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Preface to First Edition

The importance assigned to accuracy in basic mathematics courses has, initially,

a useful disciplinary purpose but can, unintentionally, hinder progress if it fosters

the belief that exactness is all that makes mathematics what it is. Multivariate

calculus occupies a pivotal position in undergraduate mathematics programmes in

providing students with the opportunity to outgrow this narrow viewpoint and to

develop a flexible, intuitive and independent vision of mathematics. This possi-

bility arises from the extensive nature of the subject.

Multivariate calculus links together in a non-trivial way, perhaps for the first

time in a student’s experience, four important subject areas: analysis, linear

algebra, geometry and differential calculus. Important features of the subject are

reflected in the variety of alternative titles we could have chosen, e.g. ‘‘Advanced

Calculus’’, ‘‘Vector Calculus’’, ‘‘Multivariate Calculus’’, ‘‘Vector Geometry’’,

‘‘Curves and Surfaces’’ and ‘‘Introduction to Differential Geometry’’. Each of

these titles partially reflects our interest but it is more illuminating to say that here

we study differentiable functions, i.e.

functions which enjoy a good local approximation by linear functions.

The main emphasis of our presentation is on understanding the underlying

fundamental principles. These are discussed at length, carefully examined in

simple familiar situations and tested in technically demanding examples. This

leads to a structured and systematic approach of manageable proportions which

gives shape and coherence to the subject and results in a comprehensive and

unified exposition.

We now discuss the four underlying topics and the background we expect—

bearing in mind that the subject can be approached with different levels of

mathematical maturity. Results from analysis are required to justify much of this

book, yet many students have little or no background in analysis when they

approach multivariate calculus. This is not surprising as differential calculus

preceded and indeed motivated the development of analysis. We do not list

analysis as a prerequisite, but hope that our presentation shows its importance and

motivates the reader to study it further.

Since linear approximations appear in the definition of differentiable functions,

it is not surprising that linear algebra plays a part in this book. Several-variable
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calculus and linear algebra developed, to a certain extent, side by side to their

mutual benefit. The primary role of linear algebra, in our study, is to provide a

suitable notation and framework in which we can clearly and compactly introduce

concepts and present and prove results. This is more important than it appears

since to quote T. C. Chaundy, ‘‘notation biases analysis as language biases

thought’’. An elementary knowledge of matrices and determinants is assumed and

particular results from linear algebra are introduced as required.

We discuss the role of geometry in multivariate calculus throughout the text and

confine ourselves here to a brief comment. The natural setting for functions which

enjoy a good local approximation by linear functions are sets which enjoy a good

local approximation to linear spaces. In one and two dimensions this leads to

curves and surfaces, respectively, and in higher dimensions to differentiable

manifolds.

We assume the reader has acquired a reasonable knowledge of one-variable

differential and integral calculus before approaching this book. Although not

assumed, some experience with partial derivatives allows the reader to proceed

rapidly through routine calculations and to concentrate on important concepts.

A reader with no such experience should definitely read Chapter 1 a few times

before proceeding and may even wish to consult the author’s Functions of Two

Variables (Chapman and Hall 1995).

We now turn to the contents of this book. Our general approach is holistic and

we hope that the reader will be equally interested in all parts of this book.

Nevertheless, it is possible to group certain chapters thematically.

Differential Calculus on Open Sets and Surfaces (Chapters 1–4).

We discuss extremal values of real-valued functions on surfaces and open sets.

The important principle here is the Implicit Function Theorem, which links linear

approximations with systems of linear equations and sets up a relationship between

graphs and surfaces.

Integration Theory (Chapters 6, 9, 11–15).

The key concepts are parameterizations (Chapters 5, 10 and 14) and oriented

surfaces (Chapter 12). We build up our understanding and technical skill step by

step, by discussing in turn line integrals (Chapter 6), integration over open subsets

of R2 (Chapter 9), integration over simple surfaces without orientation (Chapter

11), integration over simple oriented surfaces (Chapter 12) and triple integrals over

open subsets of R3(Chapter 14). At appropriate times we discuss generalizations of

the fundamental theorem of calculus, i.e. Green’s Theorem (Chapter 9), Stokes’

Theorem (Chapter 13) and the Divergence Theorem (Chapter 15). Special attention

is given to the parameterization of classical surfaces, the evaluation of surface

integrals using projections, the change of variables formula and to the detailed

examination of involved geometric examples.

viii Preface to First Edition



Geometry of Curves and Surfaces (Chapters 5, 7–8, 10, 16–18).

We discuss signed curvature in R2 and use vector-valued differentiation to

obtain the Frenet–Serret equations for curves in R3. The abstract geometric study

of surfaces using Gaussian curvature is, regrettably, usually not covered in

multivariate calculus courses. The fundamental concepts, parameterizations and

plane curvature, are already in place (Chapters 5, 7 and 10) and examples from

integration theory (Chapters 11–15) provide a concrete background and the

required geometric insight. Using only curves in R2 and critical points of functions

of two variables we develop the concept of Gaussian curvature. In addition, we

discuss normal, geodesic and intrinsic curvature and establish a relationship

between all three. In the final chapter we survey informally a number of interesting

results from differential geometry.

This text is based on a course given by the author at University College, Dublin.

The additions that emerged in providing details and arranging self-sufficiency

suggest that it is suitable for a course of 30 lectures. Although the different topics

come together to form a unified subject, with different chapters mutually

supporting one another, we have structured this book so that each chapter is self-

contained and devoted to a single theme.

This book can be used as a main text, as a supplementary text or for self-study.

The groupings summarised above allow a selection of short courses at a slower

pace. The exercises are extremely important as it is through them that a student can

assess progress and understanding.

Our aim was to write a short book focusing on basic principles while acquiring

technical skills. This precluded comments on the important applications of mul-

tivariate calculus which arise in physics, statistics, engineering, economics and,

indeed, in most subjects with scientific aspirations.

It is a pleasure to acknowledge the help I received in bringing this project to

fruition. Dana Nicolau displayed skill in preparing the text and great patience in

accepting with a cheerful ‘‘OK, OK,’’ the continuous stream of revisions, cor-

rections and changes that flowed her way. Michael Mackey’s diagrams speak for

themselves. Brendan Quigley’s geometric insight and Pauline Mellon’s sugges-

tions helped shape our outlook and the text. I would like to thank the Third Arts

students at University College, Dublin, and especially Tim Cronin and Martin

Brundin for their comments, reactions and corrections. Susan Hezlet of Springer

provided instantaneous support, ample encouragement and helpful suggestions at

all times. To all these and the community of mathematicians whose results and

writings have influenced me, I say—thank you!

Department of Mathematics,

University College Dublin,

Belfield, Dublin 4,

Ireland.
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Preface to Third Edition

Fifteen years have elapsed since the first edition was published and 5 years have

gone by since I last taught a course on the topics in this book. It is nice to know that

Springer still believes that new generations of teachers and students may still be

interested in my approach and I am grateful to them for allowing me the opportunity

to correct some errors, to revise some material, and to pass on to new readers

comments of previous readers. I have, I hope, maintained the style, format, general

approach and the results of previous editions. I have made changes in practically all

chapters but the main changes occur in the final three chapters, which is an intro-

duction to the differential geometry of surfaces in three-dimensional space. And now

some important information which was not sufficiently stressed in earlier prefaces:

as preparation to using this book readers should have completed a course in linear

algebra and a first course on partial differentiation. Chapter 1 in this book is a

summary of material that is presumed known and an introduction to notation that we

use throughout the book.

It is a pleasure to thank Michael Mackey for his continued support and practical

and mathematical help in preparing this edition. Joerg Sixt and Catherine

Waite from Springer have been supportive and efficient throughout the period of

preparation of this edition.

Dublin, Ireland Seán Dineen

e-mail: sean.dineen@ucd.ie
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Chapter 1

Introduction to Differentiable Functions

Summary We introduce differentiable functions, directional and partial derivatives,

graphs and level sets of functions of several variables.

In this concise chapter we introduce continuous and differentiable functions between

arbitrary finite dimensional spaces. We pay particular attention to notation, as appro-

priate notation is often the difference between simple and complicated presentations

of several-variable calculus. Once this is in place many of our calculations follow

the same lines as in the one dimensional calculus. We do not include proofs but, for

readers familiar with analysis, we provide suggestions that lead to proofs along the

lines that apply in the one variable calculus.

The following extremely simple example illustrates the type of calculation we

will be executing frequently and the reader should practice similar examples until

they become routine and the intermediate step is unnecessary.

Example 1.1 Let

f : R
3 −→ R, f (x, y, z) = xey + y2z3.

The partial derivative of f with respect to x ,
∂ f

∂x
or fx , is obtained by treating y

and z as constants and differentiating with respect x in the usual one variable way.

Thus if A = ey and B = y2z3 then f (x, y, z) = Ax + B and

∂ f

∂x
=

d

dx
(Ax + B) = A = ey .

Similarly if C = x and D = z3 then f (x, y, z) = Cey + Dy2 and

∂ f

∂y
=

d

dy
(Cey + Dy2) = Cey + 2Dy = xey + 2yz3,

and, if E = xey and F = y2, then f (x, y, z) = E + Fz3 and

S. Dineen, Multivariate Calculus and Geometry, 1
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2 1 Introduction to Differentiable Functions

∂ f

∂z
=

d

dz
(E + Fz3) = 3Fz2 = 3y2z2.

We now recall concepts and notation from linear algebra. First we define the dis-

tance between vectors in R
n . This will enable us to define convergent sequences, open

and closed sets, continuous and differentiable functions, and state the fundamental

existence theorem for maxima and minima.

If X = (x1, . . . , xn) ∈ R
n let ‖X‖ = (x2

1 + · · · + x2
n )1/2 and call ‖X‖ the length

(or norm) of X . If X and Y = (y1, . . . , yn) are vectors in R
n then ‖X − Y‖ is the

distance between X and Y . The inner product (or dot product or scalar product) of

X and Y , X · Y or 〈X, Y 〉, is defined as

〈X, Y 〉 = X · Y =
n

∑

i=1

xi yi .

We have ‖X‖2 = 〈X, X〉 and two vectors X and Y are perpendicular if and only

if their inner product is zero.

For 1 ≤ j ≤ n, let e j = (0, . . . , 1, 0, . . .), where 1 lies in the j th position. The

set (e j )
n
j=1 is a basis, the standard unit vector basis,1 for R

n . If X = (x1, . . . , xn) ∈
R

n then

X = x1e1 + x2e2 + · · · + xnen =
n

∑

i=1

xi ei =
n

∑

j=1

〈X, e j 〉e j .

A mapping T : R
n −→ R

m is linear if

T (aX + bY ) = aT (X) + bT (Y )

for all X, Y ∈ R
n and all a, b ∈ R. For 1 ≤ i ≤ m and 1 ≤ j ≤ n let

ai, j = 〈T (e j ), ei 〉. If X = (x1, . . . , xn) then, interchanging the order of summa-

tion, we obtain

T (X) = T
(

n
∑

j=1

x j e j

)

=
n

∑

j=1

x j T (e j )

=
n

∑

j=1

x j

(

m
∑

i=1

〈T (e j ), ei 〉ei

)

=
m

∑

i=1

{ n
∑

j=1

x j 〈T (e j ), ei 〉
}

ei

1 We use the same notation for the standard basis in R
n and R

m . The context tells the dimension of

the space involved. Otherwise we would be using more and more unwieldy notation.
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=
m

∑

i=1

{ n
∑

j=1

ai, j x j

}

ei .

This shows that T (X) = A(X) where the m × n matrix A = (ai, j )1≤i≤m,1≤ j≤n

operates on the column vector X by matrix multiplication. We may now identify

the space of linear mappings from R
n into R

m with the space of m × n matrices,

Mm,n . To present in a reasonable form the product rule and chain rule (see below)

we identify R
n with Mn,1, that is the points in R

n are considered to be column

vectors. The reader should however note that, for typographical convenience, this

convention is often ignored and points in R
n are written as row vectors. However, in

taking derivatives the correct convention should be followed to avoid meaningless

expressions.

A subset U of R
n is open if for each X0 ∈ U there exists ε > 0 such that2

{X ∈ R
n : ‖X − X0‖ < ε} ⊂ U.

A subset A of R
n is closed if its complement is open and a set B is bounded if

there exists M ∈ R such that ‖x‖ ≤ M for all x ∈ B. Thus all points in an open set

A are surrounded by points from A while any point that can be reached from a closed

set B belongs to B. A crucial role in all aspects of calculus, analysis and geometry is

played by sets which are both closed and bounded; such sets are said to be compact.

Example 1.2 The closed solid sphere {(x, y, z) : x2 + y2 + z2 ≤ 1} and its boundary

{(x, y, z) : x2 + y2 + z2 = 1} are both compact subsets of R
3 while the solid sphere

without boundary {(x, y, z) : x2 + y2 + z2 < 1} is an open bounded subset of R
3.

A line is a closed unbounded set while every open subset of R
3 is a union of open

spheres.

If (Xk)
∞
k=1 is a sequence of vectors in R

n and Y ∈ R
n then we say that Xk

converges to Y as k tends to infinity and write Xk −→ Y as k −→ ∞ and

limk→∞ Xk = Y if

‖Xk − Y‖ −→ 0 as k −→ ∞.

Convergence in R
n is thus reduced to convergence in R. Moreover, if Xk =

(xk
1 , . . . , xk

n ) and Y = (y1, . . . , yn) then

lim
k→∞

Xk = Y ⇐⇒ lim
k→∞

xk
i = yi , 1 ≤ i ≤ n.

A function F :U ⊂ R
n → R

m is continuous at X0 ∈ U if for each sequence

(Xk)
∞
k=1 in U

2 The ε chosen will depend on X0 and to be rigorous we should indicate this dependence in some

way, e.g. by writing εX0 . This would lead to unnecessarily complicated notation. We hope that this

simplification will not be the source of any confusion.



4 1 Introduction to Differentiable Functions

lim
k→∞

Xk = X0 =⇒ lim
k→∞

F(Xk) = F(X0).

When this is the case we write limX→X0 F(X) = F(X0). If F is continuous at

all points in U we say F is continuous on U .

We could also define, in different ways, a length function on Mm,n , for instance

by identifying Mm,n with R
mn . Any such standard definition will be equivalent to

the following: if Ak ∈ Mm,n for all k, Ak = (ak
i, j )i, j and A = (ai, j )i, j then

lim
k→∞

Ak = A ⇐⇒ lim
k→∞

ak
i, j = ai, j

for all (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n. We may now define for positive integers l, m

and n continuous mappings from U ⊂ R
l −→ Mm,n .

A function f :A ⊂ R
n → R has a maximum on A if there exists X1 ∈ A such that

f (X) ≤ f (X1) for all X ∈ A. We call f (X1) the maximum of f on A and say that

f achieves its maximum on A at X1. The maximum, if it exists, is unique but may be

achieved at more than one point. A point X1 in A is called a local maximum of f on

A if there exists δ > 0 such that f achieves its maximum on A∩{X : ‖X − X1‖ < δ}
at X1. If, in addition, f (X) < f (X1) whenever X 
= X1 we call X1 a strict local

maximum. Isolated local maxima are strict, i.e. if for some δ > 0, X1 is the only

local maximum of f in A ∩ {X : ‖X − X1‖ < δ} then X1 is a strict local maximum.

