the reference
we examine treatment differences with respect to this baseline group. Figure 5.6
gives the posterior distributions for g, a3, as. The posterior probabilities that the
average responses under treatments 2, 3, and 4 are greater than zero are 0.16,
0.065, and 0.00017, respectively. Consequently, we conclude that there is strong
evidence that treatment 4 differs from treatment 1, with decreasingly lesser evidence
of differences between treatment 1 and treatments 3 and 2.

5.8.3 Nested Designs

For a design with two factors, suppose that Y;;;, denotes a response at level 4 of
factor A and level j of factor B, with replication indexed by k. In a nested design,
in contrast to a crossed design, j = 1 in level 1 of factor A has no meaningful
connection with j = 1 in level 2 of factor A. In the context of the previous example,
suppose each of eight patients received a single treatment each, but with & replicate
measurements. In this case, we again have two factors, treatments and patients, but
the patient effects are nested within treatments. A nested model for two factors is

Yije =+ ai + Bj) + €iji,

with ¢ = 1,...,a indexing factor A and j = 1,...,b factor B. In the nested
patient/treatment example, A represents treatment and B patient, and so S;(;
represents the change in expected response for patient j within level ¢ of treatment.
Notice that there is no interaction in the model, because factor B is nested within
factor A, and not crossed, and so there is no way of estimating the usual interactions.
In a sense, f3;(;) is an interaction parameter since it is the patient effect specific to a
particular treatment. Table 5.10 gives the ANOVA table for this design.
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Table 5.10 ANOVA table for the two-way nested classification; DF is short for degrees of
freedom and EMS for the expected mean square

Source Sum of squares DF EMS F statistic

Factor A SSa=tnY% (Vi —V..)? 1 SS4 o tbn Siy of
S S~ S - ey

Factor B SSp=n)y i, z;?:l(?ij, -Yi)? ab-1) S8 oTta ;=1 f

(a(b—1) b—1
(within A)

Error SSg = ab(n — 1) 4((1,51?(%71) o?
b ”
;?:1 Zj:l Z;:l(yijk_
Yi;)?
Total SS+ = abn — 1
b m
7?:1 j=1 ilzl(Yijk_
Y.)?

5.8.4 Random and Mixed Effects Models

The examples we have presented so far are known, in the frequentist literature, as
fixed effects ANOVA models since the parameters, for example, the «;’s in the
one-way classification, are viewed as nonrandom. An alternative random effects
approach is to view these parameters as a sample from a probability distribution,
with the usual choice being «; | 02 ~;;q N(0,02). From a frequentist perspective,
the choice is based on whether the units that are selected can be viewed as being
a random sample from some larger distribution of effects. Often, patients in a trial
may be regarded as a random sample from some population, while treatment effects
may be regarded as fixed effects. In this case, we have a mixed effects model.
Model (5.51) was used for the data in Table 5.7 with the o; and 3; being treated as
fixed effects. Alternatively, we could use a mixed effects model with the individual
effects o; being treated as random effects and the 3;, representing treatment effects,
being seen as fixed effects.

From a Bayesian perspective, the distinction being fixed and random effects is
less distinct since all unknowns are viewed as random variables. However, the prior
choice reflects the distinction. For example, in model (5.51), the “fixed effects”
corresponding to treatments may be assigned independent prior distributions 3; ~
N(0, V) where V is fixed, while the “random effects” corresponding to patients may
be assigned the prior ov; | 02 ~;;q N(0,02) with 02 assigned a prior and estimated
from the data.

A full description of estimation for random and mixed effects models will be
postponed until Chap. 8, though here we briefly describe likelihood-based inference
for the one-way model (5.48). Readers who have not previously encountered
random effects models may wish to skip the remainder of this section and return
after consulting Chap. 8. The one-way model is

Yij =p+ o+ €5,
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Table 5.11 ANOVA table for test of Hy : ag = 0; DF is short for degrees
of freedom and EMS for the expected mean square

Source Sum of squares DF EMS

Between batches  n > ¢ (V;. — Y. ) a—1 % + no2

Error S 2 (Y = Yi)? a(n-1)  o®

Total Py 27.:1 i —Y.)?2 an—1
where we have the usual assumption €;; | 0% ~;iq N(0,02), j = 1,...,n, and add
a; | 0% ~;;a N(0,02),i = 1,...,aas the random effects distribution. We no longer

need a constraint on the «;’s in the random effects model since these parameters
are “tied together” via the normality assumption. A primary question of interest is
often whether there are between-unit differences, and this can be examined via the
hypothesis Hy : 02 = 0. In the one-way classification, this test turns out to be
equivalent to the F’ test given previously in Sect.5.8.1, though this equivalence is
not true for more complex models. The ANOVA table given in Table 5.11 is very
similar to that for the fixed effects model form in Table 5.5, though we highlight the
difference in the final column.

Estimation via a likelihood approach proceeds by integrating the a; from the

model to give the marginal distribution

p(yi | 1, 0%, 0%) = / p(yi | 1y @i, 0%) x plas | 02) dox,

and results in

Yi | 02,07 ~iig N(plr, 0°L + 02 d,),

where 1, is the r x 1 vector of 1’s, I,. is the X r identity matrix, and J, is the
r x r matrix of 1’s. This likelihood can be maximized with respect to p, 02, 02,
and asymptotic standard errors may be calculated from the 1nformat10n matrix. A
Bayesian approach combines the marginal likelihood with a prior 7 (1, 02, 02).

5.9 Bias-Variance Trade-Off

Chapter 4 gave an extended discussion of model formulation and model selection,
and the example at the end of Sect. 4.8 acted as a prelude to this section in which
we describe the bias-variance trade-off that is encountered when we consider which
variables to include in a model.

Suppose the true model is

Y =x0 +¢€,
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where Y isn x 1,z isn x (k+ 1), Bis (k + 1) x 1, and the errors are such that
E[e] = 0 and var(e) = 0*I,,. We have seen that the estimator

~

B=(a'2) 2"y,

arises from ordinary least squares, likelihood (with normal errors, or large n),
and Bayesian (with normal errors and prior (5.42), or large n) considerations.
Asymptotically,

(x'x)'/%(B, — B) —+a Ni41(0,0°1,)

where we assume x'x is of full rank. Since "z is positive definite (all proper
variance—covariance matrices are positive definite), we can find a unique Cholesky
decomposition that is an upper-triangular matrix U such that (z'z)~! = UU".
Proofs of the matrix results in this section may be found in Schott (1997, p.139-
140). This decomposition leads to

k+1
J

var(B3;) = a? Z Uj2£u
=1

with Uy = 0if j > L.

We now split the collection of predictors into two groups, € = [z,, x;), and
examine the implications of regressing on a subset of predictors. Let 3 = [3,, 3,]"
where x, is n x (¢ + 1) with ¢ < k and 8, is (¢ + 1) x 1. Now suppose we fit
the model

EY |z, xs) = .67

where we distinguish between 3 and 3, since the interpretation of the two sets
of parameters differs. In particular, each coefficient in 3, has an interpretation
as the linear association of the corresponding variable, controlling for all of the
other variables in x. For coefficients in ﬁ:, control is only for variables in x,. The
estimator in the reduced model is

B, = (zlay) 2y,
and
E[8,] = (zlz.) '2lE[Y]
= (i) '@ (0B, + 7.85,)

= B, + () 'z, By, (5.52)
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so that the second term is the bias arising from omission of the 1ast k — g covariates.
This defines the quantity that is being consistently estimated by ,8 - An alternative,
less direct, derivation follows from the results of Sect. 2.4.3 in which we showed that
the Kullback—Leibler distance between the true model and the reduced (assumed)
model is that which is being minimized.

From (5.52), we see that the bias is zero if «, and x; are orthogonal, or if 3, = 0.
Consequently, for bias to result, we need x; to be associated with both the response
Y and at least one of the variables in x,. These requirements, roughly speaking, are
the conditions for x; to be considered a confounder. More precisely, Rothman and
Greenland (1998) give the following criteria for a confounder:

1. A confounding variable must be associated with the response.

2. A confounding variable must be associated with the variable of interest in the
population from which the data are sampled.

3. A confounding variable must not be affected by the variable of interest or
the response. In particular it cannot be an intermediate step in the causal path
between the variable of interest and the response.

At first sight, this result suggests that we should include as many variables as
possible in the mean model, since this will reduce bias. But the splitting of the mean
squared error of an estimator into the sum of the squared bias and the variance
shows that this is only half of the story. Unfortunately, including variables that are
not associated (or have a weak association only) with Y can increase the variance
of the estimator (or equivalently, the posterior variance), as we now demonstrate.

We write

(zz,) " = UU;

where U, is upper-triangular and consists of the first ¢ 4+ 1 rows and columns of U.
Denotmg the jth element of the estimators from the reduced and full models as B

and ﬂAj , retrospectively, we have

q+1

ar(B},) = 0® > U
=1
S Var(BAj)a

forj7 =0,1,...,q, with equality if and only if «, and x; are orthogonal.

Hence, if o? is fixed across analyses, we conclude that adding covariates
decreases precision. Intuitively this is because there is only so much information
within a dataset, and if we add in variables that are related to Y and are not
orthogonal to existing variables, the associations are not so accurately estimated
since there are now competing explanations for the data.

Another layer of complexity is added when we take into account estimation of
o2 since the estimated standard errors of the estimator now depend on 2. The usual

unbiased estimator is given by the residual sum of squares divided by the degrees of
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freedom. The former is nonincreasing as covariates are added to the model, and the
latter is decreasing. Consequently, as variables are entered into the model in terms
of their “significance,” a typical pattern is for 52 to decrease with the addition of
important covariates, with an increase then occurring as variables that are almost
unrelated are added (due to the decrease in the denominator of the estimator).

To expand on this further, consider the “true” model in which we assume for
simplicity that (3, is univariate so that x; is n x 1:

y=z.8, + 20, + €
where E[e] = 0 and var(e) = ¢°1,,. We now fit the model
Y = wA/B: + 6*7

so that x; is omitted. Then, viewing X} as random (since it is unobserved), we
obtain

var(Y | x,) = 01, + B2var(X; | x,),

showing the form of the increase in residual variance (unless 3; = 0) when variables
related to the response are added to the model. If x, and x; are collinear, the
variance of X does not depend on x,,.

We expand on the development of this section, with a slight change of notation,
via the “true” model

Yi = Bo+ Ba(wi —T) + B2z — 2) + &,

and fitted model
Vi=8+8(xi —T) + €.

Then, 8y = G5 = Y (since the covariates are centered in each model), and so each
is an unbiased estimator of the intercept:

E[Bo] = E[B5] = fo-

From (5.52),

SIZ
Sil)il)

E[Bf] = Bu + B X

IS 1/2
= Br+ B X P (;) (5.53)
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where
Ser =Y (i =37, Spa=) (@i—-7)(2i—2) Se=)» (z-37)°
=1 i=1 3

and
_ SJIJZ
Pxz = —(Swmszz)l/Q'

We have seen (5.53) before in a slightly different form, namely (5.11) in the context
of confounding. In the full model we have

1/n 0 0
(ccch)_l =0 S,./D -S,./D|,
0 —S;./D Sy./D
where D = S,,S., — S2., giving

x

2

~ o

varB) = g—gr 5.,
2 o~

> 5 =var(B),

with equality if and only if S, = 0 (so that X and Z are orthogonal), assuming
that o2 is known.

When deciding upon the number of covariates for inclusion in the mean model,
there are therefore competing factors to consider. The bias in the estimator cannot
increase as more variables are added, but the precision of the estimator may increase
or decrease, depending on the strength of the associations of the variables that are
candidates for inclusion. The unexplained variation in the data (measured through
©?) may be reduced, but the uncertainty in which of the covariates to assign the
variation in the response to is increased. If the number of potential additional
variables is large, the loss of precision may be considerable.

Section 4.8 described and critiqued various approaches to variable selection,
emphasizing that the strategy taken is highly dependent on the context and in
particular whether the aim is exploratory, confirmatory, or predictive. Chapter 12
considers the latter case in detail.

Example: Prostate Cancer

In this section we briefly illustrate the ideas of the previous section using two
covariates from the PSA dataset, log(can vol) which we denote x> and log(cap pen)
which we denote z1. Let = [z1, 23] and recall Y is log(PSA). Figure 5.7(a)
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1Y
(=2

log(cap pen)
log(PSA)

log(can vol) log(cap pen)

Fig. 5.7 (a) Association between log capsular penetration and log cancer volume, with fitted line,
(b) association between log prostate-specific antigen and log capsular penetration, with fitted line

plots zo versus x; and illustrates the strong association between these variables.
Figure 5.7(b) plots Y versus x1, and we see an association here too. We obtain the
following estimates:

ElY | z] = 55 + Biz1 (5.54)
=1.5140.72 X 21 (5.55)
E[Y | x] = fo + fiz1 + far2 (5.56)
= 1.61 4 0.66 x 1 + 0.080 x 2 (5.57)

Elxs | 1] = a + bxy
= —12.640.80 x 21 (5.58)

We first confirm, using (5.12) and (5.11), that the estimate associated with log(can
vol) in model (5.54) combines the effect of this variable and log(cap pen):

Bi = Bi+bx B
= 0.66 + 0.80 x 0.08 = 0.72,

with b from (5.58), to give the estimate appearing in (5.55). The standard error
associated with 27 in model (5.54) is 0.068, while in the full model (5.56), it
increases to 0.092 due to the association observed in Fig. 5.7a between z; and 3.

5.10 Robustness to Assumptions

In this section we investigate the behavior of the estimator

8= (') '2'Y,
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under departures from the assumptions that lead to
(@'2)' 2B, = B) —+4 Nis1 (0441, 0T,

Correct inference arises from normality of the estimator, and the error terms should
have constant variance and absence of correlation. Normality of the estimator occurs
with a sufficiently large sample size or if the error terms are normal. Judging when
the sample size is large enough can be assessed through simulation, and there is
an interplay between sample size and the closeness of the error distribution to
normality. We present results examining the effect of departures on confidence
interval coverage, but these are identical to Bayesian credible intervals under the
improper prior (5.42). Regardless of the distribution of the errors and the mean—
variance relationship, we always obtain an unbiased estimator, hence the emphasis
on confidence interval coverage.

5.10.1 Distribution of Errors

We begin by examining the effect of non-normality of the errors and simulate data
from a linear model with errors that are uncorrelated and with constant variance.
The distribution of the errors is taken as either normal, Laplacian, Student’s ¢
with 3 degrees of freedom, or lognormal. We examine the behavior of the least
squares estimator for 81, with n = 5 and n = 20, and two distributions for the
covariate, either z; ~;;4 U(0,1) or 2; ~;q Ga(l, 1) (an exponential distribution),
fors = 1,...,n. The latter was chosen to examine the effects of a skewed covariate
distribution.

Table 5.12 presents the 95% confidence interval coverage for 51 ; based on 10,000
simulations, the true value is 5; = 0. For the normal error distributions, the coverage
should be exactly 95%, but we include simulation-based results to give an indication
of the Monte Carlo error. In all cases the coverage probabilities are good, showing
the robustness of inference in this simple scenario. When the number of covariates,
k is large relative to n, more care is required, especially if the distributions of the
covariate are very skewed. Lumley et al. (2002) discuss the validity of the least
squares estimator when the data are not normal.

5.10.2 Nonconstant Variance

We have already considered the robustness of inference to nonconstant error
variance in Sect.5.6.4, in the context of sandwich estimation. Table 5.2 showed
that confidence interval coverage will be poor when an incorrect mean—variance
relationship is assumed. Sandwich estimation provides a good frequentist alternative
estimation strategy, so long as the sample size is large enough for the variance of
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Table 5.12° Coverage of Error distribution Distributionof x n Coverage
95% confidence intervals for

. Normal N(0, 1) Uniform 5 95

(31 for various error .
distributions, distributions of Normal N(0, 1) Uniform 20 94
the covariate, and sample Normal N(0, 1) Exponential 5 95
sizes n. The entries are based Normal N(0, 1) Exponential 20 95
on 10,000 simulations Laplacian Lap(0,1)  Uniform 5 95
Laplacian Lap(0,1)  Uniform 20 9
Laplacian Lap(0,1)  Exponential 5 94
Laplacian Lap(0,1)  Exponential 20 9
Student 7°(0, 1, 3) Uniform 5 95
Student 7°(0, 1, 3) Uniform 20 95
Student 7°(0, 1, 3) Exponential 5 95
Student 7°(0, 1, 3) Exponential 20 9
Lognormal LN(0,1)  Uniform 5 95
Lognormal LN(0,1)  Uniform 20 96
Lognormal LN(0,1)  Exponential 5 94
Lognormal LN(0,1)  Exponential 20 95

the estimator to be reliably estimated. The bootstrap (Sect.2.7) provides another
method for reliable variance estimation, again when the sample size is not small.

5.10.3 Correlated Errors

Finally we investigate the effect on coverage of correlated error terms. A simple
scenario to imagine is (x,y) pairs collected on consecutive days. We assume an
AR(1) autoregression model of order 1 (Sect.8.4.2) which results in € | o2 ~
N(0,,0%V), where V is the n x n matrix

and with p the correlation between errors on successive days. Table 5.13 gives
the 95% confidence interval coverage (arising from a model in which the errors
are assumed uncorrelated) as a function of sample size, the distribution of z
(uniform or exponential), and strength of correlation. The table clearly shows
that correlated errors can drastically impact confidence interval coverage, with the
coverage becoming increasingly bad as the sample size increases.
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Table 5.13 95% confidence

. Distribution of = Correlation p n Coverage
interval for the slope -
parameter 37 as a function of Uniform 0.1 5 94
the autocorrelation parameter Uniform 0.1 20 93
p and the sample size n. The Uniform 0.1 50 92
entries are based upon 10,000 Uniform 0.5 5 89
simulations and are calculated Uniform 0.5 20 76
under a model in which the Uniform 0.5 50 75
errors are assumed Uniform 0.95 5 79
uncorrelated Uniform 0.95 20 36
Uniform 0.95 50 26
Exponential 0.1 5 94
Exponential 0.1 20 93
Exponential 0.1 50 93
Exponential 0.5 5 89
Exponential 0.5 20 79
Exponential 0.5 50 77
Exponential 0.95 5 81
Exponential 0.95 20 41
Exponential 0.95 50 32

Intuitively, one might expect that in this situation the standard errors based on
(x'x) 102 would always underestimate the true standard error of the estimator.
In the scenario described above, the effect of correlated errors depends critically
upon the correlation among the x variables across time, however. If the z-variable is
slowly varying over time, then the standard errors will be underestimated, but if the
variable is changing rapidly, then the true standard errors may be smaller than those
reported. This is because if there is high positive correlation, then the difference in
the error terms on consecutive days is small, and so if Y changes, it must be due to
changes in x. For further discussion, see Sect. 8.3.