In particular, if the set of local maxima of f is finite then all local maxima are strict

local maxima. The analogous definitions of minimum, local minimum and strict local

minimum are obtained by reversing the above inequalities.

Compact sets and continuity feature in the following fundamental existence the-

orem for maxima and minima.

Theorem 1.3 A continuous real-valued function defined on a compact subset of R
n

has a maximum and a minimum.

The practical problem of finding maxima and minima often requires a degree of

smoothness finer than continuity called differentiability. Continuity and differentia-

bility of most functions we encounter can be verified by using functions from R into

R, addition, multiplication, composition of functions and linear mappings.

Definition 1.4 Let F :U ⊂ R
n → R

m , U open, and let X0 ∈ U . We say that F

is differentiable at X0 ∈ U if there exists a function A : U −→ Mm,n which is

continuous at X0 such that

F(X) = F(X0) + A(X)(X − X0) (1.1)

for all X ∈ U.

If f :(a, b) ⊂ R −→ R is differentiable at x0 ∈ (a, b) in the classical sense, that

is if

f ′(x0) = lim
x→x0

f (x) − f (x0)

x − x0
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is finite, then letting

A(x) =
{

( f (x) − f (x0))/(x − x0), if x 
= x0,

f ′(x0), if x = x0,
.

we see that f is also differentiable in the sense of Definition 1.4. By using (1.1) we

see that the converse is also true.

The function A in Definition 1.4 is not necessary unique, However, if the matrix-

valued functions A and B satisfy F(X) = F(X0) + A(X)(X − X0) and F(X) =
F(X0) + B(X)(X − X0) and both are continuous at X0 then

lim
X→X0

A(X) = lim
X→X0

B(X)

and we call the common value the derivative of F at X0 and denote it by both DF(X0)

and F ′(X0). If f is a scalar-valued function we also write ∇ f (X) in place of f ′(X)

and call ∇ f the gradient of f . Gradient is just another word for slope and, in one

variable calculus the derivative is the slope of the tangent line to the graph of the

function. Note that if F : R
n → R

m then F ′(X) is an m × n matrix (i.e. the order is

reversed) and is identified with a linear mapping from R
n into R

m . The term

F(X0) + F ′(X0)(X − X0)

is our linear approximation to F(X) near X0.

If F is differentiable then F is continuous. The sum, difference and scalar

multiple of differentiable functions are differentiable and the product of scalar-

valued and vector-valued differentiable functions are differentiable. We have (see

also Exercise 1.7) the following formulae whenever F, G : U ⊂ R
n −→ R

m ,

f : U ⊂ R
n −→ R are differentiable, a, b ∈ R, A ∈ R

m , T : R
n −→ R

m is linear

and (A + T )(X) = A + T (X) for all X ∈ R
m :

(i) (aF + bG)′(X) = aF ′(X) + bG ′(X),

(ii) ( f · G)′(X) = f (X) · G ′(X) + G(X) ◦ ∇ f (X),

(iii) (A + T )′(X) = T .

Part (ii) above is the product rule for differentiation. Note that · denotes scalar mul-

tiplication, while ◦ denotes matrix multiplication of the m × 1 matrix G(X) and

the 1 × n matrix ∇ f (X). Part (iii) tells us that the derivative of a linear function is

constant and equal to itself at all points while the derivative of a constant function is

0 (in the appropriate space).

The composition of differentiable functions is again differentiable and the chain

rule, (1.2), gives the derivative of the composition in an elegant form. Let

F : U (open) ⊂ R
n → R

m, G : V (open) ⊂ R
m → R

p
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denote differentiable functions. If X ∈ U and F(X) ∈ V then (G ◦ F)′(X) exists

and

D(G ◦ F)(X) = (G ◦ F)′(X) = G ′(F(X))◦ F ′(X) = DG(F(X))◦ DF(X). (1.2)

If f : U ⊂ R
n −→ R is differentiable at X = (x1, . . . , xn) ∈ U then ∇ f (X) is a

1 × n matrix, that is a row matrix with n entries. If ei ∈ R
n and gi (x) = X + xei for

all x ∈ R then gi is differentiable and g′
i (x) = [g′

i (x)](e1) = ei at all x ∈ R. Since

f ◦ gi (x) = f (X + xei ) = f (x1, . . . , xi−1, xi + x, . . . , xn)

the composition f ◦ gi : R −→ R is differentiable and

d( f ◦ gi )

dx
(X) = lim

x→0

f (x1, . . . , xi−1, xi + x, . . . , xn) − f (x1, . . . , xi−1, xi , . . . , xn)

x

=
∂ f

∂xi

(X) = ∇ f (g(0))(g′
i (0)) = ∇ f (X)(ei ).

This shows that

∇ f (X) = D f (X) = f ′(X) =
(

∂ f

∂x1
(X), . . . ,

∂ f

∂xn

(X)

)

and, if ω =
∑n

j=1 ω j e j ∈ R
n ,

∇ f (X)(ω) = ∇ f (X)

(

n
∑

j=1

ω j e j

)

=
n

∑

j=1

ω j

∂ f

∂x j

(X).

If F :U ⊂ R
n −→ R

m then F(X) has m coordinates f1(X), . . . , fm(X) and we

often write F = ( f1, . . . , fm) where each fi is a real-valued function of n variables.

Hence, F =
∑m

i=1 fi ei and F is differentiable if and only if each fi is differentiable.

If ω =
∑n

j=1 ω j e j ∈ R
n then,

F ′(X)

(

n
∑

j=1

ω j e j

)

=
m

∑

i=1

{

∇ fi (X)

(

n
∑

j=1

ω j e j

)

}

ei =
m

∑

i=1

{ n
∑

j=1

ω j

∂ fi

∂x j

(X)

}

ei

and hence, for 1 ≤ j ≤ n, 1 ≤ i ≤ n, we have 〈F ′(X)e j , ei 〉 =
∂ fi

∂x j

(X) and

∂ fi

∂x j

(X) is the (i, j) entry in the m × n matrix DF(X) = F ′(X).

If v ∈ R
n then the function G : x ∈ R −→ X + xv ∈ R

n is differentiable

at any X ∈ R
n and, as above, G ′(x) = G ′(x)(e1) = v for all x ∈ R. If F :

U (open) ∈ R
n → R

m is differentiable at X then (F ◦G)′(0) = F ′(G(0))◦G ′(0) =
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F ′(X)(v). We write Dv F(X) and Fv(X) in place of D(F ◦ G)(0) and call Dv F(X)

the directional derivative of F at X in the direction v. Since

F(X + xv) = F(G(x)) = F(G(0)) + A(x)x = F(X) + A(x)x

where limx→0 A(x) = Dv F(X) we have

Dv F(X) = lim
x→0

F(X + xv) − F(X)

x
. (1.3)

If v = ei we write
∂ F

∂xi

(X) and Fxi
(X) in place of Dei

F(X) and call these the

(first-order) partial derivatives of F .

If F is differentiable at X then all (first-order) directional and partial derivatives

of F exist and we have shown

F ′(X) =

⎛

⎜

⎝

∇ f1(X)

...

∇ fm(X)

⎞

⎟

⎠
=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∂ f1

∂x1
(X) . . .

∂ f1

∂xn

(X)

...
...

∂ fm

∂x1
(X) . . .

∂ fm

∂xn

(X)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=
(

Fx1(X), . . . , Fxn (X)
)

.

If v = (v1, . . . , vn) ∈ R
n this shows that

Dv F(X) = F ′(X)(v) =
n

∑

i=1

vi Fxi
(X) =

n
∑

i=1

vi

∂ F

∂xi

(X).

If all first-order partial derivatives of F exist and are continuous then F is differ-

entiable. This criterion enables us to see, literally at a glance, the sets on which most

functions have derivatives, partial derivatives and directional derivatives. Consider,

for instance, the function

F(x, y, z) =
(

sin(xyz), x2 − y2, exp(xy)
)

.

We have

F(x, y, z) = sin(xyz)e1 + (x2 − y2)e2 + exp(xy)e3

and it suffices to consider separately the three R-valued functions sin(xyz), x2 − y2

and exp(xy). Since linear functions are continuous and the composition and product

of continuous functions are continuous we see, on calculating the partial derivatives,

as in Example 1.1, that all the first order partial derivatives exist and are continuous.

Hence F is differentiable.
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Higher-order directional and partial derivatives are defined in the usual way, i.e.

by repeated differentiation. If F : U ⊂ R
n −→ R

m is differentiable then each row

in F ′(X) corresponds to a coordinate function of F while each column corresponds

to an (independent) coordinate variable.

Example 1.5 Let F :R4 → R
3 be defined by

F(x, y, z, w) = (x2 y, xyz, x2 + y2 + zw2).

Then F = ( f1, f2, f3) where f1(x, y, z, w) = x2 y, f2(x, y, z, w) = xyz and

f3(x, y, z, w) = x2 + y2 + zw2. Moreover, ∇ f1(x, y, z, w) = (2xy, x2, 0, 0),

∇ f2(x, y, z, w) = (yz, xz, xy, 0) and ∇ f3(x, y, z, w) = (2x, 2y, w2, 2zw). Hence

F ′(x, y, z, w) =

⎛

⎝

2xy x2 0 0

yz xz xy 0

2x 2y w2 2zw

⎞

⎠ .

If X = (1, 2,−1,−2) and v = (0, 1, 2,−2) then

Dv F(X) = F ′(X) ◦t v =

⎛

⎝

4 1 0 0

−2 −1 2 0

2 4 4 4

⎞

⎠

⎛

⎜

⎜

⎝

0

1

2

−2

⎞

⎟

⎟

⎠

=

⎛

⎝

1

3

4

⎞

⎠ .

Associated with any function F :U ⊂ R
n → R

m we have two types of sets which

play a special role in the development of the subject—graphs and level sets. The

graph of F is the subset of R
n+m defined as follows

graph (F) =
{

(X, Y ) : X ∈ U and Y = F(X)
}

=
{

(X, F(X)) : X ∈ U
}

.

If C = (c1, . . . , cm) is a point in R
m we define the level set of F , F−1(C), by the

formula

F−1(C) =
{

X ∈ U : F(X) = C
}

.

In terms of the coordinate functions f1, . . . , fm of F we have

F(X) = C ⇐⇒ fi (X) = ci for i = 1, . . . , m

and hence

F−1(C) =
m
⋂

i=1

{

X ∈ U : fi (X) = ci

}

=
m
⋂

i=1

f −1
i (ci ).
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(a) (b)

1 2

-1 2

Fig. 1.1

Thus a level set of a vector-valued function is the finite intersection of level

sets of real-valued functions. This is frequently useful in arriving at a geometrical

interpretation of level sets as the following example shows.

Example 1.6 Let F(x, y, z) = (x2 + y2 + z2 − 1, 2x2 + 2y2 − 1). We have F =
( f1, f2) where f1(x, y, z) = x2+y2+z2−1 and f2(x, y, z) = 2x2+2y2−1. The set

f −1
1 (0) is a sphere of radius 1 while f −1

2 (0) is a cylinder parallel to the z–axis built on

a circle with centre the origin and radius 1/
√

2. If 0 = (0, 0) is the origin in R
2 then

F−1(0) = f −1
1 (0) ∩ f −1

2 (0)

is the intersection of a sphere and a cylinder in R
3 (Fig. 1.1a).

For this particular example we obtain more information by solving the equations

f1(x, y, z) = f2(x, y, z) = 0. We have x2 + y2 = 1 − z2 = 1/2. Hence z2 = 1/2,

z = ±1/
√

2 and the level set consists of two circles on the unit sphere (Fig. 1.1b).

The relationship between graphs and level sets plays an important role in our

study. The easy part of this relationship—every graph is a level set—is given in the

next example while the difficult part—every (regular) level set is locally a graph—is

the implicit function theorem (Chap. 2).

Example 1.7 Let F :U ⊂ R
n → R

m . We define G:U × R
m → R

m by G(X, Y )

= F(X) − Y . If 0 is the origin in R
m then

(X, Y ) ∈ G−1(0) ⇐⇒ G(X, Y ) = 0

⇐⇒ F(X) − Y = 0

⇐⇒ (X, Y ) ∈ graph (F).

Hence G−1(0) = graph (F) and every graph is a level set.

http://dx.doi.org/10.1007/978-1-4471-6419-7_2
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Exercises

1.1. Sketch the following sets

(a)

{

(x, y, z) :
x2

a2
+

y2

b2
+

z2

c2
< 1

}

(b)
{

(x, y, z) : x2 + y2 = z2
}

(c)
{

(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0
}

(d)
{

(x, y, z) : x2 + y2 + z2 − 2z = 0
}

(e)
{

(x, y, z) : x2 + y2 + z2 − 4z = 0, x2 + y2 = 4
}

.

From your sketches determine which of the sets are: open, closed, bounded,

compact.

1.2. Find all first-order partial derivatives of

(a) f (x, y, z) = (z2 + x2) log(1 + x2 y2)

(b) g(x, y, z) = xy tan−1(xz)

(c) h(x, y, z, w) =
sin(x2 + y2 + z2 + w2)

1 + (x − y)2
.

1.3. If F(x, y, z, w) = (x2 − y2, 2xy, zx, z2w2x2) and v = (2, 1,−2,−1) find

F ′(1, 2,−1,−2) and Dv F(1, 2,−1,−2).

1.4. Let f (x, y, z) = x2 − xy + yz3 − 6z. Find all points (x, y, z) such that

∇ f (x, y, z) = (0, 0, 0).

1.5. If f (x, y, z) = x2ey and g(x, y, z) = y2exz find ∇ f , ∇g and ∇( f g). Verify

that ∇( f g) = f ∇g + g∇ f .

1.6. Let P : (a, b) ⊂ R → R
n . Show that

d

dt

(

‖P(t)‖2
)

= 2P(t) ◦ P ′(t) = 2〈P(t), P ′(t)〉

and deduce that if ‖P(t)‖ does not depend on t then P ′(t) ⊥ P(t).

1.7. If F(x, y, z) = (x2, y2 + z2, xyz) and G(x, y, z) = (ex , y2 − z2, xyz) find

F ′(x, y, z) and G ′(x, y, z). Let H(x, y, z) = 〈F(x, y, z), G(x, y, z)〉 where

〈 , 〉 is the inner product in R
3. Find ∇H(x, y, z) and verify that

∇H(x, y, z) = G(x, y, z) ◦ F ′(x, y, z) + F(x, y, z) ◦ G ′(x, y, z).

1.8. If f (x, y, z) = (x2 + y2 + z2)−1/2 show that

∇ f (x, y, z) = −
(x, y, z)

(x2 + y2 + z2)3/2
.
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1.9. If F :U ⊂ R
n → R

m is differentiable and F(P) 
= 0 show that ‖F‖ is

differentiable at the point P . If v ∈ R
n show that

∇v(‖F‖)(P) =
〈Dv F, F〉

‖F‖
(P).

1.10. Use Exercise 1.9 to give another proof of Exercise 1.8, i.e. first find Dei

(

1

‖x‖

)

for i = 1, 2, 3.

1.11. If

(x, y, z)
F

−−−→(xyz, x2 + y2, x2 − y2, z2)
∥

∥

(u, v, w, t)
G

−−−→(u2 + v2, u2 − v2, w2 − t2, w2 + t2)

G = (G1, G2, G3, G4) and H = (H1, H2, H3, H4) = G ◦ F verify that

∂ H2

∂x
=

∂G2

∂u
·
∂u

∂x
+

∂G2

∂v
·

∂v

∂x
+

∂G2

∂w
·
∂w

∂x
+

∂G2

∂t
·

∂t

∂x

directly and also by using H ′ = G ′ ◦ F ′.
1.12. If the function f :Rn → R satisfies

n
∑

i=1

x2
i

∂2 f

∂xi
2

+
n

∑

i=1

xi

∂ f

∂xi

= 0

show that h(x1, . . . , xn) = f (ex1 , . . . , exn ) satisfies

n
∑

i=1

∂2h

∂xi
2

= 0.

1.13. Let f :Rn → R be differentiable, let X ∈ R
n and ∆X = (∆x1, . . . , ∆xn) ∈

R
n . Show that there exists g:R2n → R such that

f (X + ∆X) = f (X) +
n

∑

i=1

∂ f

∂xi

(X)∆xi + g(X,∆X)‖∆X‖

and g(X,∆X) → 0 as ∆X → 0.

1.14. Let f (x, y, z) = x2 y2+y2z2+xyz. By using the previous exercise and the val-

ues of f and its first-order derivatives at (1, 1, 1) estimate f (1.1, 1.05, 0.95).

Find the error in your approximation and the error as a percentage of f (1, 1, 1).

1.15. Identify geometrically and sketch the level set F−1(C) where F(x, y, z) =
(z2 − x2 − y2, 2x − y) and C = (1, 2).
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1.16. If A is a subset of R
n show that A is closed if and only if for all X0 ∈ R

n and

(Xk)
∞
k=1 ⊂ A, limk→∞ Xk = X0 implies X0 ∈ A.

1.17. If A is a subset of R
n show that A is open if and only if for each X0 ∈ A and

(Xk)
∞
k=1 ⊂ R

n , limk→∞ Xk = X0 there exists a positive integer k0 such that

Xk ∈ A for all k ≥ k0.

1.18. Show that the sum, product and quotient of continuous (respectively differen-

tiable) functions are continuous (respectively differentiable) and that differen-

tiable functions are continuous.

1.19. Show that the level set

y6 + y2x2 + x2 + y2 + 16z2 − 8xyz − 2xy = 51

is a compact subset of R
3.

1.20. If φ : R
3 → R

3 is differentiable and F : R
3 → R

4 is defined by F(x, y, z) =
(x, y, z, φ(x, y, z)) find F ′.

1.21. If A is a symmetric m ×n matrix and X and Y are eigenvectors corresponding

to different eigenvalues show that 〈X, Y 〉 = 0.



Chapter 2

Level Sets and Tangent Spaces

Summary Using systems of linear equations as a guide we discuss the significance

of the implicit function theorem for level sets. We define the tangent space and the

normal space at a point on a level set.

We shall be concerned with many different aspects of surfaces, level sets and graphs in

this book. In this chapter we consider the role of differentiability in the local structure

of level sets. By considering the linear approximation of differentiable functions and

standard results on solving systems of linear equations we see that level sets are

locally graphs.

Let F : U ⊂ R
n → R

m ,U open, F = ( f1, . . . , fm), C = (c1, . . . , cm) ∈ R
m . We

suppose that F is differentiable and consider the level set F−1(C) =
⋂m

i=1 f −1
i (ci ),

i.e. the points (x1, . . . , xn) ∈ U which satisfy the equations

f1(x1, . . . , xn) = c1

... (2.1)

fm(x1, . . . , xn) = cm .

We have n unknowns, x1, . . . , xn and m equations. If each fi is linear we have a system

of linear equations and the rank of the matrix of coefficients gives information on

the number of linearly independent solutions and procedures on how to identify a

complete set of independent variables. The implicit function theorem says that this

process is also valid locally for differentiable functions. The key, of course, is the fact

that differentiable functions, by definition, enjoy a good local linear approximation.

Fix a point P ∈ F−1(C) and suppose X ∈ R
n is close to 0 and P + X ∈ F−1(C).

Since F is differentiable,

F(P + X) = F(P) + F ′(P)(X) + G(X)(X)

where G : U −→ Mm,n and G(X) → 0 as X → 0. Since F(P + X) = F(X) = C ,

F ′(P)(X) ≈ 0

S. Dineen, Multivariate Calculus and Geometry, 13

Springer Undergraduate Mathematics Series, DOI: 10.1007/978-1-4471-6419-7_2,

© Springer-Verlag London 2014
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(where ≈ denotes approximately equal).

We assume from now on that n ≥ m. We thus have something very close to the

following system of linear equations

∂ f1

∂x1
(P)x1+ · · · +

∂ f1

∂xn

(P)xn = 0

...
∂ fm

∂x1
(P)x1+ · · · +

∂ fm

∂xn

(P)xn = 0.

(2.2)

The matrix of coefficients of this system of linear equations is

( ∂ fi

∂x j

(P)

)

1≤i≤m
1≤ j≤n

i.e. F ′(P). From linear algebra we have

Rank
(

F ′(P)
)

= m ⇐⇒ the m rows of F ′(P) are linearly independent

⇐⇒ there exist m linearly independent columns

in F ′(P)

⇐⇒ F ′(P) contains m columns such that the

associated m × m matrix has non-zero

determinant

⇐⇒ the space of solutions for the system (2.2)

is n − m dimensional.

Moreover, if any of these conditions are satisfied and we choose m columns which

are linearly independent then the variables corresponding to the remaining columns

can be taken as a complete set of independent variables and the full set of solutions

coincides with the graph of a function of the independent variables. If the above

conditions are satisfied we say that F has full or maximum rank at P .

As a simple example consider

2x − y + z = 0

y − w = 0

with matrix of coefficients

A =
(

2 −1 1 0

0 1 0 −1

)

.
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The 2 × 2 matrix obtained by using the first two columns is

(

2 −1

0 1

)

and this has

determinant 2 �= 0. Hence A has rank 2 and the two rows are linearly independent.

Since the first two columns are linearly independent we can take the remaining two

variables, z and w, as the independent variables. We have y = w, 2x = y−z = w−z

and so
{(

(w − z)/2, w, z, w
)

: z ∈ R, w ∈ R
}

is the solution set for this system of

equations. We can write this in the form

{(

φ(z, w), z, w
)

: (z, w) ∈ R
2
}

where φ(z, w) =
(

(w − z)/2, w
)

and in this format the solution space is the graph

of the function φ (see Example 1.7).

Note that columns 1 and 3 are not linearly independent, since the corresponding

2 × 2 matrix

(

2 1

0 0

)

has zero determinant, and we cannot choose y and w (the

remaining variables) as the independent variables.

Assuming that the rows of F ′(P) are linearly independent is equivalent to requir-

ing that {∇ f1(P), . . . ,∇ fm(P)} are linearly independent vectors in R
n . The implicit

function theorem says that with this condition we can solve the non-linear system of

Eq. (2.1) near P and use the same method to identify a set of independent variables.

The hypothesis of a good linear approximation in the definition of differentiable

functions implies that the systems of Eqs. (2.1) and (2.2), are very close to one

another.

We now state without proof the Implicit Function Theorem.

Theorem 2.1 (Implicit Function Theorem) Let F : U ⊂ R
n → R

m , m ≤ n, denote

a differentiable function, let P ∈ U and suppose F(P) = C and rank
(

F ′(P)
)

= m

(for convenience we suppose that the final m columns of F ′(P) are linearly indepen-

dent). If P = (p1, . . . , pn) let P1 = (p1, . . . , pn−m) and P2 = (pn−m+1, . . . , pn)

so that P = (P1, P2). Then there exists an open set V in R
n−m containing P1, a

differentiable function φ : V → R
m , an open subset W of U containing P such that

φ(P1) = P2 and

F−1(C) ∩ W =
{

(

X, φ(X)
)

: X ∈ V
}

= graph (φ).

Thus locally every level set is a graph (Fig. 2.1).

Example 2.2 Let F(x1, x2, x3, x4) = (x1x2, x3x2
4 ). We have

F ′(x1, x2, x3, x4) =
(

∇ f1(x1, x2, x3, x4)

∇ f2(x1, x2, x3, x4)

)

=
(

x2 x1 0 0

0 0 x2
4 2x3x4

)

where f1(x1, x2, x3, x4) = x1x2 and f2(x1, x2, x3, x4) = x3x2
4 . Consider the level

set F−1(2,−4) and the point P = (1, 2,−1, 2) ∈ F−1(2,−4). We have
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mm

P P

F −1(C) F −1(C)

P2

(X1, φ(X1))

P1 X1

U U

Fig. 2.1

F ′(1, 2,−1, 2) =
(

2 1 0 0

0 0 4 −4

)

.

If α(2, 1, 0, 0) + β(0, 0, 4,−1) = (0, 0, 0, 0) then (2α, α, 4β,−β) = (0, 0, 0, 0)

and hence α = β = 0. This implies that the rows of F ′(1, 2,−1, 2) are linearly

independent and F ′(P) has rank 2. This can be seen even more rapidly by finding a

2×2 submatrix with non-zero determinant, e.g. if we use columns 2 and 3 we get the

matrix

(

1 0

0 4

)

with determinant 4 �= 0. It is easily checked that the following pairs

of columns are linearly independent (1, 3), (1, 4), (2, 3) and (2, 4) while the pairs

(1, 2) and (3, 4) are not linearly independent. Since columns 1 and 4 are linearly

independent we know that the variables x2 and x3 can be chosen as a complete set of

independent variables. Thus we know that x1 and x4 can be expressed as functions

of x2 and x3 near the point (1, 2,−1, 2). The implicit function theorem is important

because it tells us that certain functions exist even though it does not show how

to find them. In general, we would have to solve the system of Eq. (2.1) to find

these functions and this may often be extremely difficult or even impossible in any

reasonable fashion. In our rather simple situation we have the two equations

x1x2 = 2

x3x2
4 = −4

and can find a solution. We have x1 = 2/x2 and since (x1, x2, x3, x4) is close to

(1, 2,−1, 2) we have x2 close to 2 and the natural domain for x2 from this equation

is x2 > 0. We have x2
4 = −4/x3 and since x3 is close to −1 we take x3 < 0. Hence

−4/x3 is positive and x4 = ±
√

−4/x3. Since x4 is close to 2 we take the positive

square root. Thus the function φ, whose existence is foretold by the Implicit Function

Theorem, has the form

φ(x2, x3) =

(

2

x2
, +

√

−4

x3

)
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on the open set V =
{

(x2, x3) : x2 > 0, x3 < 0
}

. After a rearrangement of the

variables we get

graph (φ) =

{(

2

x2
, x2, x3,+

√

−4

x3

)

: x2 > 0, x3 < 0

}

and, as expected, we have

F

(

2

x2
, x2, x3,+

√

−4

x3

)

=

⎛

⎝

2

x2
· x2, x3

(

+

√

−4

x3

)2
⎞

⎠

=
(

2,
x3(−4)

x3

)

= (2,−4).

An examination of the equations x1x2 = 2 and x3x2
4 = −4 shows that it is not

possible to find, say x3, as a function of x1 and x2 and thus we cannot, as expected,

use x1 and x2 as the independent variables.

Example 2.3 Given the equations

x2 − y2 + u2 + 2v2 = 1 (2.3)

x2 + y2 − u2 − v2 = 2 (2.4)

we wish to find all (x, y, u, v) such that near (x, y, u, v), u and v can be expressed

as differentiable functions of x and y and we also wish to find
∂u

∂x
and

∂v

∂x
in terms

of x, y, u and v.

Let F(x, y, u, v) = (x2 − y2 + u2 + 2v2, x2 + y2 − u2 − v2). Then (x, y, u, v)

satisfies (2.3) and (2.4) if and only if F(x, y, u, v) = (1, 2), i.e. if and only if

(x, y, u, v) ∈ F−1((1, 2)). We have

F ′(x, y, u, v) =
(

2x −2y 2u 4v

2x 2y −2u −2v

)

.

We require x and y as a complete set of independent variables and so must have

linear independence of the third and fourth columns. Hence we wish to find the

points (x, y, u, v) such that det

(

2u 4v

−2u −2v

)

= 4uv �= 0. This implies that any

point (x, y, u, v) satisfying (2.3) and (2.4) with u and v both non-zero will be suitable.

To compute
∂u

∂x
and

∂v

∂y
we could apply the chain rule to the equation

F
(

x, y, u(x, y), v(x, y)
)

= (1, 2)
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or just use (2.3) and (2.4) which now read

x2 − y2 + u(x, y)2 + 2v(x, y)2 = 1

x2 + y2 − u(x, y)2 − v(x, y)2 = 2.

On differentiating we get

2x + 2u(x, y)
∂u

∂x
+ 4v(x, y)

∂v

∂x
= 0 (2.5)

2x − 2u(x, y)
∂u

∂x
− 2v(x, y)

∂v

∂x
= 0. (2.6)

The method of differentiation used to obtain Eqs. (2.5) and (2.6) is often called

“implicit differentiation” especially in one-variable calculus where level sets of the

form f (x, y) = 0 are considered.

These are just two linear equations in
∂u

∂x
and

∂v

∂x
which are easily solved to give

∂u

∂x
=

3x

u
and

∂v

∂x
=

−2x

v
.

Notice how we need u and v to be both non-zero. In most cases of this type it is

not possible to find explicit formulae for u and v by solving equations similar to

(2.3) and (2.4)—hence the implicit in the implicit function theorem. So although in

general we cannot find explicit formulae for the dependent variables in terms of the

independent variables we can find the partial derivatives in terms of the independent

and dependent variables. We choose this particular example because we are able to

verify our formulae for
∂u

∂x
and

∂v

∂x
. Adding (2.3) and (2.4) gives 2x2 + v2 = 3 and

hence v = ±(3−2x2)1/2 where we take the appropriate sign depending on the value

of v. We have

∂v

∂x
= ±

1

2
(3 − 2x2)−1/2(−4x) =

−2x

±(3 − 2x2)1/2
=

−2x

v
.

Subtracting (2.4) from (2.3) gives

−2y2 + 2u2 + 3v2 = −1 = −2y2 + 2u2 + 3(3 − 2x2)

i.e. 2u2 = 2y2 + 6x2 − 10 and u = ±(3x2 + y2 − 5)1/2. Hence

∂u

∂x
= ±

1

2
(3x2 + y2 − 5)−1/2 · 6x =

3x

±(3x2 + y2 − 5)1/2
=

3x

u

and this agrees with our earlier calculation.
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We now return to the general situation and let

F = ( f1, . . . , fm) : U (open) ⊂ R
n → R

m

denote a differentiable function which has full rank at the point P in U . Let F(P) =
C . We have

F−1(C) = {X : F(X) = C} = {X : F(P + X − P) = C}
= {X : F(P) + F ′(P)(X − P) + G(X)(X − P) = C}
≈ {X : F ′(P)(X − P)} = 0}
=

{

X : 〈∇ fi (P), X − P〉 = 0, i = 1, . . . , m
}

where G : U −→ Mm,n and G(X) −→ 0 as X −→ P .