5.11 Assessment of Assumptions

In this section we will describe a number of approaches for assessing the assump-
tions required for valid inference.

5.11.1 Review of Assumptions

We consider the linear regression model:

Y=x8+¢
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where Yisn x I,z isn x (k+ 1), Bis (k+ 1) x 1, and € is n x 1, with
€ | 0% ~ N,(0,02L,). Under these assumptions, we have seen that the estimator
B = (z'z)"'z"Y, with var(8) = (z'x) 'o?, emerges from likelihood, least
squares, and Bayesian approaches. The standard errors and confidence intervals we
report are valid if:

¢ The error terms have constant variance. If sandwich estimation is used, then this
assumption may be relaxed, so long as we have a large sample size.

* The error terms are uncorrelated.

* The estimator is normally distributed, so that we can effectively replace the
likelihood Y | 8,02 by B | B ~ N, |3, (z"x)"'5?]. This occurs if the error
terms are normally distributed and/or the sample size n is sufficiently large for
the central limit theorem to ensure that the estimator is normally distributed.

As we saw in Sect. 5.10, confidence interval coverage can be very poor if the error
variance is nonconstant and/or the errors are correlated. Normality of errors is not
a big issue with the linear model with respect to estimation (which explains the
popularity of least squares), unless the sample size is very small (relative to the
number of predictors) or the distribution of the x values is very skewed. For validity
of a predictive interval for an observable, we need to make a further assumption
concerning the distribution of the error terms, however. This interval is given
by (5.30) under the assumption of normal errors.

From a frequentist perspective and given the assumed mean model, E[Y | ] =
x(3, the estimator ﬁ is an unbiased estimator of 3. For example, in simple linear
regression, (31 is an unbiased estimator of the linear association in a population,
regardless of the true relationship between response and covariate. The assumed
mean model may be a poor description, however, and we will usually wish to
examine the appropriateness of the model to decide on whether linearity holds.

Another aspect of model checking is scrutinizing the data for outlying or
influential points. It is difficult to define exactly what is meant by an outlier, and
we content ourselves with a fuzzy description of an outlier as “a data point that is
unusual relative to the others.” Single outlying observations may stand out in the
plots described below. The presence of multiple outliers is more troublesome due to
masking, in which the presence of an outlier is hidden by other outliers.

5.11.2 Residuals and Influence

In general, model checking may be carried out locally, using informal techniques
such as residual plots, or globally using formal testing procedures; we concentrate
on the former. The observed error is given by

=Y Vi (5:59)



5.11 Assessment of Assumptions 241

where SA/Z = wiﬁ, while the true error is

In residual analysis we examine the observed residuals for discrepancies from the
assumed model. We define residuals as

e=[e1,...,en'=Y =Y = (I, - h)Y, (5.60)

where h = x(x"z) 2" is the hat (or projection) matrix encountered in Sect. 5.6.3.
The hat matrix is symmetric, h" = h, and idempotent, hh" = h. We want to
examine the relationship between e and € so we can use the former to assess whether
assumptions concerning the latter hold.

Substitution of

Y =x08+c¢€
into (5.60) gives
e = (I, — h)e, (5.61)
or
€; = €; — Z hijEj, (562)
j=1

showing that the estimated residuals differ from the true residuals, complicating
residual analysis.

We examine the moments of the error terms. The residuals e are random variables
since they are a function of the random variables €. We have

and the variance—covariance matrix is
var(e) = (I, — h)(I, — h)"0? = (I, — h)o?,
so that fitting the model has induced dependence in the residuals. In particular,
var(e;) = (1 — hy)o?,

since for a symmetric and idempotent matrix h;; = Z;’:l hfj (see Schott 1997,
p.- 374), and

COV(@Z', ej) = —hij,

showing that the observed errors have correlation given by
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hij
[(1 = hii) (1 = hyj)]/2

corr(e;, ej) = —

Consequently, even if the model is correctly specified, the residuals have noncon-
stant variance and are correlated. We may write

Y, = hiYi + Z hi; Y (5.63)

so that if hy; is large relative to the other elements in the ith row of h, then the ith
fitted value will be largely influenced by Y;; h;; is known as the leverage. Note that
the leverage depends on the design matrix (i.e., the x’s) only. Exercise 5.8 shows that
tr(h) = k+ 1 so the average leverage is at least (k+1)/n.If hy; = 1,7; = x;3 and
the ith observation is fitted exactly, using a single degree of freedom for this point
alone, which is not desirable.

Based on these results we may define standardized residuals:

Y; - Y,
= 5.64
€, a\_(l _hii)1/27 ( )
fori = 1,...,n, and where 7 is an unbiased estimator of ¢. These residuals have

mean E[Ge}] = 0 and variance var(Ge}) = o2, but they are not independent since
they are based on n — k — 1 independent quantities. Often the (1 — h;;)'/? terms in
the denominator of (5.64) are ignored.

For the simple linear regression model,

1 i —T)?
hii = — + n(x—I)_Q
no Y q(xr—7)
and
hy = Ly (@D —T)
no Yo (xr—7)

Therefgre, with respect to (5.63), we see that an extreme x; value produces a fitted
value Y; that is more heavily influenced by the observed value of Y;. Such z; values
also influence other fitted values, particularly those with = values not close to z. The
two constraints on the model are

zn:ei = zn:yi ~Y:=0
=1 =1
ieixi = i(Yz - }/}z)xz =0
i=1

=1

which induces correlation in the ¢;’s.
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5.11.3 Using the Residuals

The constancy of variance assumption may be assessed by plotting the residuals, e;
versus the fitted values Y; with a random scatter suggesting no cause for concern.
Examination may be simpler if squared residuals e? or absolute values of the
residuals |e;| are plotted versus the fitted values Y;. These plots are useful since
departures from constant variance often correspond to a mean—variance relationship
which, given sufficient data and range of the mean function, will hopefully reveal
itself in these plots. If the variance increases with the mean, plotting e; versus Y;
will reveal a funnel shape with the wider end of the funnel to the right of the plot.
For the plots using the squared or absolute residuals, interpretation may be improved
with the addition of a smoother.

When one of the columns of x represents time, we may plot the residuals versus
time and assess dependence between error terms. Dependence may also be detected
using scatterplots of lagged residuals, for example, by plotting e; versus e;_1 for
1 = 2,...,n. Independent residuals should produce a plot with a random scatter
of points. The autocorrelation at different lags may also be estimated for equally
spaced data in time, while for unequally spaced data, a semi-variogram may be
constructed. The latter is described in the context of longitudinal data in Sect. 8.8.

To assess normality of the residuals, we may construct a normal QQ plot. We
first order the residuals and call these e(;), @ = 1, ..., n. The expected order statistic
of size n from a normal distribution is given (approximately) by

;. — 0.5
f(l):¢1<l n >7i:17"'1n7

where @(-) is the cumulative distribution function of the standard normal distribu-
tion, that is, if Z ~ N(0,1) then ¢(z) = Pr(Z < z). We then plot e(;) versus
J(i)- If the normality assumption is reasonable, the points should lie approximately
on a straight line. If we plot the ordered standardized residuals ea.) versus f;),
then, in addition, the line should have slope one. Deciding on whether the points
are suitably close to linear is difficult and may be aided by simulating multiple
datasets from which intervals may be derived for each i. Care must be taken in
interpretation as (5.62) shows that the observed residuals are a linear combination
of the error terms and hence may exhibit supernormality, that is, even if ¢; is not
normal, Z?:l h;je; may tend toward normality (and dominate the first term, €;).

Figure 5.8 shows what we might expect to see under various distributional
assumptions. QQ normal plots for normal. Laplacian, Student’s ¢3, and lognormal
error distributions are displayed in the four rows, with sample sizes of n =
10, 25, 50, 200 across columns. The characteristic skewed shape of the lognormal
distribution is revealed for all sample sizes, but it is difficult to distinguish
between the Laplacian and the normal, even for a large sample size. For small n,
interpretation is very difficult.
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Fig. 5.8 Normal scores plot for various distributions and sample sizes. Columns 1-4 represent
sample sizes of 10, 25, 50, and 200. Rows 1-4 correspond to errors generated from normal,
Laplacian, Student’s ¢3, and lognormal distributions, respectively. In each plot, the expected
residuals are plotted on the z-axis, and the observed ordered residuals on the y-axis

In general, simulation may be used to examine the behavior of plots when
the model is true. QQ plots may be constructed to assess any distributional
assumption, by an appropriate choice of f;). The Bayesian approach to inference
allow alternative likelihoods to the normal to be fitted relatively easily under an
MCMC implementation. We have concentrated on frequentist residuals, but all of
the above plots may be based on Bayesian residuals. For example, we can obtain
samples from the posterior distribution of 3 and o and then substitute these samples
into

o Yi— z;0
' 0'(1 —hii)l/Q’

to produce samples from the posterior distribution of the residuals. The posterior
mean or median of the e} can then be calculated and examined. More simply, one

(5.65)
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Table 5.14 Parameter Standard error

estimates and standard CIToIS  Varjable Estimate Model-based Sandwich
§model-based and sandwich) Tog(can vol) 059 0.083 0.077
or the prostate cancer data .

log(weight) 0.45 0.17 0.19
age —0.020 0.011 0.0094
log(BPH) 0.11 0.058 0.057
SVI 0.77 0.24 0.21
log(cap pen) —0.11 0.091 0.079
gleason 0.045 0.16 0.13
PGS45 0.0045 0.0044 0.0042
o 0.78 - -

could substitute the posterior means or medians of 3 and ¢ into (5.65). An early use
of Bayesian residuals analysis was provided by Chaloner and Brant (1988).

A major problem with residual analysis, unless one is in purely exploratory
mode, is that if the assumptions are found wanting and we change the model, what
are the frequentist properties in terms of bias, the coverage of intervals, and the
a level of tests? Recall the discussion of Chap.4. To avoid changing the model,
including transforming x and/or y, one should try and think as much as possible
about a suitable model, before the data are analyzed. As always the exact procedure
followed should be reported, so that inferential summaries can be more easily
interpreted. The same problems exist for a Bayesian analysis, since one should
specify a priori all models that one envisages fitting (which may not be feasible
in advance), with subsequent averaging across models (Sect. 3.6).

5.12 Example: Prostate Cancer

We return to the PSA data and provide a more comprehensive analysis. We fit the
full (main effects only) model

log PSA = p+f1 X log(can vol)+ 82 x log(weight)+33 x age+[S4 x log(bph)
+05 x svi+ B x log(cap pen) + 87 x gleason 4 s x PGS45 + ¢,

with €|0? ~;ia N(0,02). The resultant least squares parameter estimates and
standard errors are given in Table 5.14. This table includes the sandwich standard
errors, to address the possibility of nonconstant variance error terms. These are
virtually identical to the model-based standard errors. This is not surprising given
Fig. 5.9(a), which plots the absolute value of the residuals against the fitted values,
and indicates that the constant variance assumption appears reasonable.

With n—k—1 = 88, we do not require normality of errors, but for illustration we
include a QQ normal plot in Fig. 5.9(b) and see that the errors are close to normal.
Figures 5.9(c) and (d) plot the residuals versus two of the more important covariates,
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Fig. 5.9 Diagnostic plots in the prostate cancer study: (a) absolute values of residuals versus fitted
values, with smoother, (b) normal QQ plot of residuals; (c¢) residuals versus log cancer volume,
with smoother, (d) residuals versus log weight, with smoother

log cancer volume and log weight, with smoothers added. In each case, we see no
strong evidence of nonlinearity.

We now discuss a Bayesian analysis of these data. With the improper prior (5.42),
we saw in Sect.5.7 that inference was identical with the frequentist approach so
that the estimates and (model-based) standard errors in Table 5.14 are also posterior
means and posterior standard deviations. Figure 5.10 displays the marginal posterior
densities (which are located and scaled Student’s ¢ distributions with 88 degrees of
freedom) for the eight coefficients. In this plot, for comparability, we scale each of
the x variables to lie on the range (0,1).

Turning now to an informative prior distribution, without more specific knowl-
edge, we let 3* = 35, ..., B5]" represent the vector of coefficients associated with
the standardized covariates on (0,1). The prior is taken as 7(8*)m(c?) with

8
(8 =[[~5)) (5.66)
=0

and 7(f33) oc 1 (an improper prior). For the regression coefficients 37 ~;;q N(0, V')
with the standard deviations, v/V, chosen in the following way. For the prostate
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data, we believe that it is unlikely that any of the standardized covariates, over the

range (0,1), will change the median PSA by more than 10 units. The way we include

this information in the prior is by assuming that the 1.96 x VV point of the prior

corresponds to the maximum value we believe is a priori plausible, that is, we set

35 = log(10) equal to this point. For ¢, we assume the improper choice m(c?) o
—2

Figure 5.11 shows the 95% credible intervals under the flat and informative
priors, and we see the general shrinkage towards zero (the prior mean). On average
there is around a 10% reduction in the posterior standard deviations (and hence
the credible intervals) under the informative prior, which shows how the use of
informative priors can aid in the bias-variance trade-off. The above analysis is
closely related to ridge regression, as will be discussed in Sect. 10.5.1.

5.13 Concluding Remarks

In this chapter we have concentrated on the linear model
Y=x8+¢€

where Bis nx (k+1)and € ~ N, (0,,, 0°L,). Although the range of models that are
routinely available for fitting has expanded greatly (see Chaps. 6 and 7), the linear
model continues to be popular. There are good reasons for this, since parameter
interpretation is straightforward and the estimators commonly used are linear in the
data and therefore possess desirable robustness properties.
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Fig. 5.11 95% credible
intervals for regression '
coefficients corresponding to ;
standardized covariates, gleason [ R
under flat and informative

priors, for the prostate cancer  |og cap pen -
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data :
svi p——
log bph 'E._T
age - Té‘.
log weight E .............
log can vol __________
T

95% Credible Interval

Unless n is not large, or there is substantial prior information, the point estimate

o~

B=(@a)a'y
and 100(1 — «)% interval estimate

Bj £y h ) x se(B)),

where t’f:s/_; is the 100(1 — «/2)% point of a Student’s ¢ distribution withn—k—1
degrees of freedom, emerges from likelihood, ordinary least squares, and Bayesian
analyses. These summaries are robust to a range of distributions for the error terms,
so long as n is large. Nonconstant error variance and correlated errors can both
seriously damage the appropriateness of the interval estimate, however. With larger
sample sizes, sandwich estimation provides a good approach for guarding against

nonconstant error variance.

5.14 Bibliographic Notes

McCullagh and Nelder (1989, Chap. 3) provide an extended discussion on parame-
terization issues, including aliasing, and the interpretation of parameters. For more
discussion of conditions for asymptotic normality for simple linear regression, see
(van der Vaart 1998, p.21). Firth (1987) discusses the loss of precision when the data
are not normally distributed and shows that the skewness of the true distribution
of the errors is an important factor. The theory presented in Lehmann (1986,
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p- 209-211) indicates that dependence in the residuals can cause real problems for
estimation of appropriate standard errors. Further details of residual analysis may
be found in Cook and Weisberg (1982).

The classic frequentist text on the analysis of variance is Scheffé (1959), while
Searle et al. (1992) provide a more recent treatment. An interesting discussion, from
a Bayesian slant, is provided by Gelman and Hill (2007, Chap. 22).

Numerous texts have been written on the linear model; see, for example,
Ravishanker and Dey (2002) and Seber and Lee (2003) for the theory and Faraway
(2004) for a more practical slant.

5.15 Exercises

5.1 Consider the model

Y =20 +¢€,
where Y is the n x 1 vector of responses, x is the n x (k + 1) design matrix,
B = [Bo,--., Bk, and E[€] = 0, var(€) = 02V where V is a known correlation
matrix V.

(a) By considering the sum of squares,
RSS, = (Y —2B8)"V (Y — z3).
show that the generalized least squares estimator is
ﬁv =(x'Vix) 2’V Yy,

provided the necessary inverse exists.
(b) Derive the distribution of 3,,.
(c) Show that 52, as defined in (5.33), is an unbiased estimator of 2.

5.2 Suppose ﬁl # Bz are two different least squares estimates of 3. Show there
are infinitely many least squares estimates of 3.

53 LetY; = Bo + Bizi + €, 1 = 1,...,n, where E[¢;] = 0, var(e;) = o2 and
cov(e;, e5) = 0 for ¢ # j. Prove that the least squares estimates of 5y and 5
are uncorrelated if and only if 7 = 0.

5.4 Consider the simple linear regression model

Y = Po + Przi + €,

with €; | 02 ~iq N(0,02), i = 1,...,n. Suppose the prior distribution is of
the form

W(BOaﬁla 02) = ﬂ-(ﬁ07ﬁl) X 0—727 (567)
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where the prior for [5, £1] is

Bo mo Vo0 Vo1
[51} N (Lm] ’ L)m qu '

In this exercise the conditional distributions required for Gibbs sampling
(Sect. 3.8.4) will be derived.