The set

{

X ∈ R
n : F ′(P)(X − P) = 0

}

= P +
{

X ∈ R
n : F ′(P)(X) = 0

}

is the closest linear approximation to F−1(C) near P and we call it the tangent space

to F−1(C) at P . Since

F ′(P) =
(

∂ fi

∂x j

(P)

)

1≤i≤m
1≤ j≤n

the set of all X satisfying the equation F ′(P)(X) = 0 is precisely the set of all

solutions {x1, . . . , xn} of the system of homogeneous linear equations (2.2) that we

encountered earlier and, as F has full rank at P , this space of solutions forms an

(n − m)–dimensional subspace of R
n . Since

{

X ∈ R
n : F ′(P)(X) = 0

}

=
{

X ∈ R
n : 〈∇ fi (P), X〉 = 0, i = 1, . . . , m

}

the tangent space consists of the vectors which are perpendicular to the gradients of

the component functions transferred to the point P (see Fig. 2.2). Normal vectors

are perpendicular to tangent vectors and it is thus natural to define the normal space

to the level set at P as

P +

{

m
∑

i=1

λi∇ fi (P) : λi ∈ R

}

.

If the tangent space or normal space is two-dimensional we use the term tangent

plane and normal plane respectively and if it is one-dimensional we use tangent line

and normal line respectively. The tangent space and normal space are both translates

of vector subspaces of R
n to the point P . The tangent space is the subspace which

fits closest to the level set of F at P while the normal space is the set of directions

which are—roughly speaking—perpendicular to the surface near P .
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P

normal space

tangent space

Fig. 2.2

In R
n there are various ways of presenting lines, planes, etc. The normal form

consists of a description as the set of points satisfying a set of equations while the

parametric form is in terms of independent variables and this, as we shall see in

Chaps. 7 and 10, is almost a parametrization of the space.

Example 2.4 Let S denote the set of all points in R
3 which satisfy the equation

x2 + 2y2 − 5z2 = 1. We wish to find the tangent space and the normal line at the

point (2,−1, 1) on S. Let f (x, y, z) = x2 + 2y2 − 5z2. Then S = f −1(1). The

tangent plane at P = (x0, y0, z0) in normal form is

{

(x, y, z) : ∇ f (x0, y0, z0) · (x − x0, y − y0, z − z0) = 0
}

=
{

(x, y, z) : (x − x0)
∂ f

∂x
(P) + (y − y0)

∂ f

∂y
(P) + (z − z0)

∂ f

∂z
(P) = 0

}

.

Now ∇ f (x, y, z) = (2x, 4y,−10z) and ∇ f (2,−1, 1) = (4,−4,−10) and so the

tangent plane at (2,−1, 1) is

{

(x, y, z) : (x − 2)4 + (y + 1)(−4) + (z − 1)(−10) = 0
}

=
{

(x, y, z) : 2x − 2y − 5z = 1
}

.

The normal line at (x0, y0, z0) is the line through (x0, y0, z0) in the direction of

∇ f (x0, y0, z0). In our case we have, in parametric form, the normal line

{

(2,−1, 1) + t (4,−4,−10) : t ∈ R

}

=
{

(2 + 4t,−1 − 4t, 1 − 10t) : t ∈ R

}

.

To change this into normal form let x = 2 + 4t , y = −1 − 4t and z = 1 − 10t .

Solving for t we get
x − 2

4
=

y + 1

−4
=

z − 1

−10
= t

and obtain the normal form

{

(x, y, z) :
x − 2

4
=

y + 1

−4
=

z − 1

−10

}

.

http://dx.doi.org/10.1007/978-1-4471-6419-7_7
http://dx.doi.org/10.1007/978-1-4471-6419-7_10
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To find the tangent plane in parametric form we must find two linearly independent

vectors which are perpendicular to ∇ f (x0, y0, z0). Applying the observation that

(x, y) and (−y, x) are perpendicular vectors in R
2 to different pairs of coordinates

in R
3 we see easily that

(4,−4,−10) · (4, 4, 0) = 0

and

(4,−4,−10) · (10, 0, 4) = 0

and, moreover, (4, 4, 0) and (10, 0, 4) are linearly independent. In parametric form

the tangent space at (2,−1, 1) is

(2,−1, 1) +
{

x(4, 4, 0) + y(10, 0, 4) : x, y ∈ R

}

=
{

(2 + 4x + 10y,−1 + 4x, 1 + 4y) : x, y ∈ R

}

.

Example 2.5 We wish to find the normal plane and the tangent line to the set of

points satisfying

x2 + y2 − 2z2 = 2 and xyz = 2

at the point (
√

2,
√

2, 1).

Let F(x, y, z) = (x2 + y2 − 2z2, xyz). Then the set of points which satisfy the

above equations form the level set F−1(2, 2). We have

F ′
(√

2,
√

2, 1
)

=

(

2
√

2 2
√

2 −4√
2

√
2 2

)

.

The final two columns form a 2 × 2 matrix with non-zero determinant and hence F

has full rank at (
√

2,
√

2, 1). The normal plane at (
√

2,
√

2, 1) has parametric form

(√
2,

√
2, 1

)

+
{

x
(

2
√

2, 2
√

2,−4
)

+ y
(√

2,
√

2, 2
)

: x, y ∈ R

}

=
{(√

2 + 2
√

2x +
√

2y,
√

2 + 2
√

2x +
√

2y, 1 − 4x + 2y
)

: x, y ∈ R

}

.

To find the normal plane in normal form we must find a non-zero vector perpendicular

to both
(

2
√

2, 2
√

2,−4
)

and
(√

2,
√

2, 2
)

. The cross product (see Chaps. 6 and 7) of

the two given vectors is of the required type but we take a first-principles approach

here. This amounts to finding (a, b, c) such that
(√

2,
√

2, 2
)

· (a, b, c) = 0 and
(

2
√

2, 2
√

2,−4
)

· (a, b, c) = 0. We thus have to solve the system of equations

http://dx.doi.org/10.1007/978-1-4471-6419-7_6
http://dx.doi.org/10.1007/978-1-4471-6419-7_7
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√
2a +

√
2b + 2c = 0

√
2a +

√
2b − 2c = 0.

Subtracting we see that c = 0 and we can take a = −b = 1. Hence (1,−1, 0) is a

suitable vector. The normal plane (in normal form) is

{

(x, y, z) :
(

x −
√

2, y −
√

2, z − 1
)

· (1,−1, 0) = 0
}

=
{

(x, y, z) : x −
√

2 − y +
√

2 = 0
}

=
{

(x, y, z) : x − y = 0
}

.

The tangent line in normal form is

{

(x, y, z) : 2
√

2x + 2
√

2y − 4z = 4,
√

2x +
√

2y + 2z = 6
}

=
{

(x, y, z) : x + y = 2
√

2, z = 1
}

.

From this we see that the tangent line in parametric form is

{(

t, 2
√

2 − t, 1
)

: t ∈ R

}

.

Exercises

2.1. Let Fi : R
4 → R

i

F1(x1, x2, x3, x4) = x2
1 − x2

2 , P1 = (1, 2, 0,−1)

F2(x1, x2, x3, x4) = (x2
1 − x2

2 , x2
3 − x2

4 ), P2 = (1, 0, 2,−1)

F3(x1, x2, x3, x4) = (x2
1 − x2

2 , x2
3 − x2

4 , x2
4 − x2

1 ), P3 = (1, 2, 3, 4).

Calculate F ′
i (X) for X ∈ R

4 and find all X such that Fi has full rank at X .

When Fi has full rank find all subsets of {x1, x2, x3, x4} which can be taken

as complete sets of independent variables. If Fi (Pi ) = Ci and Fi has full rank

at Pi find a function φi : R
4−i → R

i such that F−1
i (Ci ) = graph(φi ) near Pi .

2.2. If u(x, y) and v(x, y) are defined by the equations u cos v = x and u sin v = y

find
∂u

∂x
and

∂v

∂x
by

(i) finding explicit formulae for u and v

(ii) using implicit differentiation.
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2.3. Let F(x1, x2, x3, x4) = (x2
1 x2

2 , x1x2x3, x2
4 ). Find F ′(1, 2, 3, 4). Let A =

F ′(1, 2, 3, 4). Display the system of equations AX = 0. Solve this system

of equations and find a basis for the space of solutions. Using your set of

solutions find the tangent space to the level set of F at (1, 2, 3, 4).

2.4. (a) Find in normal and parametric form the normal line and the tangent plane

to the surface z = xey at the point (1, 0, 1).

(b) The surfaces x2 + y2 − z2 = 1 and x + y + z = 5 intersect in a curve Γ .

Find the equation in parametric form of the tangent line to Γ at the point

(1, 2, 2).

2.5. Find the equation of the plane passing through the points (1, 2, 3) and (4, 5, 6)

which is perpendicular to the plane 7x + 8y + 9z = 10.

2.6. Find the equation of the tangent plane to
√

x + √
y +

√
z = 4 at the point

(1, 4, 1).

2.7. Find the tangent planes at (1/
√

2, 1/4, 1/4) and (
√

3/2, 0, 1/4) to the ellipsoid

x2 + 4y2 + 4z2 = 1. Find the line of intersection of these two planes. Show

that this line is tangent to the sphere x2 + y2 + z2 = k for exactly one value

of k and find this value.

2.8. Find the coordinates of the four points where the hyperbola x2−y2 = 1 and the

ellipse x2 + 2y2 = 4 intersect. Sketch to scale both curves and their tangents

at the points of intersection of these tangent lines. If (a, b), a > b > 0, is one

of these points show that the tangent line to the hyperbola at (a, b) coincides

with the normal line to the ellipse at (a, b). Show that the tangent lines to the

hyperbola at the four points of intersection enclose a parallelogram and find

its area.

2.9. Find the direction of the normal line at the point (1, 1, 4) to the paraboloid

z = x2 + y2 +2. Find the tangent plane in normal form at this point. Show that

the normal line meets the paraboloid again at the point (−5/4,−5/4, 41/8).

If θ is the angle between the normal line through the point (1, 1, 4) and the

normal line through the point (−5/4,−5/4, 41/8) show that sin θ = 1/
√

3.

2.10. Consider the subset S of R
3 which lies above the (x, y)–plane and which is

characterised by the property:

p ∈ S ⇐⇒ the distance from p to the xy-plane is

the logarithm of its distance to the z-axis.

Describe S as a level set and as a graph. Find the normal line and the tangent

plane to S at the point (1,−1, log 2/2).

2.11. Let S1 = {(x, y, z) ∈ R
3 : y = f (x)} denote a cylinder and let S2 denote the

level set z2 +2zx + y = 0. If S1 is tangent to S2 at all points of contact find f .

2.12. Let a = (a1, a2) and b = (b1, b2) denote two non-zero vectors in R
2 making

angles θ1 and θ2, respectively, with the positive x-axis. Show that cos θ1 =
a1/‖a‖ and sin θ1 = a2/‖a‖. Show that θ2 − θ1 is the angle between a and b

and, by expanding cos(θ2 − θ1), prove that cos(θ2 − θ1) = a · b/‖a‖ · ‖b‖.

Prove the same result for arbitrary vectors in R
n .



Chapter 3

Lagrange Multipliers

Summary We develop the method of Lagrange multipliers to find the maximum and

minimum of a function with constraints.

We consider the problem of finding the maximum and minimum of a sufficiently

regular function g of n variables subject to the constraints

f1(x1, . . . , xn) = c1

...

fm(x1, . . . , xn) = cm .

⎫

⎪

⎬

⎪

⎭

(3.1)

To apply differential calculus we suppose there exists an open subset U of R
n such

that each fi is defined and differentiable on U and that all points which satisfy (3.1),

that we wish to consider, lie in U . We also require g to be smooth in some fashion

and it is convenient to suppose now that g is also differentiable on U .

If F = ( f1, . . . , fm) then F :U ⊂ R
n → R

m is differentiable and our problem

can be restated as that of finding the maximum and minimum of g on the level set

F−1(C) where C = (c1, . . . , cm). To apply the methods of the previous chapter we

suppose that F has full rank on F−1(C) or equivalently that
{

∇ f1(X), . . . ,∇ fm(X)
}

are linearly independent vectors for all X in F−1(C).

Suppose g has a local maximum on F−1(C) at the point P . Since we only need

to examine g near P we may suppose that F−1(C) is the graph of a function φ

of n − m variables. By rearranging the variables, if necessary, we can assume that

φ : V ⊂ R
n−m → R

m , V open in R
n−m , that P1 (the first n − m coordinates of P)

lies in V and P = (P1, φ(P1)).

Let X1 = (x1, . . . , xn−m) ∈ R
n−m . Since g has a local maximum on F−1(C) at

P the function

X1 → g
(

X1, φ(X1)
)

(3.2)
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has a local maximum on the open set V in Rn−m at P1. Moreover, since the graph

of φ coincides with the level set F−1(C) near P we have F(X1, φ(X1)) = C for all

X1 ∈ V . In terms of the coordinate functions this implies

fi (X1, φ(X1)) = ci (3.3)

for i = 1, . . . , m. To apply the chain rule to the functions in (3.2) and (3.3) we first

differentiate the function

X1 ∈ V ⊂ R
n−m −−−→

(

X1, φ(X1)
)

∈ R
n

and obtain the n × (n − m) matrix

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∇(x1)

...

∇(xn−m)

φ′(X1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 . . . 0

...
. . .

0 . . . 1

φ′(X1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.4)

Let A denote the matrix in (3.4) evaluated at X1 = P1. Since the first n − m rows of

A form a matrix with determinant 1 the matrix A has maximum rank n − m. Hence

the space S = {X ∈ R
n : X ◦ A = 0}, i.e. the solution space for the system of n − m

linear equations in n variables, is an n − (n − m) = m dimensional subspace of R
n .

Applying the chain rule to (3.3) and letting X1 = P1 we obtain

∇ fi (P) ◦ A = 0

for i = 1, . . . , m. Hence each ∇ fi (P) ∈ S. Since F ′(P) has maximum rank,

{∇ f1(P), . . . ,∇ fm(P)} is a set of m linearly independent vectors and hence a basis

for S. Since the function in (3.2) has a local maximum on the open set V at P1

one variable calculus shows that all its partial derivatives at P1 are zero. A further

application of the chain rule implies

∇g(P) ◦ A = 0.

Hence ∇g(P) ∈ S and there exist m scalars, called Lagrange multipliers, λ1, . . . , λm ,

such that

∇g(P) = λ1∇ f1(P) + · · · + λm∇ fm(P). (3.5)

Equation (3.5), in coordinates, is a set of n equations, and these together with the

system of m equations in (3.1) gives n + m equations in the n + m unknowns

{x1, . . . , xn, λ1, . . . , λm}. The method of Lagrange multipliers consists in solving

these equations. The solutions are the critical points of g on F−1(C) and contain the



3 Lagrange Multipliers 27

z

x

y

Fig. 3.1

local maxima and minima of g. To determine if g has a maximum and minimum on

F−1(C) requires further on-the-spot investigation as we shall see in examples.