(a) Write down the form of the posterior distribution (up to proportionality)
and derive the conditional distributions p(8y | 51,02, v), p(51 | Bo, 72, y),
and p(o? | Bo, B1,y). Hence, give details of the Gibbs sampling algorithm.

(b) Another blocked Gibbs sampling algorithm (Sect.3.8.6) would simulate
from the distributions p(3| o2, y) and p(c? | B, y). Derive these distribu-
tions, given in (5.46) and (5.47), and hence describe the form of the Gibbs
sampling algorithm.

The algorithm derived in Exercise 5.4(b) will now be implemented for the
prostate cancer data of Sect. 1.3.1. These data are available in the R package
lasso2 and are named Prostate. Take Y as log prostate specific antigen
and z as log cancer volume. Implement the blocked Gibbs sampling algorithm
using the prior (5.67), with mg = my = 0, vgo = v11 = 2, and v9; = 0. Run
two chains, one with starting values corresponding to the unbiased estimates of
the parameters and one starting from a point randomly generated from the prior

7(Bo, B1)- Report:

(a) Histogram representations of the univariate marginal distributions p(8y |
y), p(B1 | y), and p(c | y) and scatterplots of the bivariate marginal

distributions p(5o, 81 | y), p(Bo, o | ¥), and p(B1, 0 | y).
(b) The posterior means, standard deviations, and 10%, 50%, 90% quantiles
for By, B1, and o.

(c) Pr(B1 > 0.5 y).
(d) Justify your choice of “burn-in” period (Sect. 3.8.6). For example, you may

present the trace plots ﬁét), ﬁét), log 02() versus t.
(e) Confirm the results you have obtained using INLA or WinBUGS.

In this question, parameter interpretation will be considered. Consider a
continuous univariate response y, with two potential covariates, a continuous
variable x1, and a binary factor x5. The x variables will be referred to as age
and gender, respectively. Consider the four models:

Model A

[0+ ¢, formen (z2 =0)
~ | 61 + ¢, forwomen (z3 = 1).

Model B

y=0p+ 61z +ec
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Model C
[ 8o+ 6121 + ¢, formen (z2 =0)
| 0s + 0121 + ¢, for women (z5 = 1).
Model D
o+ bix1 + €, for men (z2 = 0)
(6o + o) + 0121 + €, for women (2o = 1).
Model E
[ 600+ 61z1 + €, formen (z2 =0), and
| 6o + 0211 + ¢, for women (x5 = 1).
Model F

~ [ 00+ 6121 + ¢, formen (x5 = 0),
| 02 + 0321 + ¢, for women (x5 = 1).

For each model, the error terms ¢ are assumed to have zero mean.

(a) For each model, provide a careful interpretation of the parameters and give
a description of the assumed form of the relationship.
(b) Which of the above models are equivalent?

5.7 Let Y1,...,Y, be distributed as Y; | 0,02 ~,q N(if,i%202%) fori = 1,...,n.
Find the generalized least squares estimate of 6 and prove that the variance of
this estimate is o2 /n.

5.8 Suppose that the design matrix @ of dimension n x (k + 1) has rank k + 1 and
let h = x(x"x) ~'x" represent the hat matrix. Show that tr(h) = (k + 1).

5.9 Consider the model

Yi=po+5Xi+e

fori=1,...,n, where

o (5] [ ])
(] [ )

where 02 = 702 + 02, 11y = Bo + Pijte and 04y = Sr07.

to give
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(a) Derive E[Y; | x;] and var(Y; | z;).

Now suppose one does not observe z;, ¢ = 1,...,n but instead w; =
x; + u; where

& | ~Ns||o|,]0020
U; 0 0 0 o2

Assume that Y; is conditionally independent of W, that is, E[Y; | x;, u;] =
E[Y; | @;]. Suppose the true model is E[Y; | z;] = By + Biz; but the
observed data are [w;,y;], i =1,...,n.

(b) Relate E[Y; | w;] to E[x; | w;].

(c) What is the joint distribution of X; and W; and what is E[X; | w;]?
(d) Using your answers to (b) and (c), show that E[Y; | w;] = 8§ + B} z;.
(e) What is the relationship between 83, 87 and By, 51?



Chapter 6
General Regression Models

6.1 Introduction

In this chapter we consider the analysis of data that are not well-modeled by the
linear models described in Chap.5. We continue to assume that the responses are
(conditionally) independent. We describe two model classes, generalized linear
models (GLMs) and what we refer to as nonlinear models. In the latter, a response
Y is assumed to be of the form Y = p(x, 3) + € with u(x, 3) nonlinear in  and
the errors € independent with zero mean.

In Sect.6.2 we introduce a motivating pharmacokinetic dataset that we will
subsequently analyze using both GLMs and nonlinear models. Section 6.3 considers
GLMs, which were introduced as an extension to linear models and have received
considerable attention due to their computational and mathematical convenience.
While computational advances have unshackled the statistician from the need to
restrict attention to GLMs, they still provide an extremely useful class. Parameter
interpretation for GLMs is discussed in Sect. 6.4. Sections 6.5, 6.6, 6.7, and 6.8
describe, respectively, likelihood inference, quasi-likelihood inference, sandwich
estimation, and Bayesian inference for the GLM. Section 6.9 considers the assess-
ment of the assumptions required for reliable inference in GLMs. In Sect. 6.10, we
introduce nonlinear regression models, with identifiability discussed in Sect. 6.11.
We then describe likelihood and least squares approaches to inference in Sects. 6.12
and 6.13 and sandwich estimation in Sect. 6.14. A geometrical comparison of linear
and nonlinear least squares is provided in Sect. 6.15. Bayesian inference is described
in Sect.6.16 and Sect.6.17 concentrates on the examination of assumptions.
Concluding comments appear in Sect. 6.18 with bibliographic notes in Sect. 6.19.

In Chap.7 we discuss models for binary data; models for such data could have
been included in this chapter but are considered separately since there are a number
of wrinkles that deserve specific attention.

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series 253
in Statistics, DOI 10.1007/978-1-4419-0925-1_6,
© Springer Science+Business Media New York 2013
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6.2 Motivating Example: Pharmacokinetics of Theophylline

In Table 1.2 we displayed pharmacokinetic data on the sampling times and measured
concentrations of the drug theophylline, collected from a subject who received an
oral dose of 4.53 mg/kg. These data are plotted in Fig. 6.1, along with fitted curves
from various approaches to modeling that we describe subsequently. We will fit
both a nonlinear (so-called, compartmental) model to these data and a GLM. Let z;
and y; represent the sampling time and concentration in sample i, respectively, for
i=1,...,n=10.

In Sect. 1.3.4, we detailed the aims of a pharmacokinetic study and described in
some detail compartmental models that have been successfully used for modeling
concentration—time data. Let u(x) represent the deterministic model relating the
response to time, x; p () will usually be the mean response, though may correspond
to the median response, depending on the assumed error structure. Notationally
we have suppressed the dependence of u(z) on unknown parameters. For the data
considered here, a starting point for p(x) is

fexp(—ke) — exp(—kqa)] 6.1)

where k, > 0 is the absorption rate constant, k. > 0 is the elimination rate constant,
and V' > 0 is the (apparent) volume of distribution (that converts total amount
of drug into concentration). This model was motivated in Sect. 1.3.4. A stochastic
component may be added to (6.1) in a variety of ways, but one simple approach
is via

y(x) = p(z) + (), (6.2)
758 --- GLMMLE
o— -+ GLMBAYES
/ \\O ---=  Nonlinear MLE
& Y Nonlinear BAYES
g |
s ©°7 |
(<]
it
c
il ]
: | el
Fig. 6.1 Theophylline data, £ |
along with fitted curves under § ;
various models and inferential ~ § « | \\\
approaches. Four curves are ! ) TTTraaL o
included, corresponding to )
MLE and Bayes analyses of od!
GLM and nonlinear models. T T T T T
0 5 10 15 20 25

The two nonlinear curves are

indistinguishable Time (hours)
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where E[6(z)] = 0 and var[d(z)] = o?u(x)? with §(z) at different times x
being independent. The variance model produces a constant coefficient of variation
(defined as the ratio of the standard deviation to the mean), which is often observed
in practice for pharmacokinetic data. Combining (6.1) and (6.2) gives an example
of a three parameter nonlinear model. An approximately constant coefficient of
variation can also be achieved by taking

logy(z) = log pu(x) + €(x),

with E[e(z)] = 0 and var[e(z)] = o2. In this case, u(x) represents the median
concentration at time x (Sect. 5.5.3).

Model (6.1) is sometimes known as the flip-flop model, because there is an
identifiability problem in that the same curve is achieved with each of the parameter
sets [V, ka, ke] and [V'k./ka, ke, ko]. Recall from Sect.2.4.1 that identifiability is
required for consistency and asymptotic normality of the MLE. Often, identifiability
is achieved by enforcing k, > k. > 0, since the absorption rate is greater
than the elimination rate for most drugs. Such identifiability issues are not a rare
phenomenon for nonlinear models, and will receive further attention in Sect. 6.11.

Model (6.1) may be written in the alternative form

Dk,
pu(z) = Ve — ko) [exp(—kex) — exp(—kqaz)]
= exp(fo + f17) {1 - exp[_(ka - ke)x]} ) (6.3)
where By = log[Dk,/V (ks — k.)] and 81 = —k.. As an alternative to the

compartmental model, (6.1), we will also consider the fractional polynomial model
(as introduced by Nelder 1966) given by

w(z) = exp (Bo + b1z + Bo/x). (6.4)

Comparison with (6.3) shows that 35 is the parameter that is determining the absorp-
tion phase. This model only makes sense if it produces both an increasing absorption
phase and a decreasing elimination phase, which correspond, retrospectively, to
B2 < 0and B; < 0. When combined with an appropriate choice for the stochastic
component, model (6.4) falls within the GLM class, as we see shortly.

In a pharmacokinetic study, as discussed in Sect. 1.3.4, interest often focuses
on certain derived parameters. Of specific interest are x5, the elimination half-
life, which is the time it takes for the drug concentration to drop by 50% (for
times sufficiently large for elimination to be the dominant process); Zmyax, the time
to maximum concentration; (i(Zmax), the maximum concentration; and ClI, the
clearance, which is the amount of blood cleared of drug in unit time.

With respect to model (6.1), the derived parameters of interest, in terms of
[V, ko, ke), are
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log 2
T1/2 = P
B 1 | kq
Lmax — ka _ ke Og ke
Dk,
N(wmax) = m [exp(—ke.%'max) - eXp(—kaxmax)]
D ka ka/(ka_ke)
-8(2)
D
Cl=——
AUC
=V x k.

where AUC is the area under the concentration—time curve between 0 and co. With
respect to model (6.4), as functions of 3 = 5y, 81, B2],

log 2
f1

Tmax = (&> v
B

(ma) = Dexp |fo = 2(8162)"/?]

ol = \/B1/ B2 65)

— 2exp(Bo) K1[2(8182)1/2)

T1/2 =

where K(z) denotes a modified Bessel function of the second kind of order s.
Consequently, for both models, the quantities of interest are nonlinear functions of
the original parameters, which has implications for inference.

6.3 Generalized Linear Models

Generalized linear models (GLMs) were introduced by Nelder and Wedderburn
(1972) and provide a class with relatively broad applicability and desirable statistical
properties. For a GLM:

e The responses y; follow an exponential family, so that the distribution is of
the form

yi0; — b(0;)

7 oia -
p(yi | 0, ) eXP( ”

+ c(yi, a)> , (6.6)
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Table 6.1 Characteristics of some common GLMs. The notation is as in (6.6). The canonical
parameter is 6, the mean is E[Y] = p, and the variance is var(Y") = oV (u)

Distribution N(p, 02) Poisson(p) Bernoulli(n) Ga(l/e, 1/[pa])
xp (0
Mean E[Y | 6] 6 exp() 205 -3
Variance V(i) 1 7 p(l—p)  p?
b(0) 02/2 exp(6) log(1 +¢€%) —log(—9)
c(y, o) —% [% + 10g(27ra)} —logy! 1 % — logy + log I'(cx)

for functions b(-), ¢(+,-) and where 6; and « are scalars. It is straightforward to
show (using the results of Sect. 2.4) that

E[Y; | 0:, 0] = p;
= V()
and
var(Y; | 0;, ) = ab” (6;)
= aV(u;),
fori = 1,...,n. We assume cov(Y;,Y; | 6;,0;,a) = 0, for i # j (Chap.9

provides the extension to dependent data).

* A link function ¢(-) provides the connection between the mean function p; =
E[Y; | 0;, o] and the linear predictor ;3 via

9(pi) = i,
where x; is a (k + 1) x 1 vector of explanatory variables (including a 1 for
the intercept) and B8 = [Bo, f1,-..,0k]" is a (k + 1) x 1 vector of regression
parameters.

To summarize, a GLM assumes a linear relationship on a transformed mean scale
(which, as we shall see, offers certain computational and statistical advantages) and
an exponential family form for the distribution of the response.

If « is known, then (6.6) is a one-parameter exponential family model. If « is
unknown, then the distribution may or may not be a two-parameter exponential
family model. So-called canonical links have ; = x;(3 and provide simplifications
in terms of computation.

GLMs are very useful pedagogically since they separate the deterministic and
stochastic components of the model, and this aspect was emphasized in the abstract
of Nelder and Wedderburn (1972): “The implications of the approach in designing
statistics courses are discussed.”

Table 6.1, adapted from Table 2.1 of McCullagh and Nelder (1989), characterizes
a number of common GLMs. Another example which is not listed in the table, is the
inverse Gaussian distribution; Exercise 6.1 derives the detail for this case.
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Example: Pharmacokinetics of Theophylline

Model (6.3) is an example of a GLM with a log link:

log p(x) = Bo + Prx1 + Pz (6.7)

where = [1, 21, 23] and zo = 1/x;.

Turning to the stochastic component, as noted in Sect. 6.2, the error terms often
display a constant coefficient of variation. With this in mind, we may combine (6.7)
with a gamma distribution via

Y(x) | B, ~ina Ga{a™", [u(z)a] '}, (6.8)

to give E[Y (x)] = p(x) and var[Y (x)] = au(x)? so that o'/? is the coefficient
of variation. Lindsey et al. (2000) examine various distributional choices for
pharmacokinetic data and found the gamma assumption to be reasonable in their
examples. It is interesting to note that for the gamma distribution, the reciprocal
transform is the canonical link, but this option is not statistically appealing since it
does not constrain the mean function to be positive. In the pharmacokinetic context
the reciprocal link also results in a concentration—time curve that is not integrable
between 0 and oo so that the fundamental clearance parameter is undefined. One
disadvantage of the loglinear GLM defined above, compared to the nonlinear
compartmental model we discuss later, is that if multiple doses are considered, the
mean function does not correspond to a GLM.

Example: Lung Cancer and Radon

In Sect. 1.3.3 we described data on lung cancer incidence in counties in Minnesota,
with Y; the number of cases, x; the average radon, and E; the expected number
of cases, in area i, ¢ = 1,...,n. These data were examined repeatedly in Chaps. 2
and 3.

A starting model is Y; | B ~;nq Poisson [E; exp(By + S1x;)], which we write as

logPr(Y =y, | B) = yilog pi — pi — logy;!

with log pi; = log E; + Bo + B1x4, to give a GLM with a (canonical) log link. As
discussed in Chaps. 2 and 3, this model is fundamentally inadequate because o = 1,
and so there is no parameter to allow for excess-Poisson variation. The latter can
be modeled using the negative binomial model of Sect. 6.3 or the quasi-likelihood
approach described in Sect. 6.6.

With unknown scale parameter, the negative binomial is not a GLM. We consider
the case of known b (which will rarely be of interest in a practical setting). For
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consistency with its use in Chap.?2, we label the scale parameter of the negative
binomial model as b. In the following, care should therefore be taken to discriminate
between b(+), as in (6.6), and the scale parameter, b. From (2.40),

3

log Pr(Y = y; | i) = b= |yibl Fi ) p210g(u; + b
og Pr(Y = yi | o) @ %(MH) %w+ﬂ

+log I'(y; + b) —log I'(b) — log y;! — b(b+ 1) log b
which is of the form (6.6) with

Mg
0; =bl ,
o8 (HH—b)

b(6h) = B log(ui +b),
c(yi,b) =log I'(y; + b) —log I'(b) — logy;! — b(b+ 1) log b,

so that

ElY; | pi] = pi = V'(0:)
befi/b

1 —efi/b’

var(Y; | pi) = b x b"(6;)

= i+ 113 /b.

The canonical link is

i
0; =bl =z0,
% (ui+b> i

which depends on b. The negative binomial distribution is described in detail by
Cameron and Trivedi (1998).

6.4 Parameter Interpretation

Interpretation of the regression parameters in a GLM is link function specific. The
linear link was discussed in Chap. 5, and the log link was considered repeatedly
(in the context of the lung cancer and radon data) in Chaps. 2 and 3. We provide an
interpretation of binary data link functions, such as the logistic, in Chap. 7. Linearity
on some scale offers advantages, as illustrated by the following example.

Consider the log linear model:

log pu(x) = Bo + frx1 + Paa.
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The parameter exp(/1) has a relatively straightforward interpretation, being the
multiplicative change in the average response associated with a one-unit increase
in x1, with x5 held constant.

In contrast, for general nonlinear models, the parameters often define particular
functions of the response covariate curve or fundamental quantities that define the
system under study. We saw an example of this in Sect. 6.2, in which the nonlinear
concentration—time curve (6.1) was defined in terms of the volume of distribution V'
and the absorption and elimination rate constants k, and k.. Alternatively, we could
define the model in terms of characteristics of the curve, for example, the half-life,
T1/2, the time to maximum concentration, Zmax, and the maximum concentration,
(T max ). We now discuss inference for the GLM.

6.5 Likelihood Inference for GLMs

6.5.1 Estimation

We first derive the score vector and information matrix. For an independent sample
from the exponential family (6.6)

16) =Y 1(0) = 3 LU0 gy ),

where 8 = 0(3) = [61(B), . . ., 6,(3)] is the vector of canonical parameters. Using
the chain rule, the score function is

- dlz d@z 6ui
dt; du; 0B

0
S(8) = 55 -

=1

_ Yo V6) 1 0
_Z VB 6.9)

i=1

where var(Y; | 8) = aV; and

d’b  dy;
a2~ a; "
fori =1,...,n. Hence,
_ e (O [Yi = E(Yi | )]
@ =3 (55) " i

D'VY - p(B)] /a, (6.10)
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where D is the n x (k + 1) matrix with elements du;/98;, i = 1,...,n,
J =0,...,k and V is the n x n diagonal matrix with ith dlagonal element V;.
Consequently, an estimator ﬁ defined through S (ﬁ ) = 0 will be consistent so
long as the mean function is correctly specified, since the estimating function is
unbiased in this case. For canonical links, for which 8; = x;3,

= 0l; d; 99; 1 ]
;8 Zdeiag EZ;%D@—M(B)]

so that the sufficient statistics
n n
> etvi= el
i=1 i=1

are recovered at the MLE, B
From Result 2.1, the MLE has asymptotic distribution

L(B)Y%(B, — B) —a Np+1(0,Li11),

where the expected information is
I,(8) =E[S(B)S(B)'] = D'V~'D/a.
In practice we use
I,(3,) = D'V'D/a,
where V and D are evaluated at Bn The variance of the estimator is
-1

var(B) = a (f)Tf/—lf)) 6.11)

and is consistently estimated if the second moment is correctly specified.

The information matrix may be written in a particularly simple and useful form,
as we now show. We first let 7; = g(u;) denote the linear predictor. The score, (6.9),
may be written, for parameter j, j = 0,1,...,k, as

v Ol S (Y — ) dpsi O
SJ(/G) = 353‘ - ; aV; dn; 8ﬂj

= Z(Yl_—/“)%x” 6.12)
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Hence, element (j, j/) of the expected information is

< Pl ] oL\ ( ol
_;E [353‘353"] - ;E [(3@') (%j/ﬂ

. Zn:E (Yi = pa)wiy dppi (Vi = pri)igr dpss
oV; dn; aV; dn;

s runy ()’
~ aVi \dn; '

The information matrix therefore takes the form

1(8) ='W (B)z (6.13)
where W is the diagonal matrix with elements
o (dpi/dn;)?
[ 04‘/1' )

i1=1,...,n.
When « is unknown, it may be estimated using maximum likelihood or the
method of moments estimator

. 1 (Y — 1)
- 14
@= T V(i) ©.14)

i=1

~

where [i; = [i;(3). Section 2.5 contained the justification for this estimator, which
has the advantage of being, in general, a consistent estimator in a broader range of
circumstances than the MLE. The method of moments approach is routinely used for
normal and gamma data. As usual, there will be an efficiency loss when compared
to the use of the MLE if the distribution underlying the derivation of the latter is
“true.”

The use of (6.10) is appealing since it depends on only the first two moments
so that consistency of 3,, does not depend on the distribution of the data. Accurate
asymptotic confidence interval coverage depends only on correct specification of the
mean—variance relationship. Section 6.7 describes how the latter requirement may
be relaxed.

If the score is of the form (6.6), that is, if the score arises from an exponential
family, it is not necessary to have a mean function of GLM form (i.e., a linear
predictor on some scale). So, for example, the nonlinear models considered later
in the chapter, when embedded within an exponential family, also share consistency
of estimation (so long as regularity conditions are satisfied).
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6.5.2 Computation

Computation is relatively straightforward for GLMs, since the form of a GLM yields
a log-likelihood surface that is well behaved, for all but pathological datasets. In
particular, a variant of the Newton—Raphson method (a generic method for root-
finding), known as Fisher scoring, may be used to find the MLEs. We briefly digress
to describe the Newton—Raphson method. Let S(3) represent a p x 1 vector of
functions that are themselves functions of a p x 1 vector 3. We wish to find 3 such
that S(3) = 0. A first-order Taylor series expansion about ,8(0) gives

5(8) = 8(B”) + (8- ) (B”).
Setting the left-hand side to zero yields
p=p"—5(B")1s(8).
The Newton—Raphson method iterates the step:
g =g - 5'(8") 15 (8Y),

for t = 0,1,2,... The Fisher scoring method is the Newton—Raphson method
applied to the score equation, but with the observed information, S’(3), replaced
by the expected information E[S’(3)] = —I(3) to give

g =B+ 1(8") 7 s(8"),

so that a new estimate is calculated based on the score and information evaluated at
the previous estimate. Recall that for a GLM, I(3) = "W (3)x. Using this form,
and (6.12), we write

B — (WO )L W (®) [wﬁ(“ i (W@))flu(t)}
= ("WWg) "W () (6.15)
where (9 and 2(") are n x 1 vectors with ith elements

S0 _ V=) dp
aVi(t) dn;

3

)
B

and
dani

2 =28 + (Vi — ") s

K3

)
B
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Table 6.2 Point and 90% interval estimates for the theophylline data of Table 1.2, under various
models and estimation techniques. CV is the coefficient of variation and is expressed as a

percentage. The Bayesian point estimates correspond to the posterior medians

Model 1 /0 Tmax 1(Tmax) CV (x100)

GLM MLE 7.23[6.89,7.59] 1.60[1.52,1.69] 8.25[7.95,8.56] 4.38[3.04,6.33]
GLM sandwich 7.23[6.97,7.50] 1.60[1.57,1.64] 8.25[8.02,8.48] 4.38[3.04,6.33]
Nonlinear MLE 7.54[7.09,8.01] 1.51[1.36,1.66] 8.59[7.99,9.24] 6.32[4.38,9.13]

Nonlinear sandwich

Prior
GLM Bayes
Nonlinear Bayes

7.54[7.11,7.98]

8.00 [5.30,12.0]
7.26 [6.93,7.74]
7.57 [7.15,8.04]

1.51 [1.43,1.58]

1.50 [0.75,3.00]
1.60 [1.51,1.68]
1.50 [1.36,1.66]

8.59[8.11,9.10]

9.00 [6.80,12.0]
8.24 [7.89,8.54]
8.59 [8.22,8.94]

6.32 [4.38,9.13]

5.00 [2.50,10.0]
5.21[3.72,7.86]
6.01 [4.34,8.93]

respectively. The Fisher scoring updates (6.15) therefore have the form of a
weighted least squares solution to

(z(t) _ mﬁ)TW(t)(z(t) —x0) (6.16)

with “working” or “adjusted” response z*). This method is therefore known as
iteratively reweighted least squares (IRLS). For canonical links, the observed and
expected information coincide so that the Fisher scoring and Newton—Raphson
methods are identical.

The existence and uniqueness of estimates have been considered by a number of
authors; early references are Wedderburn (1976) and Haberman (1977).

Example: Pharmacokinetics of Theophylline

Fitting the gamma model (6.8) with mean function (6.7) gives MLEs for |3y, 51, (2]
of [2.42, —0.0959, —0.246]. The fitted curve is shown in Fig. 6.1. The method of
moments estimate of the coefficient of variation, 100/, is 5.3%, while the MLE is
4.4%. Asymptotic standard errors for [5, 81, 52, based on the method of moments
estimator for «, are [0.033,0.0028,0.018]. The point estimates of 3 are identical,
regardless of the estimate used for «, because the root of the score is independent of
« in a GLM, as is clear from (6.10).

The top row of Table 6.2 gives MLEs for the derived parameters, along with
asymptotic 90% confidence intervals, derived using the delta method. All are based
upon the method of moments estimator for «. The parameters of interest are all
positive, and so the intervals were obtained on the log scale and then exponentiated.
Deriving an interval estimate for the clearance parameter using the delta method is
more complex. Working with § = log C', we have

~

Var(9) = [DQ Dl DQ]V* D1
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where, from (6.5),

00
Do—a—ﬂo—l

b _ 1[5k @VER)
LT 0B B B1 K1 (2v/B1p-2)

p, 90 _ A& Ko (2VP152)
2= 2o T T e

8[32 ﬂQ K (2\/61ﬁ2)
and V* is the variance—covariance matrix of ﬁ as given by (6.11). For the
theophylline data, the MLE is Cl = 0.042 with asymptotic 90% confidence
interval [0.041,0.044]. Inference for the clearance parameter using the sampling-

based Bayesian approach that we describe shortly is straightforward, once samples
are generated from the posterior.

Example: Poisson Data with a Linear Link

We now describe a GLM that is a little more atypical and reveals some of the
subtleties of modeling that can occur. In the context of a spatial study, suppose
that, in a given time period, Y;o represents the number of counts of a (statistically)
rare disease in an unexposed group of size [V;9, while Y;; represents the number of
counts of a rare disease in an exposed group of size V;1, all inareas,7 =1,...,n.
Suppose also that we only observe the sum of the disease counts, Y; = Y;o + Yi1,
along with N;o and N;;. If we had observed Yo, Y;1, we would fit the model
Yij | B* ~ina Poisson(N;;3%) so that 0 < 7 < 1 is the probability of
disease in exposure group j, with j = 0/1 representing unexposed/exposed and
B* = (8%, B}]. Then, writing x; = N1, /N; as the proportion of exposed individuals,
the distribution of the total disease counts is

Yi | B* ~ina Poisson {N;[(1 — ;)85 + z:57]}, (6.17)

so that we have a Poisson GLM with a linear link function. Since the parameters
B4 and 37 are the probabilities (or risks) of disease for unexposed and exposed
individuals, respectively, a parameter of interest is the relative risk, 5F /5.

We illustrate the fitting of this model using data on the incidence of lip cancer
in men in n = 56 counties of Scotland over the years 1975-1980. These data were
originally reported by Kemp et al. (1985) and have been subsequently reanalyzed by
numerous others, see, for example, Clayton and Kaldor (1987). The covariate z; is
the proportion of individuals employed in agriculture, fishing, and farming in county
1. We let Y; represent the number of cases in county ¢. Model (6.17) requires some
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adjustment, since the only available data here, in addition to z;, are the expected
numbers F; that account for the age breakdown in county ¢ (see Sect. 1.3.3). We
briefly describe the model development in this case, since it requires care and reveals
assumptions that may otherwise be unapparent.

Let Y;;; be the number of cases, from a population of IV, in county ¢, exposure
group j, and age stratum k, ¢ = 1,...,n,7 = 0,1, k = 1,..., K. An obvious
starting model for a rare disease is

Yijk | Pijk ~ina Poisson(Nyjxpiji)-

This model contains far too many parameters, p; i, to estimate, and so we simplify
by assuming

Dijk = Bj X Dk, (6.18)

across all areas . Consequently, py, is the probability of disease in age stratum k
and 3; > 0 is the relative risk adjustment in exposure group j, and we are assuming
that the exposure effect is the same across areas and across age stratum. The age-
specific probabilities p are assumed known (e.g., being based on rates from a larger
geographic region). The numbers of exposed individuals in each age stratum are
unknown, and we therefore make the important assumption that the proportion of
exposed and unexposed individuals is constant across age stratum, that is, N0 =
Nix(1 — ;) and N;1, = Njgpa;. This assumption is made since N;ox and N;1j are
unavailable and is distinct from assumption (6.18) which concerns the underlying
disease model. Summing across stratum and exposure groups gives

K K
Y; | B ~ina Poisson <ﬂo(1 — ;) Z Nikpr + Prx; ZNikpk> .

k=1 k=1

Letting E; = Zszl N;,pi represent the expected number of cases, and simplifying
the resultant expression gives

}/i | /B ~ind Poisson {El[(l — Il)ﬂo + xzﬂl]} . (619)
Under this model,

E [%} = fo + (81 — Bo)zi, (6.20)
illustrating that the mean model for the standardized morbidity ratio (SMR), Y;/ E;,
is linear in x. Figure 6.2 plots the SMRs Y;/E; versus x;, with a linear fit added,
and we see evidence of increasing SMR with increasing x.

Fitting the Poisson linear link model gives estimates (asymptotic standard errors)
for £y and 5y of 0.45 (0.043) and 10.1 (0.77). The fitted line (6.20) is superimposed
on Fig. 6.2. The estimate of the relative risk 81 /5 is 22.7 with asymptotic standard
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Fig. 6.2 Plot of standardized o
morbidity ratio versus © —
proportion exposed for lip
cancer incidence in 56
counties of Scotland. The
linear model fit is indicated
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error 3.39. The latter is a model-based estimate and in particular depends on there
being no excess-Poisson variation, which is highly dubious for applications such as
this, because of all of the missing auxiliary information, including data on smoking.

6.5.3 Hypothesis Testing

Suppose that dim(3) = k + 1 and let 8 = [B,,8,] be a partition with 3, =
[Bo,--.,08q and By = [Bg41, ..., Bk, with 0 < ¢ < k. Interest focuses on testing
whether the subset of k — ¢ parameters are equal to zero via a test of the null

Hy : 3, unrestricted, B, = By
Hy : B =[B1,Bs] # [B1,Baol- (6.21)

As outlined in Sect. 2.9, there are three main frequentist approaches to hypothesis
testing, based on Wald, score, and likelihood ratio tests. We concentrate on the latter.
For the linear model, the equivalent approach is based on an F test (Sect.5.6.1),
which formally accounts for estimation of the scale parameter.

The log-likelihood is

(g =3 LU0 |y ),
i=1

with « the scale parameter. We let 8 = 0(3) = [01(8),...,0,(3)] denote the
vector of canonical parameters. Under the null, from Sect.2.9.5,

~(0)

2 {Z(B) - (B )] —d Xi—q»

~ ~(0 ~
where 3 is the unrestricted MLE and ﬁ( - [B10, B20] is the MLE under the null.
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In some circumstances, one may assess the overall fit of a particular model
via comparison of the likelihood of this model with the maximum attainable log-
likelihood which occurs under the saturated model. We write 6 = [91, ooy 6]
to represent the MLEs under the saturated model. Similarly, let 0 = [91, e é\n]
denote the MLEs under a reduced model containing ¢ + 1 parameters. The log-
likelihood ratio statistic of Hy : reduced model, H; : saturated model is

2[(’6-15]:%%[ (0; — ;) (ei)+b(§i)]=g, (6.22)

i=1

where D is known as the deviance (associated with the saturated model) and D/«
is the scaled deviance. If the saturated model has a fixed number of parameters, p,
then, under the reduced model,

2
— —d Xp—qg—1-
« p=q-1

In general, this result is rarely used, though cross-classified discrete data provide
one instance in which the overall fit of a model can be assessed in this way. An
alternative measure of the overall fit is the Pearson statistic

s~ (Yi—m)?
X2 = ;—V(ﬁi) , (6.23)

with X2 — X;Q)— q—1 under the null. Again, the saturated model should contain a
fixed number of parameters (as n — 00).

Consider again the nested testing situation with hypotheses, (6.21). We describe
an attractive additivity property of the likelihood ratio test statistic for nested

models. Let B(O), B(l) and ﬁ(s) represent the MLEs of 3 under the null, alternative,

and saturated models, respectively. Suppose that the dimensionality of ﬁ(]) is g
with 0 < qo < ¢1 < p. Under Hy,
1

(0) ()

216" - 18" =2 {18 - 16" - 16" - 16"}

1
=7 (Do — D1) —a Xo,—go»
where D; is the deviance representing the fit under hypothesis j, relative to the

saturated model, j = 0,1. The Pearson statistic does not share this additivity
property.
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For a GLM, in contrast to the linear model (see Sect.5.8), even if a covariate
is orthogonal to all other covariates, its significance will still depend on which
covariates are currently in the model.

Example: Normal Linear Model

We consider the model Y | 3 ~ N,, (23, 0°L,,). The log-likelihood is

1(8,0) = —nlogo — ——(y — 2B)(y — z),

202

with o in the GLM formulation being replaced by o2. Again, let 3 = [B1, 3,]
where B, = [fo,...,Bq] and By = [Bg+1,..., Bk, and consider the null Hy :
(B, unrestricted, 3, = B,,. Under this null, from (6.22),

n 2
p=Y" (Yi - miﬁ(o))
=1

~(0) .
where x;3 ~ are the fitted values for the ith case, based on the MLEs under the
reduced model, Hy. In this case, the asymptotic distribution is exact since

n ’\(0)
Zi: (Yi —xz;8 )2
1 = ~ X g1 (6.24)

This result is almost never directly useful, however, since o2 is rarely known.

In terms of comparing the nested hypotheses Hy : 3, unrestricted, 3, = B4,
and H; : 8 = [B4, B3] # [B1, Ba), the likelihood ratio statistic is

n

1 1 ~(0) i ~(1)
SDo-D)=— > (Vi—@B ) =Y (Yi—zB )’
=1 =1
_ RSS) —RSS;  FSSy 6.25)

o2 o2

where mB(J) are the fitted values corresponding to the MLEs under model j, RSS;
is the residual sum of squares for model j, 7 = 0, 1, and FSSy; is the fitted sum of
squares due to the additional parameters present in H; .

In practice if n is large, we may use (6.25) with o2 replaced by a consistent
estimator 52, Alternatively, the ratios of scaled versions of (6.25) and (6.24) may be
taken to produce an F-statistic by which statistical significance may be assessed, as
described in Sect. 5.6.1.
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Example: Lung Cancer and Radon

Under a Poisson model, the devignce and scaled deviance are identical since o = 1.
For a Poisson model with MLE 3, the deviance is

2 i i i lo Yi
Zlu —yi) +y g(m(ﬁ))]

and if the sum of the observed and fitted counts agree, then we obtain the intuitive

distance measure
Yi
2Zyi log ( — ) .
i=1 wi(B)

For the Minnesota data, suppose we wish to test Hy : 3y unrestricted, 5; = 0 versus
Hi : [Bo, 1] # [Bo, 0], in the model p; = E; exp(Bo + B12;). The likelihood ratio

statistic is
_2Zyllog ( ﬁ%))

i (ﬁ

since Y ; 1i(B) = o (3), and where 3 and ﬁ(o) are the MLEs under the
null and alternative hypotheses. Under Ho, T —4 3.