Frequently we are interested in finding the maximum and minimum on U ∩
F−1(C) where U is open in R

n and U is the closure of U in R
n . The set U consists

of all points which can be reached from U , i.e.

U = {X ∈ R
n; there exists (Xn)n ∈ U with ‖Xn − X‖ → 0 as n → ∞}.

In this case we apply the method of Lagrange multipliers to U ∩ F−1(C) and exam-

ine separately the values of g on (U\U ) ∩ F−1(C)—these points are often easily

identified since they lie on the boundary of U .

Example 3.1 To find the maximum and minimum of x + y + z subject to the con-

straints x2 + y2 = 2 and x + z = 1. Let F = ( f1, f2) where f1(x, y, z) = x2 + y2

and f2(x, y, z) = x + z and let g(x, y, z) = x + y + z. We wish to find the maximum

and minimum of g on the set F−1(2, 1). We have

F ′(x, y, z) =
(

2x 2y 0

1 0 1

)

.

On F−1(2, 1) we have x2 + y2 = 2 and so x and y cannot both be zero at the

same time. Thus the rows of F ′(x, y, z) are linearly independent when (x, y, z) ∈
F−1(2, 1). Hence ∇ f1 and ∇ f2 are linearly independent on F−1(2, 1) and we may

apply the method of Lagrange multipliers. The level set

F−1(2, 1) =
{

(x, y, z) : x2 + y2 = 2
}

∩
{

(x, y, z) : x + z = 1
}

is the intersection of a cylinder parallel to the z-axis and a plane (why?) (see Fig. 3.1).

This gives us a closed ellipse and compact set in R
3. By the fundamental existence

theorem g has a maximum and a minimum on F−1(2, 1). This apparently rather

theoretical information has practical implications since we now know, before doing

any calculations, that the method of Lagrange multipliers will yield at least two
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solutions and the maximum (minimum) solution will be the maximum (minimum)

of g on F−1(2, 1). By the method of Lagrange multipliers there exist, at local maxima

and minima, scalars λ1 and λ2 such that

∇g(x, y, z) = λ1∇ f1(x, y, z) + λ2∇ f2(x, y, z)

i.e.

(1, 1, 1) = λ1(2x, 2y, 0) + λ2(1, 0, 1).

In terms of coordinates this is equivalent to the following system of equations

1 = 2λ1x + λ2

1 = 2λ1 y

1 = λ2

⎫

⎬

⎭

=⇒ 1 = 2λ1x + 1 =⇒ λ1x = 0.

Hence λ1 = 0 or x = 0. However, the second equation implies 1 = 2λ1 y so

λ1 �= 0. If x = 0 then f1(x, y, z) = y2 = 2 and y = ±
√

2, while f2(x, y, z) =
x + z = 1 implies z = 1. Our only solutions are (0,

√
2, 1) and (0,−

√
2, 1). Since

g(0,
√

2, 1) =
√

2 + 1 and g(0,−
√

2, 1) = −
√

2 + 1 it follows that
√

2 + 1 and

−
√

2 + 1 are the maximum and minimum of g on F−1(2, 1).

Of course, substituting the constraint x + z = 1 into g = 0 implies g(x, y, z) =
g(x, y, 1 − x) = 1 + y and our problem reduces to finding the maximum and

minimum of 1+ y on the set x2 + y2 = 2. On this set −
√

2 ≤ y ≤
√

2 and hence the

maximum is 1 +
√

2 and the minimum 1 −
√

2. This verifies the solution obtained

using Lagrange multipliers and also reminds us that it is always worthwhile thinking

about a problem before attempting any solution.

Example 3.2 The geometric mean of n positive numbers x1, . . . , xn , (x1 · · · xn)1/n

is always less than or equal to the arithmetic mean
x1 + x2 + · · · + xn

n
.

In this example (see also Example 3.4) we standardise one of the quantities and

generate a Lagrange multiplier type problem. Let g(x1, . . . , xn) = x1 · · · xn and

f (x1, . . . , xn) = x1 + x2 + · · · + xn . We begin by finding the maximum of g on the

set

f −1(1) ∩
{

(x1, . . . , xn) : xi ≥ 0 for all i
}

.

It is easily checked that this is a compact set and, by the fundamental existence

theorem, the maximum exists. On the set f −1(1) ∩
{

(x1, . . . , xn) : xi > 0
}

we may

apply the method of Lagrange multipliers. We have

∇g(x1, . . . , xn) = (x2 · · · xn, x1x3 · · · xn, . . . , x1x2 · · · xn−1)

= x1 · · · xn

( 1

x1
,

1

x2
, . . . ,

1

xn

)

and

∇ f (x1, . . . , xn) = (1, 1, . . . , 1).
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If ∇g(x1, . . . , xn) = λ∇ f (x1, . . . , xn) then x1 · · · xn/xi = λ and xi = x1 · · · xn/λ

for all i . This shows x1 = x2 = · · · = xn . Since x1 + x2 + · · · + xn = 1 we

have xi = 1/n for all i and g(1/n, 1/n, . . . , 1/n) = n−n . As g(x1, . . . , xn) = 0

whenever one of the xi ’s is equal to zero it follows that the maximum of g, on the

set f (x1, . . . , xn) = 1 and xi ≥ 0 all i , is (1/n)n .

If xi , i = 1, . . . , n, are arbitrary positive numbers let yi = xi

/

∑n
j=1 x j for each

i . We have
n

∑

i=1

yi =
n

∑

i=1

xi

/

n
∑

j=1

x j = 1,

and, by the first part,
x1 · · · xn

( n
∑

j=1

x j

)n
= y1 · · · yn ≤

(1

n

)n

.

Hence

x1 · · · xn ≤
(

1

n

n
∑

j=1

x j

)n

and, as required,

(x1 · · · xn)1/n ≤
1

n
(x1 + x2 + · · · + xn).

Notice that although the number of variables, n, could be large symmetry led to rather

simple equations. In mathematics symmetry compensates for size.

Example 3.3 To find the dimensions of the box (Fig. 3.2) of maximum volume V

given that the surface area S is 10 m2.

We wish to maximise V (x, y, z) = xyz subject to the constraint S(x, y, z) =
2(xy + yz + xz) = 10. Physical constraints imply that x ≥ 0, y ≥ 0 and z ≥ 0. The

set U =
{

(x, y, z) : x > 0, y > 0, z > 0
}

is open and our problem is to determine

the maximum of V on U ∩ S. The method of Lagrange multipliers will identify a set

which contains all local maxima and minima in U ∩ S. We proceed to do this now.

We have
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∇V (x, y, z) = (yz, xz, xy)

and

∇S(x, y, z) =
(

2(y + z), 2(x + z), 2(x + y)
)

.

Since x, y and z are all positive on U we have ∇V (x, y, z) �= (0, 0, 0). Applying

the method of Lagrange multipliers we consider

∇V = λ∇S

and obtain the following system of equations

yz = 2λ(y + z) =⇒ xyz = 2λ(xy + xz)

xz = 2λ(x + z) =⇒ xyz = 2λ(xy + yz)

xy = 2λ(x + y) =⇒ xyz = 2λ(xz + yz).

Hence λ �= 0 and, on dividing by 2λ, we get xy + xz = xy + yz = xz + yz and

afterwards xy = yz = zx . Since x �= 0, y �= 0 and z �= 0 this implies x = y = z

and S(x, y, z) = 10 now shows that 6x2 = 10. Hence x = y = z = (5/3)1/2. Let

P =
(

(5/3)1/2, (5/3)1/2, (5/3)1/2
)

. We have V (P) = (5/3)3/2.

We now wish to show that V takes its maximum value, subject to the constraint

S = 10, at P . The set U ∩ S−1(10) is closed but not bounded and so the fundamental

existence theorem for maxima and minima cannot be applied directly. In such cases

ad hoc methods are necessary and the following approach is sometimes useful. For

r > 0 let

Ur =
{

(x, y, z) : 0 ≤ x ≤ r, 0 ≤ y ≤ r, 0 ≤ z ≤ r
}

.

The set Ur is compact (i.e. closed and bounded) and as r increases to infinity Ur

expands, inside U , and in the limit, i.e. at infinity, it covers U . If V does have

a maximum on U ∩ S−1(10) then it must lie in some Ur . Since V (P) > 1 our

strategy is to show that for r sufficiently large we have V (x, y, z) ≤ 1 whenever

(x, y, z) /∈ Ur . This will imply that the maximum of V on Ur , which exists by the

fundamental existence theorem, equals the maximum of V on U . If (x, y, z) /∈ Ur

then one of x, y, z, say x , is greater than r . If S(x, y, z) = 10 then 2xy ≤ 10 and

2xz ≤ 10. Hence y ≤ 10/2x = 5/x and z ≤ 10/2x = 5/x ≤ 5/r and

V (x, y, z) = xyz ≤ x ·
5

x
·

5

r
=

25

r
. (3.6)

In particular, if r = 25 then V (x, y, z) ≤ 1 for all (x, y, z) /∈ U25 satisfying

S(x, y, z) = 10. Since P ∈ U25 and V (P) > 1 this implies
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maximum
{

V (x, y, z) : (x, y, z) ∈ U ∩ S−1(10)
}

= maximum
{

V (x, y, z) : (x, y, z) ∈ U25 ∩ S−1(10)
}

.

Since U25 ∩ S−1(10) is compact and V is continuous the fundamental existence the-

orem implies that V has a maximum on U25 ∩ S−1(10). The maximum occurs either

inside or on the boundary. If it occurs inside then our use of Lagrange multipliers

implies that it occurs at the point P . On the boundary of U25 we have either at least

one coordinate zero, in which case V = 0, or at least one coordinate equal to 25 in

which case (3.6) implies V ≤ 1 and we conclude that the maximum cannot occur

on the boundary. We have thus shown that the absolute maximum of V occurs at the

point P =
(

(5/3)1/2, (5/3)1/2, (5/3)1/2
)

and equals (5/3)3/2.

Example 3.4 In this example we prove the Cauchy–Schwarz inequality

∣

∣

∣

∣

∣

n
∑

i=1

ai bi

∣

∣

∣

∣

∣

2

≤
(

n
∑

i=1

a2
i

) (

n
∑

i=1

b2
i

)

where ai and bi are arbitrary real numbers. This is one of the best known and

most widely used inequalities in mathematics. If we use vector notation, i.e. let

a = (a1, . . . , an) and b = (b1, . . . , bn), and take square roots we can rewrite the

inequality as
∣

∣〈a, b〉
∣

∣ ≤ ‖a‖ · ‖b‖. (3.7)

The advantages of vector notation in this proof are obvious. Let g : R
2n → R be

defined by g(a, b) = 〈a, b〉. Motivated by Example 3.2 and the form of the inequality

given in (3.7) we first find the maximum and minimum of g on the set ‖a‖2 =
‖b‖2 = 1.

Let f1:R2n → R and f2:R2n → R be defined by

f1(a, b) = ‖a‖2 = 〈a, a〉 =
n

∑

i=1

a2
i

and

f2(a, b) = ‖b‖2 = 〈b, b〉 =
n

∑

i=1

b2
i .

We wish to maximise g(a, b) =
∑n

i=1 ai bi = 〈a, b〉 on the set S =
{

(a, b) : ‖a‖2 =
‖b‖2 = 1

}

. The set S is easily seen to be compact and hence g has a maximum and

minimum on S. We have

∇ f1(a, b) = 2(a1, . . . , an, 0, . . . , 0) = 2(a, 0)
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and

∇ f2(a, b) = 2(0, . . . , 0, b1, . . . , bn) = 2(0, b)

where 0 denotes the origin in R
n . An inspection of the matrix

(

∇ f1(a, b)

∇ f2(a, b)

)

=
(

2a 0

0 2b

)

shows immediately that ∇ f1(a, b) and ∇ f2(a, b) are linearly independent whenever

a �= 0 and b �= 0 and implies that we may apply the method of Lagrange multipliers.

From ∇g = λ1∇ f1 + λ2∇ f2 and

∇g(a, b) = (b1, . . . , bn, a1, . . . , an) = (b, a)

we see that

(b, a) = λ1(2a, 0) + λ2(0, 2b) = (2λ1a, 2λ2b).

Hence b = 2λ1a and since ‖a‖ = ‖b‖ = 1 this implies 2λ1 = ±1 and b = ±a. If

b = a then g(a, a) =
∑n

i=1 a2
i = 1, while if b = −a then g(a,−a) = −

∑n
i=1 a2

i

= −1. Hence, if ‖a‖ = ‖b‖ = 1, then

−1 ≤ g(a, b) ≤ 1

and
∣

∣g(a, b)
∣

∣ ≤ 1.

If a �= 0 and b �= 0 then

∣

∣

∣
g
( a

‖a‖
,

b

‖b‖

)
∣

∣

∣

2
=

∣

∣g(a, b)
∣

∣

2

‖a‖2‖b‖2
≤ 1

and
∣

∣g(a, b)
∣

∣

2 ≤ ‖a‖2 · ‖b‖2.

This is trivially verified if either a or b is 0. Since g(a, b) = 〈a, b〉, we have proved

the Cauchy–Schwarz inequality. The above also shows that we have equality in the

Cauchy–Schwarz inequality if and only if a and b are parallel vectors. In particular,

for unit vectors a and b, we have 〈a, b〉 = 1 if and only if a = b (see Example 8.5).

Exercises

3.1. Find the maximum and minimum of xy + yz on the set of points which satisfy

x2 + y2 = 1 and yz = x .
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3.2. Find the highest and lowest points on the ellipse of intersection of the cylinder

x2 + y2 = 1 and the plane x + y + z = 1.

3.3. Suppose a pentagon is composed of a rectangle surmounted by an isosceles

triangle. If the length of the outer perimeter P is fixed find the maximum

possible area.

d
c

a

b

(Hint: you must maximise ab+ 1
2

bd subject to the constraints b+2a+2c = P

and
(

b/2
)2 + d2 = c2.)

3.4. Find the minimum value of x2+y2+z2 subject to the constraints x +y−z = 0

and x + 3y + z = 2. Give a geometrical interpretation of your answer and

using your interpretation explain why x2 + y2 + z2 has no maximum subject

to these constraints.

3.5. Explain why the function f (x, y, z) = x2 + y2 + 2z2 has a minimum on the

surface S defined by the equations x + y + z = 3 and x − y + 3z = 2. Use

Lagrange multipliers with two constraints to find the minimum value. Using the

first constraint findφ such that z = φ(x, y)on S. Now use Lagrange multipliers

to find the minimum of f
(

x, y, φ(x, y)
)

on the level set x − y +3φ(x, y) = 2.

Using both constraints express y and z as functions φ1 and φ2 of x for all points

on S. Find the minimum of f
(

x, φ1(x), φ2(x)
)

using one-variable calculus.

3.6. Show that the maximum and minimum of f (x, y, z) = x/a + y/b + z/c on

the ellipsoid (x/a)2 + (y/b)2 + (z/c)2 = 1 are
√

3 and −
√

3 respectively

where a, b and c are positive constants.