For the Minnesota data T' = 46.2 to give an extremely small p-value. The
estimate (standard error) of 31 is —0.036 (0.0054) so that for a one-unit increase
in average radon, there is an associated drop in relative risk of lung cancer of 3.6%.

(0)

6.6 Quasi-likelihood Inference for GLMs

Section 2.5 provided an extended discussion of quasi-likelihood, and here we recap
the key points. GLMs that do not contain a scale parameter are particularly vulnera-
ble to variance model misspecification, specifically the presence of overdispersion in
the data. The Poisson and binomial models are especially susceptible in this respect.

Rather than specify a complete probability model for the data, quasi-likelihood
proceeds by specifying the mean and variance as

E[Y; | B] = 1i(B)
var(Y; | B) = aV (1),

with cov(Y;,Y; | B) = 0. From these specifications, the quasi-score is defined as
in (2.30) and coincides with the score function (6.10). Hence, the maximum quasi-
likelihood estimator 3 is identical to the MLE due to the multiplicative form of the
variance model. Estimation of « may be carried out using the form (6.14) or via
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. D

o= —

n—k—1

where D is the deviance and dim(83) = k + 1. Asymptotic inference is based on
(D'V LD /a)Y2(B, — B) —a Nk41(0,Ixq1).

In practice, D and V are evaluated at Bn, and & replaces .
Hypothesis tests follow in an obvious fashion, with adjustment for &. Specifi-

call Y, if as before
I Yy — t
B,a) = - dt
( ) ) /y ‘ r(t) I

then if [(8) = I(B,a = 1) represents the likelihood upon which the quasi-
likelihood is based (e.g., a Poisson or binomial likelihood),

1B) =1(B,a) x a (6.26)

and to test Hy : B; unrestricted, 3, = B3,,, we may use the quasi-likelihood ratio
test statistic

~(0)

) [I(B,@ B ,a>] -

or equivalently
~(0)

2 [Z(B) (B )] —a @ X XF_y. (6.27)

If, as is usually the case, @ > 1, then larger differences in the log-likelihood are
required to attain the same level of significance, as compared to the o = 1 case.

Example: Lung Cancer and Radon

Fitting the quasi-likelihood model

E[Y; | B] = E; exp(Bo + Sr:) (6.28)
var(Y; | B) = oE[Y; | 8], (6.29)

yields identical point estimates for 3 to the Poisson model, with scale param-
eter estimate & = 2.81, obtained via (6.14). Therefore, with respect to Hy :
Bo unrestricted, 8; = 0, the quasi log-likelihood ratio statistic is 46.2/2.81 = 16.5
so that the significance level is vastly reduced, though still strongly suggestive of a
nonzero slope.
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6.7 Sandwich Estimation for GLMs

The asymptotic variance—covariance for B which is given by (6.11), is appropriate
only if the first two moments are correctly specified. In general, as detailed in
Sect. 2.6, var(3) = A~ B(A")~! where

oG
B

regardless of the distribution of the data (so long as the mean is correctly specified),
and

A= E[ ]_DTV1D, (6.30)

B =var[G(B)] = D'V 'var(Y)V ! D,
where G(3) = S(8)/n. Under the assumption of uncorrelated errors,

Zn: (8“1) Vaiﬂ 0 (g‘;) (6.31)

=1

where a naive estimator of var(Y;) is
a7 = (Y; — is)?, (6.32)

which has finite sample bias. Combination of (6.31) and (6.32) provides a consistent
estimator of the variance and therefore asymptotically corrects confidence interval
coverage (so long as independence of responses holds).

Bootstrap methods (Sect.2.7.2) may also be used to provide inference that
is robust to certain aspects of model misspecification, provided n is sufficiently
large. The resampling residuals method may be applied, but the meaning of
residuals is ambiguous in GLMs (Sect. 6.9), and this method does not correct for
mean—variance misspecification, which is a major drawback. The resampling cases
approach corrects for this aspect. Davison and Hinkley (1997, Sect. 7.2) discuss both
resampling residuals and resampling cases in the context of GLMs.

Example: Pharmacokinetics of Theophylline

Table 6.2 gives confidence intervals for x; /2> Tmax and p(zmax ), based on sandwich
estimation. In each case, the interval estimates are a little shorter than the model-
based estimates. This could be due to either instability in the sandwich estimates
with a small sample size (n = 10) or to the gamma mean—variance assumption
being inappropriate.
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6.8 Bayesian Inference for GLMs

We now consider Bayesian inference for the GLM. The posterior is

p(B,a|y) «cl(B, )m(B, )

where it is usual to assume prior independence between the regression coefficients
(3 and the scale parameter a, that is, 7(3, a) = 7(8)7 ().

6.8.1 Prior Specification

Recall that 3 = [By, 81, . . ., Bk]. Often, 8, j =0,1,...,k, is defined on R, and so
a multivariate normal prior for 3 is the obvious choice. Furthermore, independent
priors are frequently defined for each component. As a limiting case, the improper
prior w(3) o 1 results. However, care should be taken with this choice since it
may lead to an improper posterior. With canonical links, impropriety only occurs
for pathological datasets (see the binomial model example of Sect.3.4), but for
noncanonical links, innocuous datasets may lead to impropriety, as the Poisson data
with a linear link example described below illustrates. If the scale parameter o > 0
is unknown, gamma or lognormal distributions provide obvious choices.

Poisson Data with a Linear Link
Recall the Poisson model with a linear link function

Y: | B ~ina Poisson { F;[(1 — x;) B0 + x:51]}
and suppose we assume an improper uniform prior for 5y > 0, that is,
m(Bo) o 1.

We define e” = 31/3p > 0 as the parameter of interest and write

pi = PoEi[(1 — x;) + 2 exp(y)] = Bop; .
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The marginal posterior for 7 is
20 19) = [ p(6o,7 ) dso

a/m%mm&xwm>

S /eXP <—Bo Zuf“) B T dBo x ()
i=1

=1
- Ei[(1 — ;) + xe7] Yi

B i1 <Z?—1 Ei[(1 =) + :mﬂ]) xm(7) (6.33)

~ ) (6.34)

where the last line follows from the previous on recognizing that the integrand is the
kernel of a Ga (Y., yi, > iy p) distribution. The “likelihood,” I(y) in (6.34),
is of multinomial form with the total number of cases y, distributed among the n
areas with probabilities proportional to E; [(1—x;)+z; exp(y)] so that, for example,
larger E; and larger x; (if v > 0) lead to a larger allocation of cases to area 7. The
likelihood contribution to the posterior tends to the constant

n

as 7 — —oo, showing that, in general, a proper prior is required (since the tail will
be non-integrable). The constant (6.35) is nonzero unless x; = 1 in any area with
y; # 0. The reason for the impropriety is that in the limit as v — —oo, the relative
risk exp(y) — 0 so that exposed individuals cannot get the disease, which is not
inconsistent with the observed data, unless all individuals in area i are exposed,
x; = 1, and y; # 0 in that area since then clearly (under the assumed model) the
cases are due to exposure. A similar argument holds as v — oo, with replacement
of 1 — z; by z; in (6.35) providing the limiting constant.

Figure 6.3 illustrates this behavior for the Scottish lip cancer example, for which
x; = Oin five areas. The log- likelihood has been scaled to have maximum 0, and the
constant (6.35) is indicated with a dashed horizontal line. The MLE 74 = log(22.7)
is indicated as a vertical dotted line.

6.8.2 Computation

Unfortunately, when continuous covariates are present in the model, conjugate
analysis is unavailable. However, sampling-based approaches are relatively easy to
implement. In particular, if informative priors are available, then the rejection algo-
rithm of Sect. 3.7.6 is straightforward to implement with sampling from the prior.
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Fig. 6.3 Log-likelihood for
the log relative risk parameter
7, for the Scottish lip cancer
data. The dashed horizontal
line is the constant to which
the log-likelihood tends to as
v = —0
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MCMC (Sect. 3.8) is obviously a candidate for computation and was illustrated for
Poisson and negative binomial models in Chap. 3. The INLA method described in
Sect. 3.7.4 may also be used.

As described in Sect. 3.3, there is asymptotic equivalence between the sampling
distribution of the MLE and the posterior distribution. Hence, Bayes estimators for
3 are consistent due to the form of the likelihood, so long as the priors are nonzero
in a neighborhood of the true values of 3.

6.8.3 Hypothesis Testing

A simple method for examining hypotheses involving a single parameter, Hy : 8; =
0 versus H; : 3; # 0, with any remaining parameters unrestricted, is to evaluate
the posterior tail probability Pr(8; > 0 | y), with values close to 0 or 1 indicating
that the null is unlikely to be true. Bayes factors (which were discussed in Sects. 3.10
and 4.3) provide a more general tool for comparing hypotheses (by analogy with the
likelihood ratio statistic, though of course, as usual, interpretation is very different):

The use of Bayes factors will be illustrated in Sect.6.16.3. As discussed in
Sect.4.3.2, great care is required in the specification of priors when model com-
parison is carried out using Bayes factors.
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6.8.4 Overdispersed GLMs

Quasi-likelihood provides a simple procedure by which frequentist inference may
accommodate overdispersion in GLMs. No such simple remedy exists within the
Bayesian framework. An alternative method of increasing the flexibility of GLMs
is through the introduction of random effects. We have already seen an example of
this in Sect. 2.5 when the negative binomial model was derived via the introduction
of gamma random effects into a Poisson model.

Example: Lung Cancer and Radon

The Bayesian Poisson model was fitted in Chap.3 using a Metropolis—Hastings
implementation. Here the use of the INLA method of Sect.3.7.4, with improper
flat priors on Sy, 81, gives a 95% interval estimate for the relative risk exp(/31) of
[0.954,0.975] which is identical to that based on asymptotic likelihood inference
(the posterior mean and MLE both equal —0.036, and the posterior standard
deviation and standard error both equal 0.0054).

Example: Pharmacokinetics of Theophylline

With respect to the gamma GLM with p(xz) = exp(Bo + Sz + B2/x), the
interpretation of By and P2 in particular is not straightforward, which makes
prior specification difficult. As an alternative, we specify prior distributions on
the half-life /5, time to maximum z,,x, Maximum concentration (T max), and
coefficient of variation, \/a. We choose independent lognormal priors for these four
parameters. For a generic parameter 6, denote the prior by 6 ~ LogNorm(u, o). To
obtain the moments of these distributions, we specify the prior median 6,,, and the
95% point of the prior ,,. We then solve for the moments via

_ log () —

1.645 (6.36)

n= 10g (em)7
as described in Sect. 3.4.2. Based on a literature search, we assume prior 50% (95%)
points of 8 (12), 1.5 (3), and 9 (12) for =1 /2, Tmax, and (T max ), respectively. For
the coefficient of variation, the corresponding values are 0.05 (0.10). The third line
of Table 6.2 summarizes these priors. To examine the posterior, we use a rejection
algorithm, as described in Sect. 3.7.6. We sample from the prior on the parameters
of interest and then back-solve for the parameters that describe the likelihood. For
the loglinear model, the transformation to 3 is via
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Fig. 6.4 Histogram representations of posterior distributions from the GLM for the theophylline
data for (a) half-life, (b) time to maximum, (¢) maximum concentration, and (d) coefficient of
variation, with priors superimposed as solid lines

log 2
fr=——22

T1/2
2
62 = lemax

BO = log,u(xmax) + 2(6162)1/2-

Table 6.2 summarizes inference for the parameters of interest, via medians and 90%
interval estimates. Point and interval estimates show close correspondence with the
frequentist summaries. Figure 6.4 gives the posterior distributions for the half-life,
the time to maximum concentration, the maximum concentration, and the coefficient
of variation (expressed as a percentage). The prior distributions are also indicated
as solid curves. We see some skewness in each of the posteriors, which is common
for nonlinear parameters unless the data are abundant.

Inference for the clearance parameter is relatively straightforward, since one
simply substitutes samples for 3 into (6.5). Figure 6.5 gives a histogram represen-
tation of the posterior distribution. The posterior median of the clearance is 0.042
with 90% interval [0.041,0.044]; these summaries are identical to the likelihood-
based counterparts. We see that the posterior shows little skewness; the clearance
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parameter is often found to be well behaved, since it is a function of the area under
the curve, which is reliably estimated so long as the tail of the curve is captured.

6.9 Assessment of Assumptions for GLMs

The assessment of assumptions for GLMs is more difficult than with linear models.
The definition of a residual is more ambiguous, and for discrete data in particular, the
interpretation of residuals is far more difficult, even when the model is correct.
Various attempts have been made to provide a general definition of residuals that
possess zero mean, constant variance, and a symmetric distribution. In general, the
latter two desiderata are in conflict.

When first examining the data, one may plot the response, transformed to
the linear predictor scale, against covariates. For example, with Poisson data and
canonical log link, one may plot log y versus covariates x.

The obvious definition of a residual is

e; =Y; — [l

but clearly in a GLM, such residuals will generally have unequal variances so
that some form of standardization is required. Pearson residuals, upon which we
concentrate, are defined as

Y; — 1 Y — 1

’ var(Y;) g

where var(Y;) = @V (ji;) and [i; are the fitted values from the model. Squaring and
summing these residuals reproduce Pearson’s x? statistic:
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as previously introduced, (6.23). For Pearson residuals, E[7;eX] = 0 and E[e}?] = 1,
but the third moment is not equal to zero in general so that the residuals are skewed.
As an example, for Poisson data, E[e*3] = ;1~!/2. Clearly for normal data, Pearson
residuals have zero skewness.

Deviance residuals are given by

ef = sign(V; — fi;)V'D;

so that D = Z?:l er?, as defined in Sect.6.5.3. As an example, for a Poisson
likelihood, the deviance residuals are

er = sign(y; — fii){2[yi log(yi /i) — vi + fui] } /2.

For discrete data with small means, residuals are extremely difficult to interpret
since the response can only take on a small number of discrete values. One strategy
to aid in interpretation is to simulate data with the same design (i.e., x values) and
under the parameter estimates from the fitted model. One may then examine residual
plots to see their form when the model is known.

As with linear model residuals (Sect.5.11), Pearson or deviance residuals can
be plotted against covariates to suggest possible model forms. They may also
be plotted against fitted values or some function of the fitted values to access
mean—variance relationships. If the spread is not constant, then this suggests that
the assumed mean—variance relationship is not correct. McCullagh and Nelder
(1989, p. 398-399) recommend plotting against the fitted values transformed to the
“constant-information” scale. For example, for Poisson data, the suggestion is to
plot the residuals against 2\//7. Residuals can also be examined for outliers/points
of high influence.

For the linear model, the diagonal elements of the hat matrix, h = :v(wT:B)_le,
correspond to the leverage of response i, with hy; = 1if y; = :cZB (Sect. 5.11.2).
Consideration of (6.15) reveals that for a GLM we may define a hat matrix as h =
w'/?2x(x"wx) "'z w'/?, from which the diagonal elements may be extracted and,
once again, large values of h;; indicate that the fit is sensitive to y; in some way.
As with the linear model, responses with h;; close to 1 have high influence. Unlike
the linear case, h depends on the response through w. Another useful standardized
version of residuals is

* sz — //Zz
(1 = hig)var(Y;)

)

fori =1,...,n.
It is approximately true that

V(- p) = RV TYA(Y - p)
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(McCullagh and Nelder 1989, p. 397), and so
VIRY —p) = I-h)V VY - )

which shows the effect of estimation of & on properties of the residuals.

Example: Pharmacokinetics of Theophylline

We fit the gamma GLM Y; | B, ~jnq Gala™', (ap;)"!] using MLE and
calculate Pearson residuals
L Yi—I
€i = — -
\/aﬂi

In Fig.6.6(a), these residuals are plotted versus time x; and show no obvious
systematic pattern, though interpretation is difficult, given the small number of data
points and the spacing of these points over time. Figure 6.6(b) plots |e¥| against
fitted values to attempt to discover any unmodeled mean—variance relationship, and
again no strong signal is apparent.

Example: Lung Cancer and Radon

As we have seen, fitting the quasi-likelihood model given by the mean and variance
specifications (6.28) and (6.29) yields @ = 2.76, illustrating a large amount of
overdispersion. The quasi-MLE for /31 is —0.035, with standard error 0.0088. We
compare with a negative binomial model having the same loglinear mean model and

var(V;) = pi(1 + pi/b). (6.37)

Previously, a negative binomial model was fitted to these data using a frequentist
approach in Sect.2.5 and a Bayesian approach in Sect. 3.8 The negative binomial
MLE is —0.029, with standard error 0.0082, illustrating that there is some sensitivity
to the model fitted. R

For these data, the MLE is b = 61.3 with standard error 17.3. Figure 6.7
shows the fitted quadratic relationship (6.37) for these data. We also plot the quasi-
likelihood fitted variance function. At first sight, it is surprising that the latter
is not steeper, but the jittered fitted values included at the top of the plot are
mostly concentrated on smaller values. The few larger values are very influential
in producing a small estimated value of b (which corresponds to a large departure
from the linear mean—variance model).
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Fig. 6.6 Pearson residual plots for the theophylline data: (a) residuals versus time for the GLM,
(b) absolute values of residuals versus fitted values for the GLM, (c) residuals versus time for the
nonlinear compartmental model, and (d) absolute values of residuals versus fitted values for the
nonlinear compartmental model
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Fig. 6.8 Absolute values of Poisson Pearson residuals versus /iz when the true mean—variance
relationship is quadratic, but we analyze as if linear, for four simulated datasets with the same
expected numbers and covariate values as in the lung cancer and radon data

To attempt to determine which variance function is more appropriate, we
simulate data under the negative binomial model using {E;, x;,4 = 1,...,n} and
[B.D).

We then fit a Poisson model (which provides identical fitted values as from
a quasi-likelihood model), form residuals (y — 1)/ \/: , that is, residuals from a
Poisson model, and then plot the absolute value versus /i to see if we can detect
a trend. In the majority of simulations, the inadequacy of assuming the variance is
proportional to the mean is apparent; this endeavor is greatly helped by having just
a few points with very large fitted values. Specifically, the upward trend indicates
that the Poisson linear mean—variance assumption is not strong enough. Figure 6.8
shows four representative plots. Figure 6.9 gives the equivalent plot from the real
data. This plot shows a similar behavior to the simulated data, and so we tentatively
conclude that the quadratic mean—variance relationship is more appropriate for
these data. Cox (1983) provides further discussion of the effects on estimation
of different forms of overdispersion, including an extended discussion of excess-
Poisson variation.
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Fig. 6.9 Absolute values of
Poisson Pearson residuals
versus /i for the lung cancer
and radon data

| Pearson residuals |

6.10 Nonlinear Regression Models

We now consider models of the form

Yi = p1i(B) + e, (6.38)

fori = 1,...,n, where p;(8) = p(x;,B) is nonlinear in x;, B is assumed to
be of dimension k + 1, E[e; | wi] = 0, var(e; | ;) = o2 f(u;), and cov(e;, €; |
i, ) = 0. Such models are often used for positive responses, and if such data
are modeled on the original scale, it is common to find that the variance is of the
form f(p) = por f(u) = p?. An alternative approach that is appropriate for the
latter case is to assume constant errors on the log-transformed response scale (see
Sect. 5.5.3). More generally, we might assume that var(e; | 3, z;) = 0291(8, ),
with cov(e;, €5 | B, i, z;) = g2(B, x;, ;). When data are measured over time,
serial correlation can be a particular problem. We concentrate on the simpler second
moment structure here.

Example: Michaelis—Menten Model

A nonlinear form that is used to model the kinetics of many enzymes has mean
(7074
o+ 2’

w(z) =

a nonlinear model. Parameter interpretation is obtained by recognizing that as z —
00, () = ap and at aq, p(a1) = ag/2. A possible model for such data is

Y(z) = ul(z) + €(2),
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with E[e(2)] = 0, var[e(z)] = o?u(2)", with r = 0, 1, or 2. An alternative approach
is to write

1
(@) = fo + bz
where
x=1/z
Bo = 1/ap
B1 :061/040,

which is a GLM with reciprocal link.

6.11 Identifiability

For many nonlinear models, identifiability is an issue, by which we mean that the
same curve may be obtained with different sets of parameter values. We have already
seen one example of this for the nonlinear model fitted to the theophylline data
(Sect. 6.2). As a second example, consider the sum-of-exponentials model

p(z,B) = Boexp(—zf1) + B2 exp(—zf3), (6.39)

where B3 = [Bo, 01, B2, 03] and B; > 0, j = 0,1,2,3. The same curve results
under the parameter sets [5o, 51, 52, B3] and [52, B3, Bo, £1], and so we have non-
identifiability. In the previous “flip-flop” model (Sect.6.2), identifiability could
be imposed through a substantive assumption such as k, > k. > 0, and for
model (6.39), we may enforce (say) B3 > 51 > 0 and work with the set

~ = [log Bo,log(B3 — B1), log B2, log 1]

which constrains 3y > 0, f2 > 0, and 51 > (3 > 0. If a Bayesian approach is
followed, a second possibility is to retain the original parameter set, but assign one
set of curves zero mass in the prior. The latter option is less appealing since it can
lead to a discontinuity in the prior.
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6.12 Likelihood Inference for Nonlinear Models

6.12.1 Estimation

To obtain the likelihood function, a probability model for the data must be fully
specified. A common choice is

Y; | B,0 ~ina N[pi(8), 0 11:(8)"],

fori =1,...,n,and with r = 0, 1, or 2 being common choices. The corresponding
likelihood function is

1(B,0) = —nlogo — g;mgui(m - = ; M (6.40)

Differentiation with respect to 3 and ¢ yields, with a little rearrangement, the score
equations

51(1670) = g_/é
oo 1 {[Yz——uz—(ﬂﬂz_az} 1 51— pi(B)] O
(6.41)
55(B.0) = OF
_on 1KY w(B)?
AR ; 15 (8)

Notice that this pair of quadratic estimating functions (Sect.2.8) are such that
E[S;] = 0 and E[S2] = 0 if the first two moments are correctly specified, in
which case consistency of 3 results. It is important to emphasize that if » > 0, we
require the second moment to be correctly specified in order to produce a consistent
estimator of 3. If » = 0, the first term of (6.41) disappAears, and we require the first
moment only for consistency. In general, the MLEs 3 are not available in closed
form, but numerical solutions are usually straightforward (e.g.,via Gauss—Newton
methods or variants thereof) and are available in most statistical software. The MLE
for o2 is

~2 1 }/'L_ZBQ
s Ly D w3

= , (6.42)
i=1 i (ﬁ)
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but, by analogy with the linear model case, it is more usual to use the degrees of
freedom adjusted estimator

_ 1 &KIYi—
5* klz

:f” .
i=1 /6

(6.43)

For a nonlinear model, &2 has finite sample bias but is often preferred to (6.42)
because of better small sample performance.
Under the usual regularity conditions,

1(6)2(6, — 6) —q Njs1(0,Liiy).

where 8 = [3, 0] and I(0) is Fisher’s expected information. In the case of r = 0,
we obtain

1B,0) = —nloga = 5 > Vi~ ju(B)P

=1
S1(8,0) ian[Y- — ()2 (6.44)
1 y0) = 0,2 Pt g i a/@ .
n 1 «
(B,0) = ot S Y- B
i=1
-851 - 1 " 8,&1' 8,&1
fn="F19s 02;(%) (fm)
[0S1]
I, =-E _8_0_ =0
[0S2]
I, = —-E % =0
882_ 2n
I = -E 0o | T2
Asymptotically,
" 1Y — u(B)]?

g

which may be used to construct approximate F' tests, as described in Sect. 6.12.2.
If r is unknown, then it may also be estimated by deriving the score from the
likelihood (6.40), though an abundance of data will be required. Estimation of
the power in a related variance model is carried out in the example at the end of
Sect. 9.20.
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Example: Pharmacokinetics of Theophylline

We let y; represent the log concentration and assume the model y; | 3, 02 ~ind
N[ui(B),0%],i=1,...,n, where

() = g { o exp(her) —expl k)] | (646)
with 8 = [Bo, 81,0=2] and Bo = V, 81 = ka, P2 = ke. We fit this model using
maximum likelihood estimation for B and the moment estimator (6.43) for o2.
The results are displayed in Table 6.2, with the fitted curve displayed on Fig.6.1.
Confidence intervals, based on the asymptotic distribution of the MLE, were
calculated for the parameters of interest using the delta method. These parameters
are all positive, and so the intervals were obtained on the log-transformed scale and
then exponentiated.

In Fig.6.10, slices through the three-dimensional likelihood surface are dis-
played. The two-dimensional surfaces are evaluated at the MLE of the third variable.
A computationally expensive alternative would be to profile with respect to the third
parameter, as described in Sect. 2.4.2. In the left column the range of each variable
is taken as three times the asymptotic standard errors, and the surfaces are very well
behaved. By contrast, in the right column of the figure, the range is £30 standard
errors, and here we see very irregular shapes, with some of the contours remaining
open. Such shapes are typical when nonlinear models are fitted and are not in general
only apparent at points far from the maximum of the likelihood.

6.12.2 Hypothesis Testing

As usual, hypothesis tests may be carried out using Wald, score, or likelihood ratio
statistics, and again we concentrate on the latter. Suppose that dim(3) = k + 1 and
let B = [B,,B,] be a partition with 8, = [Bo, ..., Bq] and By = [Bg+1,- - -, Bkls
with 0 < ¢ < k. Interest focuses on testing whether a subset of k£ — ¢ parameters
are equal to zero via a test of the null

Ho : B, unrestricted, By = B4y versus Hy : 8= (B, B5] # [B1, Bao)-

Asymptotically, and with known o,

~(1)

2|13 ~(0)

502) - l(ﬁ

2 2
O ) —d Xk—q—l

where ﬁ(o) and B(l) are the MLEs under null and alternative, respectively, and
1(B,0?%) is given by (6.40). Unlike the normal linear model, this result is only
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Fig. 6.10 Likelihood contours for the theophylline data with the range of each parameter being
the MLE + 3 standard errors in the left column and + 30 standard errors in the right column; (a)
and (b) log k, versus log V, (¢) and (d) log k. versus log V, and (e) and (f) log ke versus log k.
On each plot, the filled circle represents the MLE. In each panel, the third variable is held at its
maximum value

asymptotically valid for a normal nonlinear model. For the usual case of unknown
o2, one may substitute an estimate or use an F' test with degrees of freedom k—q—1
and n—k—1, though the numerator and denominator sums of squares are only
asymptotically independent. The denominator sum of squares is given in (6.45).
More cautiously, one may assess the significance using Monte Carlo simulation
under the null.
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6.13 Least Squares Inference

We first consider model (6.38) with Efe; | p;] = 0, var(e; | p;) = o2, and
cov(e;, €5 | fui, ) = 0. In this case we may obtain ordinary least squares estimates,
3, that minimize the sum of squares

n

Y Y= w(B) =Y — uB)'Y - n(Bd)).

i=1

Differentiation with respect to 3, and letting D be the n x (k + 1) dimensional
matrix with element (i, j), Ou;/9B;, yields the estimating function

n

S (8 = DY ~ )

which is identical to (6.44) and is optimal within the class of linear estimating
functions, under correct specification of the first two moments.

If we now assume uncorrelated errors with var(e; | p;) = o?u?(3), then the
method of generalized least squares estimates B by temporarily forgetting that
the variance depends on 3. This is entirely analogous to the motivation for quasi-
likelihood; see the discussion centered around (2.28) in Sect.2.5.1. We therefore
minimize

n

2 % =Y —u(B)'VB) Y - pu@),

where V is the n x n diagonal matrix with diagonal elements u! (3),i=1,...,n.
The estimating function is

which is identical to that under quasi-likelihood (6.10). Inference may be based on
the asymptotic result

(D'V7'D/o*) (B, — B) =4 Ni11(0,Tp11). (6.47)

If the normal model is true, then the GLS estimator is not as efficient as that
obtained from a likelihood approach but is more reliable under model misspecifica-
tion. Therefore, the approach that is followed should depend on how much faith we
have in the assumed model.
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In Sect. 9.10, we will discuss further the trade-offs encountered when one wishes
to exploit the additional information concerning 3 contained within the variance
function.

6.14 Sandwich Estimation for Nonlinear Models

The sandwich estimator of the variance is again available and takes exactly the same
form as with the GLM. In particular, consider the estimating function

G(B) =DV Y ),
with D an n x (k+ 1) matrix with elements 0p;/08;,i = 1,...,m,j =0,..., k+
1 and V the diagonal matrix with elements V;; = p;(8)" with » > 0 known.

This estimating equation arises from likelihood considerations if » = 0 or, more
generally, from GLS. With this form for G(-), (6.30), (6.31), and (6.32) all hold.

Example: Pharmacokinetics of Theophylline

We now let y; be the concentration and consider the model with first two moments

Dk,
ElY; | B,0% = u:(8) = Vb ) lexp(—kex) — exp(—kqx)],
var(Y; | B,0%) = o*i(B)?,
for ¢ = 1,...,n. One possibility for fitting is generalized least squares. As an
alternative, we may assume Y; | 3,02 ~ina N[ui(8),02m:(8)%,i = 1,...,n

and proceed with maximum likelihood estimation. Table 6.3 gives estimates of the
above model under GLS and MLE, along with likelihood estimation for the model,

log Yi | /Ba 72 ~ind N {1Og[:ul(/6)]a 72} .

There are some differences in the table, but overall the estimates and standard errors
are in reasonable agreement. Table 6.2 gives confidence intervals for x /25 Tmax
and ;1(Zmax ) based on sandwich estimation. As with the GLM analysis, the interval
estimates are a little shorter.
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Table 6.3 Point estimates and asymptotic standard errors for the theophylline
data, under various models and estimation techniques. In all cases the coefficient
of variation is approximately constant

Model log V' log ka log ke

MLE log scale —0.78 (0.035) 0.79 (0.089) —2.39 (0.037)
GLS original scale —0.77 (0.030) 0.81 (0.055) —2.39 (0.032)
MLE original scale —0.74 (0.025) 0.85 (0.069) —2.45 (0.044)

6.15 The Geometry of Least Squares

In this section we briefly discuss the geometry of least squares to gain insight into
the fundamental differences between linear and nonlinear fitting.
We consider minimization of

(y—n)'(y—n) (6.48)

where y and p are n x 1 vectors. We first examine the linear model, o = 3, where
zisnx (k+1)and Bis (k+1) x 1. For fixed @, the so-called solution locus maps
out the fitted values :vﬁ for all values of ﬁ and is a (k + 1)-dimensional hyperplane
of infinite extent. Differentiation of (6.48) gives

iy~ af) = 2'e =0

where ﬁ = (z'xz) 'x'y and e is the n x 1 vector of residuals. So the sum of
squares is minimized when the vector (y — x/3) is orthogonal to the hyperplane that
constitutes the solution locus. The fitted values are

=B =z(c'z) 'a'y = hy,

and are the orthogonal projection of y onto the plane spanned by the columns of x,
with h the matrix that represents this projection.

For a nonlinear model, the solution locus is a curved (k+ 1)-dimensional surface,
possibly with finite extent. In contrast to the linear model, equally spaced points on
lines in the parameter space do not map to equally spaced points on the solution
locus but rather to unequally spaced points on curves.

These observations have several implications. In terms of inference, recall from
Sect.5.6.1, in particular equation (5.27) with ¢ = —1, that for a linear model, a
100(1 — «)% confidence interval for 3 is the ellipsoid

(B—B)a'a(B—B) < (k+1)s*Firin-r-1(1 — ).

Geometrically, the region has this form because the solution locus is a plane and the
residual vector is orthogonal to the plane so that values of 3 map onto a disk. For
nonlinear models, asymptotic inference for 3 results from
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(B=B)V B~ B) < (k+1)s*Firrn-t-1(1 — a),

where @(,@) = 52V, with 2 = s%. The approximation occurs because the
solution locus is curved, and equi-spaced points in the parameter space map to
unequally spaced points on curved lines on the solution locus. Intuitively, inference
will be more accurate if the relevant part of the solution locus is flat and if parallel
equi-spaced lines in the parameter space map to parallel equi-spaced lines on the
solution locus. The curvature and lack of equally spaced points manifest itself
in contours of equal likelihood being banana-shaped and perhaps “open” (so that
they do not join). The right column of Fig.6.10 gives examples of this behavior.
Another important aspect is that reparameterization of the model can alter the
behavior of points mapped onto the solution locus, but cannot affect the curvature
of the locus. Hence, the curvature of the solution locus has been referred to as
the intrinsic curvature (Beale 1960; Bates and Watts 1980), while the aspect that
is parameterization dependent is the parameter-effects curvature (Bates and Watts
1980). We note that the solution locus does not depend on the observed data but
only on the model and design. As n — oo, the surface becomes increasingly locally
linear and inference correspondingly more accurate.

We illustrate with a simple fictitious example with n = 2, = [1,2], and y =
[0.2,0.7]. We compare two models, each with a single parameter, the linear zero
intercept model

H = Iﬂ ) —o0 < ﬂ < 0,
and the (simplified) nonlinear Michaelis—Menten model

uw=uz/(x+0), 6> 0.

Figure 6.11(a) plots the data versus the two fitted curves (obtained via least squares),
while panel (b) plots the solution locus for the linear model, which in this case is a
line (since k£ = 0). The point [xlﬂ, To ﬁ] with least squares estimate

2 2
= leyz/fo =0.32,
i=1 i=1

is the fitted point and is indicated as a solid circle. The dashed line is the vector
joining [y1, y2] to the fitted point and is perpendicular to the curved solution locus.
The circles indicated on the solution locus correspond to changes in 3 of 0.1 and
are equi-spaced on the locus. The final aspect to note is that the locus is of infinite
extent.

Panel (c) of Fig. 6.11 plots the solution locus for the Michaelis-Menten model,
for which § = 1.70. The vector joining [y1, y2] to the fitted values [z /(z1 +8), 22/
(2 + 9)] is perpendicular to the curved solution locus, but we see that points on the
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Fig. 6.11 (a) Fictitious data with @ = [1, 2] and y = [0.2,0.7], and fitted lines (b) solution locus
for the zero intercept linear model with the observed data indicated as a cross and the fitted value as
a filled circle, (c) solution locus for the Michaelis—Menten model with the observed data indicated
as a cross and the fitted value as a filled circle, and (d) solution locus for the Michaelis—Menten
model under a second parametrization with the observed data indicated as a cross and the fitted
value as a filled circle

latter are not equally spaced. Also, the solution locus is of finite extent moving from
the point [0, 0] for # = oo to the point (1,1) for § = 0 (these are the asymptotes
of the model). Finally, panel (d) reproduces panel (c) with the Michaelis—Menten

~ ~

model reparameterized as [3:1/[:1:1 + exp(d)], x2/[x2 + exp((b)]} , with ¢ = log 6.
The spacing of points on the solution locus is quite different under the new
parameterization. The points are more equally spaced close to the fitted value,
indicating that asymptotic standard errors are more likely to be accurate under this
parametrization.
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6.16 Bayesian Inference for Nonlinear Models

Bayesian inference for nonlinear models is based on the posterior distribution

p(B,0% | y) < U(B)m(B,07).

We discuss in turn prior specification, computation, and hypothesis testing.