3.7. Find the minimum value of xyz on the level set F−1(1), x > 0, y > 0, z > 0,

where

F(x, y, z) =
1

x
+

1

y
+

1

z
.

3.8. Use Lagrange multipliers to find the maximum volume of the rectangular solid

in the first octant (x ≥ 0, y ≥ 0, z ≥ 0) with one vertex at the origin and the

opposite vertex lying in the plane x/a + y/b + z/c = 1 where a, b and c are

positive constants.

3.9. Show that of all triangles inscribed in a fixed circle the equilateral triangle

maximises; (a) the product of the lengths of the sides, (b) the sum of the

squares of the lengths of the sides.

3.10. Find the minimum of f (x, y) = 2y on the set 3x2 − y5 = 0.
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3.11. If f : U (open) ⊂ R
n → R, P ∈ U and ∇ f (P) �= 0 find the direction, at P ,

in which f increases most rapidly.

3.12. Show that the maximum of x1 · · · xn on

n
∑

i=1

x2
i

i2
= 1 is

n!
nn/2

.

3.13. Within a triangle there is a point P such that the sum of the squares of the

distances to the sides is a minimum. Find this minimum in terms of the lengths

of the sides and the area.

3.14. Find the distance from the point (10, 1,−6) to the intersection of the planes

x + y + 2z = 5

2x − 3y + z = 12.

3.15. What is the relationship between Exercise 2.12 and the Cauchy–Schwarz

inequality (Example 3.4)?

3.16. If a and b are positive numbers find the maximum and minimum values of

(xv − yu)2 subject to the constraints x2 + y2 = a2 and u2 + v2 = b2.



Chapter 4

Maxima and Minima on Open Sets

Summary We derive, using critical points and the Hessian, a method of locating

local maxima, local minima and saddle points of a real-valued function defined on

an open subset of R
n .

We turn to the problem of finding local maxima and local minima of a real-valued

function f defined on an open subset U of R
n . The set of critical points of f on

U , {X; ∇ f (X) = 0}, will include all points where f achieves a local maximum or

minimum but may contain additional points such as saddle points. A critical point

P is a saddle point if f , restricted to some curve passing through P , has a local

maximum at P , while it has a local minimum at P along some other curve passing

through P.

The Hessian of f at P ∈ U , H f (P), is defined as the n × n matrix
(

∂2 f

∂xi∂x j

(P)

)

1≤i, j≤n

. To define the Hessian1 we are, of course, assuming that all

first- and second-order partial derivatives of f exist. We use the convention that the

order of differentiation is from right to left, i.e.

∂2 f

∂xi∂x j

=
∂

∂xi

(

∂ f

∂x j

)

.

If all these second-order partial derivatives exist and are continuous then the order

of differentiation is immaterial and

∂2 f

∂xi∂x j

(P) =
∂2 f

∂x j∂xi

(P)

for all i and j . In this case H f (P) is a symmetric n ×n matrix. We will not prove this

result but provide, in Exercise 4.6, a practical method which proves that all functions

you will probably ever encounter have this property. If v = (v1, . . . , vn) is a row

1 The notation ∇2( f ) is also used for the Hessian of f .

S. Dineen, Multivariate Calculus and Geometry, 35

Springer Undergraduate Mathematics Series, DOI: 10.1007/978-1-4471-6419-7_4,

© Springer-Verlag London 2014
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vector and tv is the corresponding column vector then

∂ f

∂v
(P) =

n
∑

i=1

vi

∂ f

∂xi

(P)

and

∂2 f

∂v2
(P) =

∂

∂v

(

∂ f

∂v

)

(P) =
n

∑

i=1

vi

∂

∂v

(

∂ f

∂xi

)

(P)

=
n

∑

i=1

vi

(

n
∑

j=1

v j

∂2 f

∂x j∂xi

(P)

)

=
n

∑

i, j=1

vi v j

∂2 f

∂xi∂x j

(P)

= vH f (P)
tv.

The main theoretical result on the existence of local maxima, local minima and saddle

points is the following theorem.

Theorem 4.1 If U is an open subset of R
n , f : U → R is a twice continuously

differentiable function on U and P is a critical point of f , i.e.

∇ f (P) =
(

∂ f

∂x1
(P), . . . ,

∂ f

∂xn

(P)

)

= 0

then

(1) f has a strict local maximum at P if
∂2 f

∂v2
(P) < 0 for all v �= 0,

(2) f has a strict local minimum at P if
∂2 f

∂v2
> 0 for all v �= 0,

(3) f has a saddle point at P if there exist v and w such that

∂2 f

∂v2
(P) < 0 <

∂2 f

∂w2
(P).

To derive a practical test from this result we use linear algebra and Lagrange mul-

tipliers. To simplify matters we change our notation and let v = X = (x1, . . . , xn),

ai j =
∂2 f

∂xi∂x j

(P) and A = (ai j )1≤i, j≤n . With this notation

∂2 f

∂v2
(P) = vH f (P)

tv = X AtX.
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Since
X

‖X‖
At

( X

‖X‖

)

=
1

‖X‖2
X AtX

for X �= 0 we have

X AtX > 0 for all X �= 0 ⇐⇒ min
‖X‖=1

X AtX > 0

X AtX < 0 for all X �= 0 ⇐⇒ max
‖X‖=1

X AtX < 0

there exists X, Y ∈ R
n such that

X AtX < 0 < Y At Y ⇐⇒ min
‖X‖=1

X AtX < 0 < max
‖X‖=1

X AtX.

We thus need to examine the extreme values of X AtX on the set

‖X‖2 = 〈X, X〉 =
n

∑

i=1

x2
i = 1.

Let

h(X) = h(x1, . . . , xn) =
n

∑

i, j=1

ai j xi x j = X AtX

and

g(X) = g(x1, . . . , xn) =
n

∑

i, j=1

x2
i = 〈X, X〉.

Since the set g−1(1) is compact and h is continuous the fundamental existence the-

orem implies that h has a maximum and minimum on g−1(1). Using the coordinate

expansion of g we see that ∇g(X) = (2x1, . . . , 2xn) = 2X and ∇g(X) �= 0 on

g−1(1). Hence we may apply the method of Lagrange multipliers to find the maxi-

mum and the minimum of h on the set g−1(1). We have

∇h(X) =
( n

∑

j=1

2a1 j x j , . . . ,

n
∑

j=1

2anj x j

)

= 2X A.

By the method of Lagrange multipliers there exists at the maximum and minimum

points of h on g−1(1) a real number λ such that

2X A = 2λX.
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Taking the transpose we get

AtX = λtX = λI tX

i.e.

(A − λI )tX = 0. (4.1)

Since ‖X‖ = 1, any λ which satisfies (4.1) is an eigenvalue2 of A and, moreover,

h(X) = X AtX = λX tX = λ〈X, X〉 = λ.

Thus the maximum and minimum values of h are eigenvalues of A and are achieved

at the corresponding unit eigenvectors. If all eigenvalues are positive then h is always

positive and f has a local minimum at P , if all eigenvalues are negative then h is

always negative and f has local maximum at P and if some are positive and some

negative then h takes positive and negative values and f has a saddle point at P . If

λ is an eigenvalue of A the set

Eλ := {X ∈ R
n : AtX = λtX}

is a subspace of R
n , called the λ-eigenspace of A, and the dimension of Eλ is called

the multiplicity of the eigenvalue λ. An n × n symmetric matrix has n eigenvalues

when eigenvalues are counted according to multiplicity, i.e. if Eλ is j–dimensional

then λ is counted j times, and det(A) = λ1 · · · λn . Since a particular case of the above

result will play an important role in our study of Gaussian curvature in Chap. 16 we

display it separately.

Proposition 4.2 If A =
(

ai j

)

1≤i, j≤2
is a symmetric 2 × 2 matrix with eigenvalues

λ1 and λ2, λ1 ≥ λ2, then

max.{a11x2 + 2a12xy + a22 y2 : x2 + y2 = 1} = λ1

and

min.{a11x2 + 2a12xy + a22 y2 : x2 + y2 = 1} = λ2.

Moreover, the maximum and minimum are achieved at eigenvectors of A and

det(A) = λ1λ2.

For our test we just need to know the sign of the largest and smallest eigenvalues.

Since eigenvalues may be difficult to calculate we will use a reasonably well-known

result from linear algebra. If A is a square matrix then the k × k matrix Ak obtained

by deleting all except the first k rows and k columns of A is called the k ×k principal

minor of A. We have An = A.

2 We could refocus this analysis to show that any symmetric n × n matrix with real entries admits

eigenvalues.
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We require the following result:

if A is a symmetric n × n matrix then all eigenvalues of A are positive if and only

if det(Ak) > 0 for all k.

Proposition 4.3 If f : U ⊂ R
n → R, U open, has continuous first- and second-

order partial derivatives, P is a critical point of f , and A = H f (P) is the Hessian

of f at P then the following hold:

(a) if det(A2k) < 0 for some k then P is a saddle point of f ,

(b) if det(An) �= 0 then

(b1) if det(Ak) > 0 for all k then f has a strict local minimum at P,

(b2) if (−1)k det(Ak) > 0 for all k then f has a strict local maximum at P,

(b3) if the conditions on the determinants in (b1) and (b2) do not apply then f

has a saddle point at P.

Proof (a) Suppose det(A2k) < 0 for some positive integer k, 2k ≤ n. If P =
(p1, . . . , pn) let Q = (p1, . . . , p2k). Consider the function g : V ⊂ R

2k → R

defined by

g(x1, . . . , x2k) = f (x1, . . . , x2k, p2k+1, . . . , pn)

where V is the open set in R
2k consisting of all (x1, . . . , x2k) such that

(x1, . . . , x2k, p2k+1, . . . , pn) ∈ U.

It is easily checked that

Hg(Q) =
(

∂2g

∂xi∂x j

(Q)

)

1≤i, j≤2k

=
(

∂2 f

∂xi∂x j

(P)

)

1≤i, j≤2k

= A2k .

Let β1, . . . , β2k denote the 2k eigenvalues of the symmetric 2k × 2k matrix A2k

counted according to multiplicity. We have

β1 · · · β2k = det(A2k) < 0.
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Since 2k is an even integer it follows that A2k has positive and negative eigenvalues.

Hence there exist u = (u1, . . . , u2k) and v = (v1, . . . , v2k) such that

uA2k
tu < 0 < vA2k

tv.

Let w1 = (u1, . . . , u2k, 0, . . . , 0) and w2 = (v1, . . . , v2k, 0, . . . , 0). Then

∂2 f

∂w1
2
(P) = w1 H f (P)

tw1

= uA2k
tu < 0 < vA2k

tv

= w2 H f (P)
tw2 =

∂2 f

∂w2
2
(P)

and f has a saddle point at P . This proves (a).

(b) The first part, (b1), follows directly from the linear algebra result quoted above.

Since f has a local maximum at P if and only if (− f ) has a local minimum at the

same point and H− f (P) = −H f (P) it follows, from (b1), that f has a local maximum

at P if det(−Ak) > 0 for all k. Hence (b2) follows since det(−Ak) = (−1)k det(Ak).

If (b1) and (b2) do not apply then, since all eigenvalues of A are non-zero, A has

positive and negative eigenvalues and hence f has a saddle point at P . This completes

the proof. �

If det(H f (P)) = 0 we call P a degenerate critical point of f (all other critical

points are called non-degenerate) and higher order derivatives may be required to

test the nature of the critical point.

Proposition 4.3 enables us to classify all non-degenerate and some degenerate

critical points. When P is a non-degenerate critical point of f and f has a local

maximum or minimum at P then the determinants of the odd principal minors all

have the same sign. This leads to the second test for saddle points given below and

a little reflection shows that it may be applied at any critical point. In practice the

determinants, det(Ai ), are calculated in the order i = 1, 2, 3, . . . and testing for

saddle points is carried out as the calculations proceed. The critical point is a saddle

point and the calculations stop when for the first time either of the following is

observed:

det(A2k) < 0

det(A2k−1) det(A2k+1) < 0.

If (b1) or (b2) are used to find a local maximum or minimum then all determinants

of the Hessian must be calculated.
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Example 4.4 Let f (x, y, z) = x2 y2 + z2 + 2x − 4y + z. We have

∇ f (x, y, z) = (2xy2 + 2, 2x2 y − 4, 2z + 1).

If P is a critical point of f then

2xy2 + 2 = 0

2x2 y − 4 = 0

2z + 1 = 0

Hence z = −1/2 from the third equation. From the first two equations we see that x

and y are non-zero. Hence xy2 = −1 and x2 y = 2 imply xy2/x2 y = −1/2 = y/x

and x = −2y. We have −2y · y2 = −1, i.e. y3 = 1/2 and y = 2−1/3. From x = −2y

we obtain x = −22/3 and conclude that (−22/3, 2−1/3,−1/2) is the only critical

point of f . A simple calculation shows that

H f (x,y,z) =

⎛

⎝

2y2 4xy 0

4xy 2x2 0

0 0 2

⎞

⎠

and hence

H f (−22/3,2−1/3,1/2) =

⎛

⎝

21/3 −4 · 21/3 0

−4 · 21/3 2 · 24/3 0

0 0 2

⎞

⎠ .

Since det(21/3) > 0 and

det

(

21/3 −4 · 21/3

−4 · 21/3 2 · 24/3

)

= 2 · 25/3 − 16 · 22/3

= 4 · 22/3 − 16 · 22/3 < 0

the critical point (−22/3, 2−1/3,−1/2) is a saddle point of f .

Example 4.5 We wish to find and classify the non-degenerate critical points of

f (x, y, z) = x2 y + y2z + z2 − 2x . We have

∇ f (x, y, z) = (2xy − 2, x2 + 2yz, y2 + 2z)

and the critical points satisfy the equations

2xy − 2 = 0, x2 + 2yz = 0 and y2 + 2z = 0.

Substituting z = −y2/2 into the second equation implies y3 = x2. Hence, the first

equation shows y5/2 = 1 and we have y = 1 and z = −1/2. From xy = −1 we get
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x = 1 and (1, 1,−1/2) is the only critical point of f . We have

H f (x,y,z) =

⎛

⎝

2y 2x 0

2x 2z 2y

0 2y 2

⎞

⎠

and

H f (1,1,−1/2) =

⎛

⎝

2 2 0

2 −1 2

0 2 2

⎞

⎠ .

Since det(2) > 0 and

det

(

2 2

2 −1

)

= −2 − 4 < 0

the point (1, 1,−1/2) is a saddle point of f .

A number of simple initial checks may be carried out to detect saddle points. These

are based on rearranging the variables, a procedure which does not alter the nature

of a critical point. Thus we may first interchange row i and row j and afterwards

column i and column j in the Hessian and then apply our standard test. In this way

any 2 × 2 sub-matrix of the Hessian, which is symmetric about the diagonal, can

be moved to become the 2 × 2 principal minor. Since a 2 × 2 symmetric matrix

with positive and negative diagonal entries has negative determinant this means that

a critical point is a saddle point if the diagonal contains positive and negative terms.