6.16.1 Prior Specification

We begin by assuming independent priors on 3 and o2:
n(B,0%) = m(B)r(a?).

The prior on ¢ is a less critical choice, and 0 =2 ~ Ga(a, b) is an obvious candidate.
The choice a = b = 0, which gives the improper prior 7(02) oc 1/02, will often
be a reasonable option. If the variance model is of the form var(Y;) = o2u;(3)",
then clearly substantive prior beliefs will depend on 7 so that we must specify the
conditional form 7(c2 | r), since the scale of o2 depends on the choice for 7.

So far as a prior for 3 is concerned, great care must be taken to ensure that the
resultant posterior is proper; Sect. 3.4 provided an example of the problems that can
arise with a nonlinear model. In general, models must be considered on a case-by-
case basis. However, a parameter, 6 (say), corresponding to an asymptote (so that
1 — a as 8 — o0), will generally require proper priors because the likelihood tends
to the constant

n

(yi — 0)2]

1
exXp —m

as 6 — oo and not zero as is necessary to ensure propriety.

i=1

6.16.2 Computation

Unfortunately, closed-form posterior distributions do not exist with a nonlinear
mean function, but sampling-based methods are again relatively straightforward
to implement. A pure Gibbs sampling strategy (Sect.3.8.4) is not so appealing
since the conditional distribution, 3 | y, o, will not have a familiar form. How-
ever, Metropolis—Hastings algorithms (Sect. 3.8.2) will be easy to construct. If an
informative prior is present, direct sampling via a rejection algorithm, with the prior
as a proposal, may present a viable option.
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6.16.3 Hypothesis Testing

As with GLMs (Sect. 6.8.3), posterior tail areas and Bayes factors are available to
test hypotheses/compare models.

Example: Pharmacokinetics of Theophylline

We report a Bayesian analysis of the theophylline data and specify lognormal priors
for a1 /2> Tmax and p(zmax ) using the same specification as with the GLM analysis.
Samples from the posterior for [V k,, k] are obtained from the rejection algorithm.
Specifically, we sample from the prior on the parameters of interest and then back-
solve for the parameters that describe the likelihood. For the compartmental model,
we transform back to the original parameters via

ke = (log 2)/171/2

kq
0 = Zmax(ka — ke) — log (k—) (6.49)
D e, \ Fa/ (ka—ke)
:u’(xmax) ke

so that k, is not directly available but must be obtained as the root of (6.49).

Table 6.2 summarizes inference for the parameters of interest with the interval
estimates and medians being obtained as the sample quantiles. Figure 6.12 shows
the posteriors for functions of interest under the nonlinear model. The posteriors are
skewed for all functions of interest. These figures and Table 6.2 show that Bayesian
inference for the GLM and nonlinear model are very similar. Frequentist and
Bayesian methods are also in close agreement for these data, which is reassuring.

Recall that the parameter sets [V, k4, k] and [V'k./kq, ke, kq| produce identical
curves for the compartmental model (6.1). One solution to this identifiability
problem is to enforce k, > k. > 0, for example, by parameterizing in terms of
log ke and log(k, — k.). Pragmatically, not resorting to this parameterization is
reasonable, so long as k, and k. are not close. Figure 6.13 shows the bivariate
posterior distribution p(k,, ke | y), and we see that k, > k. for these data, and so
there is no need to address the identifiability issue.

Another benefit of specifying the prior in terms of model-free parameters is that
models may be compared using Bayes factors on an “even playing field,” in the sense
that the prior input for each model is identical. For more discussion of this issue,
see Pérez and Berger (2002). To illustrate, we compare the GLM and nonlinear
compartmental models. The normalizing constants for these models are 0.00077
and 0.00032, respectively, as estimated via importance sampling with the prior as
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Fig. 6.12 Histogram representations of posterior distributions from the nonlinear compartmental
model for the theophylline data for the (a) half-life, (b) time to maximum, (¢) maximum
concentration, and (d) coefficient of variation, with priors superimposed as solid lines

Fig. 6.13 Image plot of
samples from the joint
posterior distribution of the
absorption and elimination
rate constants, ko and ke, for
the theophylline data

proposal and using (3.28). Consequently, the Bayes factor comparing the GLM to
the nonlinear model is 2.4 so that the data are just over twice as likely under the
GLM, but this is not strong evidence. For these data, based on the above analyses, we
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Fig. 6.14 Histogram representations of posterior distributions from the nonlinear compartmental
models for the reduced theophylline dataset of n = 3 points for the (a) half-life, (b) time to
maximum, (¢) maximum concentration, and (d) coefficient of variation, with priors superimposed

as solid lines

conclude that both the GLM and the nonlinear models provide adequate fits to the
data, and there is little difference between the frequentist and Bayesian approaches
to inference.

We now demonstrate the benefits of a Bayesian approach with substantive prior
information, when the data are sparse. To this end, we consider a reduced dataset
consisting of the first n = 3 concentrations only. Clearly, a likelihood or least
squares approach is not possible in this case, since the number of parameters
(three regression parameters plus a variance) is greater than the number of data
points. We fit the nonlinear model with the same priors as used previously and
with computation carried out with the rejection algorithm. Figure 6.14 shows the
posterior distributions, with the priors also indicated. As we might expect, there is
no/little information in the data concerning the terminal half-life log k. /2 or the
standard deviation o. In contrast, the data are somewhat informative with respect to
the time to maximum concentration, and the maximum concentration.
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6.17 Assessment of Assumptions for Nonlinear Models

In contrast to GLMs, residuals are unambiguously defined for nonlinear models as

Rl (6.50)
var(Y;)

which we refer to as Pearson residuals. These residuals may be used in the usual
ways; see Sects.5.11.3 and 6.9. In particular, the residuals may be plotted versus
covariates to assess the mean model, and the absolute values of the residuals may
be plotted versus the fitted values fi; to assess the appropriateness of the mean—
variance model. For a small sample size, normality of the errors will aid in accurate
asymptotic inference and may be assessed via a normal QQ plot, as described in
Sect.5.11.3.

Example: Pharmacokinetics of Theophylline

Letting y; represent the log concentration at time z;, we examine the Pearson
residuals, as given by (6.50), obtained following likelihood estimation with the
model y; | B,0% ~ina N(ui, 0?), with p; given by (6.46), fori = 1,...,n.
Figure 6.6(c) plots e versus x; and shows no gross inadequacy of the mean model.
Panel (d), which plots |e}| versus z;, similarly shows no great problem with the
mean-—variance relationship. Figure 6.15 gives a normal QQ plot of the residuals and
indicates no strong violation of normality. In all cases, interpretation is hampered by
the small sample size.
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6.18 Concluding Remarks

Within the broad class of general regression models, the use of GLMs offers certain
advantages in terms of computation and interpretation, though one should not
restrict attention to this class. Many results and approaches used for linear models
hold approximately for GLMs. For example, the influence of points was defined
through the weight matrix used in the “working response” approach implicit in the
IRLS algorithm (Sect. 6.5.2). The form of GLMs, in particular the linearity of the
score with respect to the responses, is such that asymptotic inference is accurate for
relatively small n.

Care is required in the fitting of, and inference for, nonlinear models. For
example, models must be examined to see if the parameters are uniquely identified.
For both GLMs and nonlinear models, the examination of residual plots is essential
to determine whether the assumed model is appropriate, but such plots are difficult
to interpret because the behavior of residuals is not always obvious, even if the
fitted model is correct. The use of a distribution from the exponential family is
advantageous in that results on consistency of estimators follow easily, as discussed
in Sect. 6.5.1. The identifiability of nonlinear models should always be examined,
and one should be wary of the accuracy of asymptotic inference for small sample
sizes. The parameterization adopted is also important, as discussed in Sect. 6.15.

6.19 Bibliographic Notes

The most comprehensive and interesting description of GLMs remains McCullagh
and Nelder (1989). An excellent review is also given by Firth (1993). Sandwich
estimation for GLMs is discussed by Kauermann and Carroll (2001).

Nonlinear models are discussed by Bates and Watts (1988) and Chap.2 of
Davidian and Giltinan (1995), with an emphasis on generalized least squares. Book-
length treatments on nonlinear models are provided by Gallant (1987); Seber and
Wild (1989); see also Carroll and Ruppert (1988).

Gibaldi and Perrier (1982) provide a comprehensive account of pharmacokinetic
models and principles and Godfrey (1983) an account of compartmental modeling
in general. Wakefield et al. (1999) provide a review of pharmacokinetic and
pharmacodynamic modeling including details on both the biological and statistical
aspects of such modeling. The model given by (6.7) and (6.8) was suggested by
Wakefield (2004) and was developed more extensively in Salway and Wakefield
(2008).
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6.20 Exercises

6.1

6.2

6.3

A random variable Y is inverse Gaussian if its density is of the form
5§\ [y —N?
)\ 6 = _—
ply|29) (27@3) P [ 2)%y } ’

(a) Show that the inverse Gaussian distribution is a member of the exponential
family and identify 6, «, b(6), a(a), and ¢(y, a).

(b) Give forms for E[Y" | 6,a] and var(Y | 6, ) and determine the canonical
link function.

fory > 0.

Table 6.4 reproduces data, from Altham (1991), of counts of T} cells/mm? in
blood samples from 20 patients in remission from Hodgkin’s disease and from
20 additional patients in remission from disseminated malignancies. A question
of interest here is whether there is a difference in the distribution of cell counts
between the two diseases. A quantitative assessment of any difference is also
desirable.

(a) Carry out an exploratory examination of these data and provide an informa-
tive graphical summary of the two distributions of responses.

(b) These data may be examined: (1) on their original scale, (2) log. trans-
formed, and (3) square root transformed. Carefully define a difference
in location parameter in each of the designated scales. What are the
considerations when choosing a scale? Obtain 90% confidence interval for
each of the difference parameters.

(c) Fit Poisson, gamma, and inverse Gaussian models to the cell count data,
assuming canonical links in each case.

(d) Using the asymptotic distribution of the MLE, give 90% confidence
intervals for the difference parameters in each of the three models. Under
each of the models, would you conclude that the means of the two groups
are equal?

The data in Table 6.5, taken from Wakefield et al. (1994), were collected
following the administration of a single 30 mg dose of the drug cadralazine

Table 6.4 Counts of T4 cellsymm3 in blood samples from 20 patients in remission from Hodgkin’s
disease and 20 other patients in remission from disseminated malignancies

Hodgkin’s disease 396 568 1,212 171 554 1,104 257 435 295 397
Non-Hodgkin’s disease 375 375 752 208 151 116 736 192 315 1,252
Hodgkin’s disease 288 1,004 431 795 1,621 1,378 902 958 1,283 2415

Non-Hodgkin’s disease 675 700 440 771 688 426 410 979 377 503
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Table 6.5 Concentrations y; Observation Time Concentration
of the. drug c.adralazinc asa number (hours) (mg/liter)
function of time x;, obtained i ; v
from a subject who was
administered a dose of 30 mg. 1 2 1.63
These data are from 2 4 1.01
Wakefield et al. (1994) 3 6 0.73

4 0.55

5 10 0.41

6 24 0.01

7 28 0.06

8 32 0.02

to a cardiac failure patient. The response y; represents the drug concentration
at time x;, ¢ = 1,...,8. The most straightforward model for these data is to
assume

D
logy; = u(B) + € = log [V eXP(—keCCi)} + €,

where ¢; | 0% ~q N(0,0%), B = [V,k.] and the dose is D = 30. The
parameters are the volume of distribution V' > 0 and the elimination rate k..

(a) For this model, obtain expressions for:

(i) The log-likelihood function L(3, o%)
(ii) The score function S(3, 02)
(iii) The expected information matrix I(3, o?)

(b) Obtain the MLE and provide an asymptotic 95% confidence interval for
each element of 3.

(c) Plot the data, along with the fitted curve.

(d) Using residuals, examine the appropriateness of the assumptions of the
above model. Does the model seem reasonable for these data?

(e) The clearance Cl = V x k. and elimination half-life z,,, = log2/k.
are parameters of interest in this experiment. Find the MLEs of these
parameters along with asymptotic 95% confidence intervals.

A Bayesian analysis will now be carried out, assuming independent
lognormal priors for V, k. and an independent inverse gamma prior for
2. For the latter, assume the improper prior 7(0?) o o2,

(f) Assume that the 50% and 90% points for V" are 20 and 40 and that for k.,
these points are 0.12 and 0.25. Solve for the lognormal parameters using
the method of moments equations (6.36).

(g) Implement an MCMC Metropolis—Hastings algorithm (Sect. 3.8.2). Report
the median and 90% interval estimates for each of V, k., Cl, and 1 /5. Pro-
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vide graphical summaries of each of the univariate and bivariate posterior
distributions.

Let Y; represent a count and ®; = [z;,...,%;] a covariate vector for
individual ¢, i = 1,...,n. Assume that Y; | p; ~;;q Poisson(u; ), with

wi = E[Y: [ v0i, 715 - -5 k] = exp(Y0i + y1%i1 + oo+ Tik),  (6.51)
where the intercept is a random effect (see Chap. 9) that varies according to

Yoi | 70, 72 ~iia N(70,7%).

(a) Give an interpretation of each of the parameters v and ;.
(b) Suppose we fit an alternative Poisson model with mean

w; =EYi | Bo, b1, -, Bk] = exp(Bo + Brxit + ... + Brwir).  (6.52)
Evaluate
E[}/’L | 723707'717 v a’yk]v

and hence, by comparison with E[Y; | Bo, 1, ..., Bk], equate v; to §;,
j=0,1,... k.

(c) Evaluate var(Y; | 72,790,71,-..,7) and compare this expression with
Var(}/l | BO) ﬂlv v 7ﬂk>
(d) Suppose one is interested in the parameters 71, ..., y;. Use your answers

to the previous two parts to discuss the implications of fitting model (6.52)
when the true model is (6.51).
(e) Now consider an alternative random effects structure in which

51’ | a, b ~iid Ga(a, b),

where 6; = exp(yo;). Evaluate the marginal mean E[Y; | a,b,v1, ..., V]
and marginal variance var(Y; | a,b,y1, ..., Vk)-

(f) Compare the expressions for the mean and variance under the normal and
gamma formulations.

(g) For the Poisson-Gamma model, calculate the form of the likelihood

L, -, a,b) = H/Pr(yz' [ Y085 715 - - -5 ¥0)T(Y0i | @, ) dryos-
=1

Derive expressions for the score and information matrix and hence describe
how inference may be performed from a likelihood standpoint.
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Table 6.6 Concentrations y; Observation Time Concentration
of th? drug theophylline.as a number (hours) (mg/liter)
function of time x; obtained i z; vi
from a subject who was
administered an oral dose of 1 0.27 1.72
size 4.40 mg/kg 2 0.52 791

3 1.00 8.31

4 1.92 8.33

5 3.50 6.85

6 5.02 6.08

7 7.03 5.40

8 9.00 4.55

9 12.00 3.01

10 24.30 0.90

6.5 Table 6.6 gives concentration—time data for an individual who was given a dose
of 4.40mg/kg of the drug theophylline. In this chapter we have analyzed the
data from another of the individuals in the same trial.

(a) For the data in Table 6.6,' fit the gamma GLM given by (6.7) and (6.8)
using maximum likelihood and report the MLEs and standard errors.

(b) Obtain MLEs and standard errors for the parameters of interest z /2> Tmaxs
1(Zmax ), and CI.

(c) Let z; represent the log concentration and consider the model z; | 3, 02 ~ind
N(pi(8),0%,i = 1,...,n, where p;(3) is given by the compartmental
model (6.46). Fit this model using maximum likelihood and report the
MLEs and standard errors.

(d) Obtain the MLEs and standard errors for the parameters of interest x4/,
Tmaxs> H{(Tmax), and C.

(e) Compare these summaries with those obtained under the GLM.

(f) Examine the fit of the two models and discuss which provides the better fit.

These data correspond to individual 2 in the Theoph data, which are available in R.



Chapter 7
Binary Data Models

7.1 Introduction

In this chapter we consider the modeling of binary data. Such data are ubiquitous
in many fields. Binary data present a number of distinct challenges, and so we
devote a separate chapter to their modeling, though we lean heavily on the methods
introduced in Chap. 6 on general regression modeling. It is perhaps surprising that
the simplest form of outcome can pose difficulties in analysis, but a major problem
is the lack of information contained within a variable that can take one of only
two values. This can lead to a number of problems, for example, in assessing
model fit. Another major complication arises because models for probabilities are
generally nonlinear, which can lead to curious behavior of estimators in the presence
of confounders. Difficulties in interpretation also arise, even when independent
regressors are added to the model.

The outline of this chapter is as follows. We give some motivating examples
in Sect.7.2, and in Sect. 7.3, describe the genesis of the binomial model, which
is a natural candidate for the analysis of binary data. Generalized linear models for
binary data are examined in Sect. 7.4. The binomial model has a variance determined
by the mean, with no additional parameter to accommodate excess-binomial
variation, and so Sect. 7.5 describes methods for dealing with such variation. For
reasons that will become apparent, we will focus on logistic regression models,
beginning with a detailed description in Sect. 7.6. This section includes discussions
of estimation from likelihood, quasi-likelihood, and Bayesian perspectives. Condi-
tional likelihood and “exact” inference are the subject of Sect.7.7. Assessing the
adequacy of binary models is discussed in Sect. 7.8. Summary measures that exhibit
nonobvious behavior are the subject of Sect. 7.9. Case-control studies are a common
design, which offer interesting inferential challenges with respect to inference, and
are described in Sect. 7.10. Concluding comments appear in Sect. 7.11. Section 7.12
gives references to more in-depth treatments of binary modeling and to source
materials.