This applies, for instance, to Example 4.5. Another useful indicator is the presence

of a relatively large non-diagonal term; if ai j , the i j th term in the Hessian, satisfies

|ai j | > |akk | for all k then, as we see in our next example, this also implies that the

critical point is a saddle point.

It is not necessary to physically interchange these rows and columns as the appro-

priate sub-matrix can be isolated by inspection but to convince you that this process

is valid we include this step in our next example.

Example 4.6 Suppose the Hessian at a critical point P is

A =

⎛

⎜

⎜

⎝

2 2 9 1

2 3 2 0

9 2 4 2

1 0 2 −1

⎞

⎟

⎟

⎠

.

Since the diagonal contains positive and negative terms P is a saddle point. We see

this more clearly if we interchange row 2 and row 4 and column 2 and column 4.

We obtain the matrix B below and det(B2) < 0.

The presence of 9 in the third column suggests we interchange the second and

third rows and the second and third columns. This gives the matrix C below with

det(C2) < 0 and confirms that P is a saddle point.
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B =

⎛

⎜

⎜

⎝

2 1 9 2

1 −1 2 0

9 2 4 2

2 0 2 3

⎞

⎟

⎟

⎠

, C =

⎛

⎜

⎜

⎝

2 9 2 1

9 4 2 1

2 2 3 0

1 2 0 −1

⎞

⎟

⎟

⎠

.

The standard approach gives det(A1) = 2, det(A2) = 2, det(A3) = −171 and

det(A1) det(A3) < 0 implies that P is a saddle point.

The above method does not identify absolute or global maxima and minima. We

encountered a similar problem in Example 3.3. We now describe a useful method

which can be applied to certain functions on convex open sets. A subset U ⊂ R
n is

convex if the straight line joining any two points in U is contained in U. The interior

of a circle, sphere, box, polygon, the first quadrant or octant, and the upper half-plane

are typical examples of convex open sets. The exterior of a circle or polygon is not

convex.

Suppose f : U (open, convex) −→ R has continuous first and second order

partial derivatives at all points. If P, Q ∈ U and v = Q − P then, by convexity,

g(x) = f (P + xv) is defined on an open interval in R and is the restriction of

f to that part of the straight line through P and Q which lies in U. Moreover,

g′(x) =
∂ f

∂v
(P + xv) and

∂2 f

∂v2
(P + xv) = g′′(x). Suppose

∂2 f

∂v2
(X) �= 0 for all

X in U and all v �= 0. By the Intermediate Value Theorem g′′(x) is either always

positive or always negative. This implies that g′ is either strictly increasing or strictly

decreasing and in either case g has at most one critical point on every line in U . Since

we can carry out this analysis for any pair of points P and Q in U this shows that

f has at most one critical point in U. Suppose f has a local maximum at P. If

f (P) < f (Q) then the function g considered above must have a local minimum at

some point on the line joining P and Q. This contradicts the fact that g has at most

one critical point and shows that f has an absolute maximum over U at P. Similarly

if f has a local minimum at P then it has an absolute minimum over U at P. To

verify that
∂2 f

∂v2
(X) �= 0 when U is a convex open subset in R

n it suffices to show

that det(H f (x,y)) is never zero.

Example 4.7 Let

f (x, y) = x + y − ex − ey − ex+y

for all (x, y) in R
2. We have

∇ f (x, y) = (1 − ex − ex+y, 1 − ey − ex+y).

If (x, y) is a critical point of f then ex = 1 − ex+y = ey and x = y. Hence

e2x + ex − 1 = 0. If w = ex then w2 + w − 1 = 0 and w = (−1 ±
√

5)/2. Since

w = ex > 0 we have only one solution w = (−1+
√

5)/2 and f has just one critical

point at P = ((−1 +
√

5)/2, (−1 +
√

5)/2). The existence of a single critical point

suggests that we consider the Hessian at all points. We have
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H f (x,y) =
(

−ex − ex+y −ex+y

−ex+y −ey − ex+y

)

.

Hence det(H f (x,y)) = (ex + ex+y)(ey + ex+y) − e2x+2y = e2x+y + ey+2x + ex+y

is positive at all points (x, y) ∈ R
2. Since

∂2 f

∂x2
(P) < 0, f has a local and hence a

global maximum at P .

Exercises

4.1 Classify the non-degenerate critical points of

(a) x2 + xy + 2x + 2y + 1

(b) x3 + y3 − 3xy

(c) x3z − 192x + y2 − yz

(d) (2 − x)(4 − y)(x + y − 3)

(e) 4xyz − x4 − y4 − z4

(f) xyze−x2−y2−z2

(g) xy + x2z − x2 − y − z2

(h) x2 y + y2z + z2 − 8
√

2x

(i) 2x2 y2 − z2 + x − 2y + z

(j) x2 − xy + yz3 − 6z.

Show, using convexity, that the function in (b) has an absolute minimum over

the set U = {(x, y) : x > 1/2, y > 1/2}. Show using the exhaustion method

outlined in Example 3.3 that the function in (e) has an absolute maximum and

no absolute minimum over R
3. Show that the function in (f) has an absolute

maximum and an absolute minimum over R
3.

4.2 If f (x, y, z) = (ax2 + by2 + cz2)e−x2−y2−z2
and a > b > c > 0 show that

the function has two local maxima, one local minimum and four saddle points.

Find the maximum and minimum of f over R
3.

4.3 Show that the function xyz(x + y+z−1) has one non-degenerate critical point

and an infinite set of degenerate critical points. Show that the non-degenerate

critical point is a local minimum.

4.4 Show that every critical point of
x3 + y3 + z3

xyz
is degenerate.

4.5 Find the distance from the point (−1, 1, 1) to the level set z = xy.

4.6 Let U = (a1, b1) × (a2, b2) × · · · × (an, bn) ⊂ R
n and let

M(U ) =
{

f : U → R : all first- and second-order partial

derivatives of f exist and
∂2 f

∂xi∂x j

(P) =
∂2 f

∂x j∂xi

(P)

for allP ∈ Uand all i, j, 1 ≤ i, j ≤ n
}

.

Show that M(U ) has the following properties:
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(i) if f, g ∈ M(U ) and c ∈ R then f ± g, f · g and c · f ∈ M(U ) and if

g �= 0 then f/g ∈ M(U )

(ii) if f ∈ M(U ) and φ : R → R is twice continuously differentiable then

φ ◦ f ∈ M(U ).

Using (i) and (ii) show that

h(x, y, z) = sin2

(

exyz

y2 + z2 + 1

)

lies in M(U ). Verify this result by calculating directly the appropriate second-

order partial derivatives of h.

4.7 Let Y1, . . . , Ym be m points in R
n . Show that

∑m
i=1 ‖X − Yi‖2 achieves its

absolute minimum at X = 1
m

∑m
i=1 Yi . Interpret your result geometrically.

4.8 If z = φ(x, y) satisfies the equation

x2 + 2y2 + 3z2 − 2xy − 2yz = 2

find the points (x, y) at which φ has a local maximum or a local minimum.

4.9 If f : R
n −→ R has continuous first and second order partial derivatives show

that f ′′(x1, . . . , xn) = ( f ′)′(x1, . . . , xn) = H f (x1,...,xn).

4.10 Show directly that the set F−1(2, 1) in Example 3.1 is compact.



Chapter 5

Curves in Rn

Summary We introduce and discuss the concept of directed curve in R
n . We obtain a

formula for the length of a curve, prove the existence of unit speed parametrizations

and define piecewise smooth curves.

Directed and parametrized curves play a role in many of the topics discussed in the

remaining chapters of this book, e.g. line integrals, existence of a potential, Stokes’

theorem and the geometry of surfaces in R
3, and, furthermore, in a simple fashion

introduce us to concepts such as parametrizations and orientations that are later

developed and generalised in more involved settings.

We begin by giving a rigorous definition of directed curve. This may appear

complicated and unnecessarily cumbersome at first glance and so we feel it proper to

elaborate on why each condition is included. It is always important in mathematics

to understand the basic definition and to refer to it until one appreciates each part

separately and the totality of parts collectively. As progress is achieved there is usually

less need to refer to the definition but in case of ambiguity the definition is the book

of rules. The only requirement in a definition is that it be consistent, i.e. that the

various conditions do not contradict one another or the rules of mathematics. Apart

from this there is freedom in the choice of conditions and, indeed, many books would

give a slightly different definition of directed curve. The differences depend on the

degree of generality sought, the results aimed at and the methods used. However, all

definitions of curve, directed curve and parametrized curve contain the same essential

features.

Definition 5.1 A directed (or oriented) curve in R
n is a quadruple {Γ, A, B,

v} where Γ is a set of points in R
n ; A and B are points in Γ , called respectively the

initial and final points of Γ ; v is a unit vector in R
n called the initial direction, for

which there exists a mapping P : [a, b] → R
n , called a parametrization of Γ , such

that the following conditions hold:

(a) there exists an open interval I , containing [a, b] and a mapping from I into R
n

which has derivatives of all orders and which coincides with P on [a, b]
(b) P([a, b]) = Γ , P(a) = A, P(b) = B and P ′(a) = αv for some α > 0
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A = P (a)

B = P (b)

v

Fig. 5.1

A = P (a) = P (b)

v

−v

A = P (a) = P (b)

Fig. 5.2

(c) P ′(t) �= 0 for all t ∈ [a, b]
(d) P is injective (i.e. one to one) on [a, b) and (a, b].

Condition (a) is a rather strong regularity condition—we use the first derivative to

define the tangent, the second to define curvature, the third to define torsion and the

fourth to obtain the Frenet–Serret equations, and at this stage we felt it was just as easy

to assume that we had derivatives of all orders. We also wished to have derivatives

at the end points of the interval [a, b] and for this reason we assumed that P has

an extension as a smooth function (i.e. as a function with derivatives of all orders)

to an open interval containing [a, b]. We could achieve precisely the same degree

of smoothness by using one-sided derivatives at a and b but felt this appears even

more complicated. All definitions of a curve will include, as an essential feature a

continuous mapping P from an interval I in R onto Γ . The degree of differentiability,

whether the interval I is open, closed, finite or infinite may be regarded as options

that are available. We have chosen the options that suit our purposes.

The essential feature of condition (b), as we have just noted, is P([a, b]) = Γ .

The remaining parts endow the set Γ with a sense of direction. If A �= B then the

conditions P(a) = A and P(b) = B define a direction along Γ and in this case the

condition P ′(a) = αv is redundant as v is determined by {Γ, A, B} (Fig. 5.1).

If, however, A = B then we have a closed curve, and it is necessary to distinguish

between the two directions we may travel around Γ . In the case of curves in R
2 we

have clockwise and anticlockwise or counterclockwise directions. In R
n we do not

have such a concept and instead specify the direction along the curve by giving an

initial direction v (Fig. 5.2).

Note that when we know Γ and A then v = ±P ′(a)
/

‖P ′(a)‖ and the condition

α > 0 distinguishes between the two signs and fixes the direction. Condition (c) is

necessary to obtain a unit speed parametrization and we have already used P ′(a) �= 0

in (b). This condition excludes curves with corners but we get around this problem
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P (a)

(a)

P (t1)

P (t2)

P (b)

(b)

P (a)

P (t1)
P (b)

Fig. 5.3

by defining piecewise smooth curves. These are obtained by placing end to end a

finite number of directed curves. The transition from directed curves to piecewise

smooth curves is painless. Later we will require P ′′(t) �= 0 in order to define a unit

normal to a directed curve in R
3.

Since we allow A = B it follows that the mapping P may not be injective on

[a, b]. However, we do not wish the curve to cross itself (Fig. 5.3a) or to half cross

itself (Fig. 5.3b) as these lead to unnecessary complications and we have included

condition (d) to exclude such possibilities.

A continuous mapping P : [a, b] → R
n which satisfies (a), (c) and (d) is called a

parametrized curve. A parametrized curve determines precisely one directed curve

{

P([a, b]), P(a), P(b),
P ′(a)

‖P ′(a)‖

}

for which it is a parametrization.

Since the terminology “directed curve” and the notation {Γ, A, B, v} are rather

cumbersome we will use the term curve and the notation Γ in all cases where there

is little danger of confusion. If A �= B we sometimes write {Γ, A, B}. If we need to

use coordinates we usually let P(t) =
(

x1(t), . . . xn(t)
)

if Γ ∈ R
n and, when n = 3,

we let P(t) =
(

x(t), y(t), z(t)
)

. It is helpful to think of [a, b] as an interval of time

and P(t) as the position of a particle at time t as it travels along the route Γ from A

to B.

We call P ′(t) the velocity and ‖P ′(t)‖ the speed at time t . Since distance =
speed × time the formula

l(Γ ) =
b

∫

a

‖P ′(t)‖dt

where l(Γ ) is the length of Γ , is not surprising. We shall, however, pause to prove this

formula in order to show the usefulness of vector notation. Since P is differentiable

we have for all t and t + ∆t in [a, b]

P(t + ∆t) = P(t) + P ′(t)∆t + g(t,∆t) · ∆t
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a bti ti+1

∆ti

P (a)

P (ti)

P (ti+1)

P (b)

Fig. 5.4

where g(t,∆t) → 0 as ∆t → 0 for any fixed t . Hence P(t +∆t)− P(t) ≈ P ′(t)∆t

for ∆t close to zero. If we partition [a, b] we get a corresponding partition of Γ and

an approximation of the length of Γ (Fig. 5.4).

We have

l(Γ ) ≈
∑

i

‖P(ti+1) − P(ti )‖

≈
∑

i

‖P ′(ti )‖∆ti

−−−→
b

∫

a

‖P ′(t)‖dt

as we take finer and finer partitions of [a, b]. In terms of coordinates we have P(t) =
(

x1(t), . . . , xn(t)
)

, P ′(t) =
(

x ′
1(t), . . . , x ′

n(t)
)

and

l(Γ ) =
b

∫

a

‖P ′(t)‖dt =
b

∫

a

(

x ′
1(t)

2 + · · · + x ′
n(t)2

)1/2
dt.

Example 5.2 Let P(t) = cos t i + sin tj + tk, t ∈ [0, 2π ], denote a parametrized

curve Γ in R
3, where i, j and k denote the standard unit vector basis in R

3, i.e.

i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1). The curve Γ is part of a helix—it

spirals around a vertical cylinder (Fig. 5.5).

If we consider only the first two coordinates, this amounts to projecting onto the

R
2 plane in R

3, we get the standard parametrization t → (cos t, sin t) of the unit

circle. Hence, disregarding the final coordinate, which we take to be the height, the

particle appears to move in a circle. We have

P ′(t) = − sin t i + cos tj + k.

The rate of change of the height is given by the coefficient of the k term and so the

particle is rising with constant speed. We have
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z

x

y

Fig. 5.5

0 l a b

s−1 P
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‖P ′(t)‖ =
(

(− sin t)2 + (cos t)2 + 12
)1/2

=
√

2

and

l(Γ ) =
2π
∫

0

√
2dt = 2

√
2π.