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series 305
in Statistics, DOI 10.1007/978-1-4419-0925-1_7,
© Springer Science+Business Media New York 2013
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7.2 Motivating Examples

7.2.1 Outcome After Head Injury

We will illustrate methods for binary data using the data first encountered in
Sect. 1.3.2. The binary response is outcome after head injury (dead/alive), with
four discrete covariates: pupils (good/poor), coma score (depth of coma, low/high),
hematoma present (no/yes), and age (categorized as 1-25, 26-54, >55). These data
were presented in Table 1.1, but it is difficult to discern patterns from this table. In
general, cross-classified data such as these may be explored by looking at marginal
and conditional tables of counts or frequencies. Figure 7.1 displays conditional
frequencies, with panel (a) corresponding to low coma score and panel (b) to high
coma score. These plots suggest that the probability of death increases with age,
that a low coma score is preferable to a high coma score, and that good pupils are
beneficial. The association with the hematoma variable is less clear. The sample
sizes are lost in these plots, which makes interpretation more difficult.

7.2.2 Aircraft Fasteners

Montgomery and Peck (1982) describe a study in which the compressive strength
of fasteners used in the construction of aircraft was examined. Table 7.1 gives the
total number of fasteners tested and the number of failures at a range of pressure
loads. We see that the proportion failing increases with load. For these data we will
aim to find a curve to adequately model the relationship between the probability of
fastener failure and load pressure.
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Fig. 7.1 Probability of death after head injury as a function of age, hematoma score, and pupils:
Panels (a) and (b) are for low and high coma scores, respectively
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Table 7.1 Numbe;r of Load (psi) Failures Sample size Proportion failing

Specificd presoue louds 2500 10 50 020
2,700 17 70 0.24
2,900 30 100 0.30
3,100 21 60 0.35
3,300 18 40 0.45
3,500 43 85 0.51
3,700 54 90 0.60
3,900 33 50 0.66
4,100 60 80 0.75
4,300 51 65 0.78

7.2.3 Bronchopulmonary Dysplasia

We describe data from van Marter et al. (1990) and subsequently analyzed by
Pagano and Gauvreau (1993) on the absence/presence of bronchopulmonary dys-
plasia (BPD) as a function of birth weight (in grams) for n = 223 babies. BPD
is a chronic lung disease that affects premature babies. In this study, BPD was
defined as a function of both oxygen requirement and compatible chest radiograph,
with 147 of the babies having neither characteristic by day 28 of life. We take as
illustrative aim the prediction of BDP using birth weight, the rationale being that if
a good predictive model can be found, then measures could be taken to decrease the
probability of BPD. There are a number of caveats that should be attached to this
analysis. First, these data are far from a random sample of births, as they are sampled
from intubated infants with weights less than 1,751 g (so that all of the babies are
of low birth weight). In general, an estimate of the incidence of BPD is difficult to
tie down, in part, because of changes in the definition of the condition. Allen et al.
(2003) provide a discussion of this issue and report that, of preterm infants with
birth weights less than 1,000 g, 30% develop BPD. Second, a number of additional
covariates would be available in a serious attempt at prediction, including gender
and the medication used by the mothers.

Figure 7.2 displays the BPD indicator, plotted as short vertical lines at 0 and 1, as
a function of birth weight. Visual assessment suggests that children with lower birth
weight tend to have an increased chance of BPD. It is hard to discern the shape of the
association from the raw binary data alone, however, since one is trying to compare
the distributions of zeros and ones, which is difficult. This example is distinct from
the aircraft fasteners because the latter contained multiple responses at each x value.
Binning on the basis of birthweight and plotting the proportions with BPD in each
bin would provide a more informative plot.
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7.3 The Binomial Distribution

7.3.1 Genesis

In the following we will refer to the basic sampling unit as an individual. Let Z
denote the Bernoulli random variable with

Pr(Z=z|p) =p°(1-p)' 7,

z=20,1,and
p=Pr(Z=1]p),

for 0 < p < 1. For concreteness, we will call the Z = 1 outcome a positive
response. A random variable taking two values must have a Bernoulli distribution,
and all moments are determined as functions of p. In particular, var(Z | p) =
p(1—p) so that there is no concept of underdispersion or overdispersion for a
Bernoulli random variable.

Suppose there are /N individuals, and let Z; denote the outcome for the jth
individual, j = 1,...,N. AlsoletY = Zjvzl Z; be the total number of individuals
with a positive outcome, and suppose that each has equal probabilities, that is, p =
p1 = ... = pn. Under the assumption that the Bernoulli random variables are
independent,

Y | p ~ Binomial(N, p)

so that
Pr(Y =y | p) = (]yv >py<1 o, 1)

fory=20,1,..., N.
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Constantp = p;, j = 1,..., N, over the N individuals is not necessary for Y to
follow a binomial distribution. Suppose that individual j has probability p; drawn
at random from a distribution with mean p. In this case,

E[Z;] =E[E(Z; | pj)] =D

and
Y | D ~ Binomial(N, p). (7.2)

Crucial to this derivation is the assumption that p; are independent draws from
the distribution with mean p, which means that the Z; are also independent for
j =1,..., N. Alternative scenarios are described in the context of overdispersion
in Sect. 7.5.

We give a second derivation of the binomial distribution. Suppose Y; | Aj ~ing
Poisson()\;), j = 1,2 are independent Poisson random variables with rates \;.
Then,

Y7 | Y1 + Yo, p ~ Binomial(Y; + Y3, p),

with p = A1 /(A1 + A2) (Exercise 7.3).

7.3.2 Rare Events

Suppose that Y | p ~ Binomial(NN, p) and that p — 0 and N — oo, with A =
Np fixed (or tending to a constant). Then Exercise 7.1 shows that, in the limit,
Y | A ~ Poisson(\). Approximating the binomial distribution with a Poisson has
a number of advantages. Computationally, the Poisson model can be more stable
than the binomial model. Also, A > 0 can be modeled via a loglinear form which
provides a more straightforward interpretation than the logistic form, log[p/(1—p)].
The following example illustrates one use of this result for obtaining a closed-form
distribution when counts are summed.

Example: Lung Cancer and Radon

In Sect. 1.3.3 we introduced the lung cancer dataset, with Y; being the number of
cases in area i. A possible model for these data is

Y; | 6; ~ Poisson(FE;0;), (7.3)

where E; is the expected number of cases based on the age and gender breakdown
of area ¢ and 6; is the relative risk associated with the area, fori = 1,...,n.

A formal derivation of this model is as follows (see Sect.6.5 for a related
discussion). Let Y;; be the disease counts in area 7 and age-gender stratum j and



310 7 Binary Data Models

N;; the associated population, s = 1,...,n,j = 1,..., J. In the Minnesota study,
we have J = 36, corresponding to male/female and 18 age bands: 0—4, 5-9,..., 80—
84, 85+. We only have access to the total counts in the area, Y;, and so we require a
model for this sum. One potential model is Y;; | p;; ~ Binomial(N;;, pi;), with p;;
the probability of lung cancer diagnosis in area ¢, stratum j. With binomial Y;;, the
distribution of ¥; = Z}'I:1 Y;; is a convolution, which is unfortunately awkward to
work with. For example, for J = 2,

Pr(y; | pi1, pi2)

i N; N; i s i—Yi s )
= Xy, < y'zl ) (y- —le-l ) P (1 = pa )N v plg TV (1 — pig) Nizwituin
(3 g g

where [; = max(0,y; — N;2),u; = min(N;1,y;), gives the range of admissible
values that y;; can take, given the margins Y;, N; — Y1 — Yio, N;1, N;o. Lung cancer
is statistically rare, and so we can use the Poisson approximation to give Y;; | pi; ~
Poisson(Nl-j pij). The distribution of the sum Y; is then straightforward:

J

Y; | pit,. .., pis ~ Poisson | Y Nijpi; |- (7.4)
j=1

There are insufficient data to estimate the n x J probabilities p;;, and so it is
common to assume p;; = §; X g;, where g; are a set of known reference stratum-
specific rates and 6, is an area-specific term that summarizes the deviation of the
risks in area ¢ from the reference rates. Therefore, this model assumes that the effect
on risk of being in area i is the same across stratum. Usually, the g; are assumed

known. Consequently, (7.4) simplifies to Y; | 6; ~ Poisson (Gi Z}']:1 Nij qj), and
substituting the expected numbers E; = ijl N;jq; produces model (7.3).

7.4 Generalized Linear Models for Binary Data

7.4.1 Formulation

Let Z;; = 0/1 denote the absence/presence of the binary characteristic of interest
in each of the 5 = 1,..., N; trials, with ¢ = 1,...,n different “conditions.” Let
Y, = Zjv;l Z;; denote the number of positive responses and N = """ | N; the
total number of trials. Further, suppose there are k explanatory variables recorded
for each condition, and let &; = [1, 21, . . ., ;] denote the row vector of dimension
1x (k+1)fori=1,...,n. We now wish to model the probability of a positive
response p(x; ), as a function of x;, in order to identify structure within the data.
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We might naively model the observed proportion via the linear model

Yi
Ni =z,8 + €,
fori = 1,...,n. There are a number of difficulties with such an approach. First,

the observed proportions must lie in the range [0, 1], while the modeled probability
x;(3 is unrestricted. We could attempt to put constraints on the parameters in order
to alleviate this drawback, but this is inelegant and soon becomes cumbersome with
multiple explanatory variables. The resultant inference is also difficult due to the
restricted ranges. The second difficulty is that we saw in Sect. 5.6.4 that in the usual
linear model framework, an appropriate mean—variance model is crucial for well-
calibrated inference (unless sandwich estimation is turned to). A linear model is
usually associated with error terms with constant variance, but this is not appropriate

here since
Vi) _ p(@i)[l —p(=:)]
var (5 ) = 22

so that the variance changes with the mean. The generalized linear model, intro-
duced and discussed in Sect. 6.3, can rectify these deficiencies. For sums of binary
variables, the binomial model is a good starting point.

The binomial model is a member of the exponential family, specifically Y | p ~
Binomial(N, p), that is, (7.1), translates to

p(y | p) = exp [y log (%) + Nlog(1 —p)} , (7.5)

which provides the stochastic element of the model. For the deterministic part, we
specify a monotonic, differentiable link function:

glp(x)] = zp. (7.6)

The exponential family is appealing from a statistical standpoint since correct
specification of the mean function leads to consistent inference, since the score
function is linear in the data (this function is given for the logistic model in (7.12)).
With a GLM, the computation is also usually straightforward (Sect.6.5.2). Non-
linear models can also be considered, however, if warranted by the application.
For example, Diggle and Rowlingson (1994) considered modeling disease risk as
a function of distance x from a point source of pollution. These authors desired a
model for which disease risk returned to baseline as z — oo and suggested a model
for the odds of the form
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Pr(Z=1|x)

Prz=0]x) 0l Aee)

with By corresponding to baseline odds, /31 corresponding to the excess odds at
x = 0 (i.e., at the point source), and [ determining the speed at which the odds
decline to baseline. Such nonlinear models are computationally more difficult to fit
but produce consistent parameter estimates, if combined with an exponential family.

7.4.2 Link Functions

From (7.5) we see that the so-called canonical link is the logit 8 = log [p/(1 — p)].
We will see that logistic regression models of the form

p(x)

o L_—p@)

} =z (7.7)

offer a number of advantages in terms of computation and inference. This link
function is by far the most popular in practice, and so Sect.7.6 is dedicated to
logistic regression modeling.

Other link functions that may be used for binomial data include the probit,
complimentary log—log, and log—log links. The probit link is

o7 [p(x)] =z,

where @[] is the distribution function of a standard normal random variable. This

link function generally produces similar inference to the logistic link function. The

logistic and probit link functions are symmetric in the sense that g(p) = —g(1 — p).
The complementary log—log link function is

log {—log [l — p(x)]} = =B, (7.8)
to give
p(x) =1 — exp[—exp(zB)],
which is not symmetric. Hence, the log—log link model
—log{—log[p(z)]} = =B
with

p(x) = exp[— exp(—z3)]
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may also be used and will not produce the same inference as (7.8). If gq.(-) and
91.(+) represent the complementary log—log and log—log links, respectively, then the
two are related via e (p) = —gu (1 — p).

7.5 Overdispersion

Overdispersion is a phenomena that occurs frequently in applications and, in the
binomial data context, describes a situation in which the variance var(Y; | p;)
exceeds the binomial variance N;p;(1 — p;).

Often overdispersion occurs due to clustering in the population from which the
individuals were drawn. To motivate a variance model, suppose for simplicity that
the NV; individuals for whom we measure outcomes in trial ¢ are actually broken
into C; clusters of size k; so that N; = C; x k;. These clusters may correspond
to families, geographical areas, genetic subgroups, etc. Within the cth cluster, the
number of positive responders Y;. has distribution Y. | pic ~inq binomial(k;, p;.),
where each p;. is drawn independently from some distribution, for ¢ = 1,...,C;.
Let P;. represent a random variable with

2
var(Pie) = 77 pi(1 — pi),
where the variance is written in this form for convenience (as we see shortly). In the

following we will use expressions for iterated expectation, variance, and covariance,
as described in Appendix B. Then, letting Y; = Zf;l Yic,

C;
E Yie
c=1
Turning to the variance,

Ci Ci
var(Y;) = var (Z Yic> = Z var(Y;.),
c=1 c=1

since the counts are independent, as each p,. is drawn independently. Continuing
with this calculation and exploiting the iterated variance formula,

E[Y,] =E

C; C;
= ZEP'LC [E(Y;c | Pw)] = ZEPic [lec] = N;p;.
c=1 c=1
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C;
var(V;) = Y {E [var(Yic | pic)] + var (E[Yic | pic])}

c=1

Q

(]

{EPic [kzpw(l - P’LC)] + VarPiC (kzpw)}
1

Q
Il

Q

(]

{kipi — ki [var(Pic) + E[Pi]?] + ki 77 pi(1 —pi)}
1

Q
Il

'§

(1= pi) x [L+ (ki — 1)77]
= Nipi(1 —pi)Uf-

Hence, the within-trial clustering has induced excess-binomial variation. Suppose
each cluster is of size k; = 1 (i.e., C; = N;); then we recover the binomial
case (7.2). The above derivation requires 1 < o7 < k; < Ny, since 0 < 07 < 1
(McCullagh and Nelder 1989, Sect.4.5.1). If we were to assume a second moment
model with a common 02 = o2 to give

var(Y;) = Nipi(1 — p;)o? (7.9)
then the constraint becomes o2 < N;, which is unfavorable, but will rarely be a

problem in practice.
If we have a single cluster, that is, C; = 1, then k; = N; and

var(Y;) = Nipi(1 — p;) x [1+ (N; — 1)77]. (7.10)

Suppose Z;;, j = 1,..., N; are the binary outcomes within-trial % so that ¥; =
Zjvzl Z;j. Then, for the case of a single cluster (C; = 1),
cov(Zij, Zix) = Elcov(Zij, Zik | pir)] + cov(E[Zi; | pijl, E[Zix | pir])
= covp, (P, Pi1)
= var(Pa) = 77pi(1 = ps),
so that 77 is the correlation between any two outcomes in trial i.

We now discuss a closely related scenario in which we start by assuming that
outcomes within a trial have correlation Tf. Then (Exercise 7.4),

var(Y;) = Nipi(1 — pi) x [1+ (N; — 1)77] . (7.11)
Notice that, unlike the derivation leading to (7.10), underdispersion can occur

if Tf < 0. The equality of (7.10) and (7.11) shows that the effect of either a
random response probability or positively correlated outcomes within a trial is
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indistinguishable marginally (unless one is willing to make assumptions about the
within-trial distribution, but such assumptions are uncheckable).

Inferentially, two approaches are suggested. We could specify the first two mo-
ments only and use quasi-likelihood. This route is taken in Sect. 7.6.3. Alternatively,
one can assume a specific distributional form and then proceed with parametric
inference, as we now illustrate.

The most straightforward way to model overdispersion parametrically is to
assume the binomial probability arises from a conjugate beta model. This model is

Y: | ¢; ~ Binomial(N;, ¢;)
qi ~ Beta(ai, bz),

where we can parameterize as a; = dp;, b; = d(1 — p;) so that

ai
pi = E

pi(1 —pi)

vared) = =

An obvious choice of mean model is the linear logistic model

- exp(z;3)
~ 14 exp(ziB)

4

Notice that d = 0 corresponds to the binomial model. Integration over the random
effects results in the beta-binomial marginal model:

i\ L(ai +b;) I'(ai +yi)I'(bi + Ni —ys
Pr(Y;:yZ):(N,L> (a+ ) (a +y) ( - y) y':0717"'7Ni-

The marginal moments are

E[Yi] = Nip; = N; ( & )

a; +b;
a; + b+ N;
Y;) = Nipi(L —pi) | ———— | ;
var(¥) = Nipi(1 - ) (SR
confirming that there is no overdispersion when N; = 1. This variance is also

equal to (7.10), with the assumption of constant 77 on recognizing that 72 =
(a;+b;+1)"! = 1/(d+1). Unfortunately, the log-likelihood (3, d) is not easy to
deal with due to the gamma functions. More seriously, the beta-binomial distribution
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is not of exponential family form and does not possess the consistency properties of
distributions within this family.

Liang and McCullagh (1993) discuss the modeling of overdispersed binary data.
In particular, they suggest plotting residuals

_ Y~ Nibi
Nipi(1 —p;)

against [V; in order to see whether there is any association, which may help to choose
between models (7.9) and (7.10).

7.6 Logistic Regression Models

7.6.1 Parameter Interpretation

We write the probability of Y = 1 as p(x) to emphasize the dependence on
covariates . Model (7.7) is equivalent to saying that the odds of a positive outcome
may be modeled in a multiplicative fashion, that is,

k
15(—;)()@») = exp(2B) = exp(Bo) [ ] exp(z;8;).

j=1
Less intuition is evident on the probability scale for which

_exp(zB)
plz) = 1+ exp(zB)

The transformation used here is known as the expit transform (and is the inverse of
the logit transform). The expression for the probability makes it clear that we have
enforced 0 < p(x) < 1.

For clarity, we 