If P : [a, b] → R
n is a parametrization of the directed curve Γ we define the length

function by the formula

s(t) =
t

∫

a

‖P ′(x)‖dx

for all t ∈ [a, b]. If l = l(Γ ) then s : [a, b] → [0, l] and, by the one-variable

fundamental theorem of calculus, s′(t) = ‖P ′(t)‖ > 0. Hence s is strictly increasing,

s−1 : [0, l] → [a, b] has derivatives of all orders on [0, l] and P ◦ s−1 maps [0, l]
onto Γ (Fig. 5.6). For the inverse function s−1 we have

(s−1)′(t) =
1

s′(s−1(t)
) =

1

‖P ′(s−1(t)
)

‖
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and hence

‖(P ◦ s−1)′(t)‖ =
‖P ′(s−1(t))‖

s′(s−1(t))
=

‖P ′(s−1(t))‖
‖P ′(s−1(t))‖

= 1.

Since the remaining conditions (for a parametrization) are easily checked it fol-

lows that P ◦ s−1 is a parametrization of Γ and we have proved the following result.

Proposition 5.3 Directed curves admit unit speed parametrizations.

If two particles start at the point A at time zero and both proceed along Γ towards

B at unit speed then their positions on Γ at time t will always agree. This shows that a

directed curve of length l admits a unique unit speed parametrization on [0, l]. Using

our construction of unit speed curve we may restate this as follows: if P1 : [a, b] → Γ

and P2 : [c, d] → Γ are any two parametrizations of the directed curve Γ , of length

l, and

s1(t) =
t

∫

a

‖P ′
1(x)‖dx, s2(t) =

t
∫

c

‖P ′
2(x)‖dx

are the associated length functions then

P1 ◦ s−1
1 (t) = P2 ◦ s−1

2 (t)

for all t ∈ [0, l].
To include curves with corners we extend the concept of directed curve to

that of piecewise smooth directed curve. A finite collection of directed curves

{Γi , Ai , Bi , vi}n
i=1 is called a piecewise smooth directed curve if

(a) each {Γi , Ai , Bi , vi} is a directed curve,

(b) Bi = Ai+1 for i = 1, . . . , n − 1 (i.e. the final point of Γi coincides with the

initial point of Γi+1).

If Bn = A1 we say that the piecewise smooth directed curve is closed. We use

the notation Γ for a piecewise smooth directed curve and A and B for its initial and

final points respectively. This definition is rather general and apart from curves with

corners it also includes curves which cross one another. In general such curves do not

admit a unit speed parametrization but it can be shown that there exists a continuous

parametrization

P : [a, b] −−−→ Γ =
n

⋃

i=1

Γi

and a partition {a0 = a, a1, a2, . . . , an = b} of [a, b] such that P
(

[ai−1, ai ]
)

= Γi ,

P(ai−1) = Ai , P(ai ) = Bi , i = 1, . . . , n, P has derivatives of all orders on [a, b]
and P ′(t) �= 0 for t �= a0, . . . , an .
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A piecewise smooth directed curve Γ = {Γi , Ai , Bi , vi}n
i=1 is studied and applied

by considering each of the component sections {Γi , Ai , Bi , vi} in turn (see for

instance Exercise 5.6 and our method of finding a potential in Chap. 6).

Exercises

5.1 Find the length of the curve parametrized by

P(t) = (2 cosh 3t,−2 sinh 3t, 6t), 0 ≤ t ≤ 5.

5.2 Show that the following parametrizations are unit speed

(a) P1(s) = 1
2

(

s +
√

s2 + 1, (s +
√

s2 + 1)−1,
√

2 log(s +
√

s2 + 1)

)

,

s ∈ [0, 1]

(b) P2(s) =
( (1 + s)3/2

3
,

(1 − s)3/2

3
,

s
√

2

)

, s ∈ [−1,+1]

(c) P3(s) =
1

2

(

cos−1(s) − s
√

1 − s2, 1 − s2, 0
)

, s ∈ [0, 1].

5.3 Let r and h denote positive numbers. Find a unit speed parametrization of the

helix P(t) = (r cos t, r sin t, ht), 0 ≤ t ≤ 6π.

5.4 Obtain unit speed parametrizations of the curves defined by

(a) t −−−→ (et cos t, et sin t, et ), t ∈ [0, 1]
(b) t −−−→ (cosh t, sinh t, t), t ∈ [0, 1].

5.5 Parametrize the curve of intersection of the sphere x2 + y2 + z2 = 16 and the

cylinder x2 + (y − 2)2 = 4 which lies in the first octant.

5.6 Parametrize the anticlockwise directed triangle in R
2 with vertices (1, 2),

(−1,−2) and (4, 0) as a piecewise smooth curve.

5.7 Find the closest points on the curve x2 − y2 = 1 to (a, 0) where (i) a = 4

(ii) a = 2 (iii) a =
√

2.

5.8 Let f denote a real-valued differentiable function defined on an open subset U

of R
n and suppose ∇ f (X) �= 0 for all X in U . Let P denote a parametrized

curve in U . Use the chain rule to show that
d

dt
( f ◦ P)(t) = 〈∇ f (P(t)), P ′(t)〉

and hence deduce, using the Cauchy–Schwarz inequality, that ∇ f (X0) gives the

direction of maximum increase of f at X0. Show that ‖∇ f (X0)‖ is the maximum

rate of increase.

5.9 If T : R
n → R

n is a linear mapping such that ‖T X‖ = ‖X‖ for all X ∈ R
n

show that T preserves the inner product, angles, area and the length of curves.

When n = 3, show that T preserves the cross product.

http://dx.doi.org/10.1007/978-1-4471-6419-7_6


Chapter 6

Line Integrals

Summary We integrate vector-valued and scalar-valued functions along a directed

curve in R
n . We discuss scalar and vector potentials and define the curl of a vector

field in R
3.

The differential calculus was developed to study extremal (i.e. maximal and minimal)

values of functions. Since it is only possible to discuss the maximum and minimum of

a real-valued function it is not surprising that such functions occupy a prominent role

in several-variable differential calculus. However, in moving to integration theory it

is more natural (and more natural in mathematics usually means more useful, more

efficient and more elegant) to consider vector-valued functions where the domain

and the range share, in perhaps a loose way, a common dimension. Formally, we

have the following definition of a vector field.

Definition 6.1 A function F which maps a subset U of R
n into R

n is called a vector

field on U.

If U is an open subset of R
n and the vector field has derivatives of all orders we

call it a smooth vector field and if U is arbitrary and the vector field is continuous

we use the term continuous vector field. We shall also use the notation F to denote a

vector field.

The gradient is an important example of a vector field, i.e. if U is open and

f : U ⊂ R
n → R is differentiable then ∇ f : U → R

n is a vector field on U .

Another useful example occurs when Ŵ is a directed curve in R
n and F is a

function which assigns a vector in R
n to each point on Ŵ—in this case we say that F

is a vector field along Ŵ. For example, if P is a parametrization of a directed curve

Ŵ in R
n then the mapping

P(t) ∈ Ŵ → P ′(t) ∈ R
3

is a smooth vector field along Ŵ.

S. Dineen, Multivariate Calculus and Geometry, 55

Springer Undergraduate Mathematics Series, DOI: 10.1007/978-1-4471-6419-7_6,

© Springer-Verlag London 2014
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Fig. 6.1

P

a bti ti+1

P (ti)
P (ti+1)
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P (a)

Fig. 6.2

Vector fields, which assign vectors to points in the domain of definition, are often

represented as in Fig. 6.1.

This representation is useful in locating zeros and suggesting properties such as

continuity and smoothness. Furthermore, it allows various physical interpretations

of vector fields, e.g. as the velocity of a moving fluid and the flow of an electric

current which lead, in turn, to important physical and engineering applications.

We begin our study of integration theory by defining the integral of a vector field

F along a directed curve Ŵ. Let P : [a, b] → Ŵ denote a parametrization of Ŵ. To

each partition of [a, b] we obtain a partition of Ŵ (Fig. 6.2) and the Riemann sum

∑

i

F
(

P(ti )
)

·
(

P(ti+1) − P(ti )
)

≈
∑

i

F
(

P(ti )
)

· P ′(ti )�ti

where �ti = ti+1 − ti and · denotes the inner product in R
n . Note that we are using,

as usual, the linear approximation to P(t +�t), P(t)+ P ′(t)�t . If F is a continuous

vector field along Ŵ, i.e. if the mapping t ∈ [a, b] → F(P(t)) is continuous, then

as we take finer and finer partitions of [a, b] the Riemann sums converge to the limit

∫ b

a

F
(

P(t)
)

· P ′(t) dt.

We denote this integral by
∫

Ŵ
F , since we shall shortly prove that it is independent of

the parametrization P , and call it the line integral of F over Ŵ. In terms of coordinates,
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for instance in the case n = 3, we have

F = ( f, g, h), P(t) =
(

x(t), y(t), z(t)
)

, P ′(t) =
(

x ′(t), y′(t), z′(t)
)

and

∫

Ŵ

F =
∫ b

a

[

f
(

x(t), y(t), z(t)
)

· x ′(t) + g
(

x(t), y(t), z(t)
)

· y′(t)

+ h
(

x(t), y(t), z(t)
)

· z′(t)
]

dt.

This is frequently written in the form

∫

Ŵ

f dx + g dy + h dz.

If (Ŵ, A, B, v) is a directed curve and Γ̃ is obtained by changing the direction along

the curveŴ, i.e. Γ̃ = (Ŵ, B, A,−v), then clearly

∫

Γ̃

F = −
∫

Ŵ

F for any continuous

vector field F .

Example 6.2 We evaluate

∫

Ŵ

xy dx + xz2 dy + xyz dz

where the curve Ŵ is parametrized by

P(t) = (t, t2, t3), 0 ≤ t ≤ 1.

In coordinates we have

⎧

⎨

⎩

x = x(t) = t

y = y(t) = t2

z = z(t) = t3
=⇒

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dx

dt
= x ′(t) = 1

dy

dt
= y′(t) = 2t

dz

dt
= z′(t) = 3t2

=⇒

⎧

⎨

⎩

dx = dt

dy = 2t dt

dz = 3t2 dt

and

∫

Ŵ

xy dx + xz2 dy + xyz dz =
∫ 1

0

t3 dt + t7 · 2t dt + t6 · 3t2 dt

=
[ t4

4
+

2t9

9
+

3t9

9

]1

0
=

29

36
.

Alternatively, changing to vector notation, we let F(x, y, z) = (xy, xz2, xyz). Then

F
(

P(t)
)

= (t3, t7, t6) and P ′(t) = (1, 2t, 3t2). Hence
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∫

Ŵ

F =
∫ 1

0

F
(

P(t)
)

· P ′(t) dt =
∫ 1

0

(t3, t7, t6) · (1, 2t, 3t2) dt

=
∫ 1

0

(t3 + 2t8 + 3t8) dt =
29

36
.

We return to the general situation. If P : [a, b] → Ŵ and Q : [c, d] → Ŵ are two

parametrizations of Ŵ with length functions s and s1 respectively, then, as we saw in

Chap. 5,

P ◦ s−1 = Q ◦ s−1
1 on [0, l], l = length of Ŵ.

Using the one-variable change of variables, y = s−1(t) and x = s−1
1 (t), we obtain

∫ l

0

F
(

P ◦ s−1(t)
)

· (P ◦ s−1)′(t) dt

=

∫ l

0

F
(

P ◦ s−1(t)
)

· P ′
(

s−1(t)
)

(s−1)′(t) dt

=

∫ b

a

F
(

P(y)
)

· P ′(y) dy.

Similarly

∫ l

0

F
(

Q ◦ s−1
1 (t)

)

· (Q ◦ s−1
1 )′(t) dt =

∫ d

c

F
(

Q(x)
)

· Q′(x) dx .

Since P ◦ s−1 = Q ◦ s−1
1 this implies

∫ b

a

F
(

P(y)
)

· P ′(y) dy =

∫ d

c

F
(

Q(x)
)

· Q′(x) dx

and we get the same value no matter which parametrization is used. This justifies the

notation
∫

Ŵ
F .

If P : [a, b] → Ŵ is a parametrization of the directed curve Ŵ in R
n and t ∈ [a, b]

let T (t) = P ′(t)
/

‖P ′(t)‖. We call T (t) the unit tangent to the (directed) curve

at P(t). It is easily seen that any two parametrizations define the same unit tangent

vector at each point of Ŵ. This leads to another way of writing line integrals. If F is

a vector field along Ŵ (always of course assumed to be continuous) then

∫

Ŵ

F =

∫ b

a

F
(

P(t)
)

· P ′(t) dt

=

∫ b

a

F
(

P(t)
)

·
P ′(t)

‖P ′(t)‖
‖P ′(t)‖ dt

http://dx.doi.org/10.1007/978-1-4471-6419-7_5
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=

∫ b

a

F
(

P(t)
)

· T (t) ‖P ′(t)‖ dt

=

∫ b

a

(F · T ) ds

and when written in this form one should remember, in applying a parametrization

P , that F and T are both evaluated at P(t) and ds = ‖P ′(t)‖ dt .

Real-valued functions or scalar fields, such as the speed of a parametrization,

can also be defined along a directed curve Ŵ. Since these are not endowed with a

sense of direction we cannot apply directly our definition of integral. Fortunately, we

have just observed a special or privileged direction associated with each point on a

curve, the tangent direction, and by associating the continuous real-valued function

f : Ŵ → R with the vector field f T : Ŵ → R
n we can define

∫

Ŵ
f . The privileged

direction on an oriented surface in R
3 is the normal direction and in this case it is

also possible to consider scalar-valued integration as a special case of vector-valued

integration.

If P : [a, b] → Ŵ is a parametrization of the directed curve Ŵ we define

∫

Ŵ

f =

∫

Ŵ

f T =

∫ b

a

f
(

P(t)
)

T (t) · T (t)‖P ′(t)‖ dt

=

∫ b

a

f
(

P(t)
)

‖P ′(t)‖ dt (6.1)

Because of (6.1) we sometimes write
∫

Ŵ
f ds in place of

∫

Ŵ
f .

We now seek to identify those vector fields in R
n which are the gradient of a

scalar-valued function. Vector fields of this kind are called conservative and are

said to have a scalar potential. If ∇ f = F we call f a scalar potential of F . Our

investigation of this problem leads to a generalisation of the fundamental theorem of

one-variable calculus
∫ b

a

g′(t) dt = g(b) − g(a)

where g is continuous on [a, b] and differentiable on (a, b).

We begin by considering properties of the gradient of f : U ⊂ R
n → R. If Ŵ is

a directed curve in U parametrized by P : [a, b] → R
n then

∫

Ŵ

∇ f =

∫ b

a

∇ f
(

P(t)
)

· P ′(t) dt

=

∫ b

a

d

dt
( f ◦ P)(t) dt (chain rule)

=
[

f ◦ P(t)
]b

a
(fundamental theorem of calculus in R)

= f
(

P(b)
)

− f
(

P(a)
)

.



60 6 Line Integrals

A

U

Γ
X

X + hej

Fig. 6.3

Thus the line integral of ∇ f along Ŵ depends only on the values of f at the initial

and final points of the curve. This, as we shall see in Proposition 6.3, characterises

vector fields which have a scalar potential. If Ŵ is a piecewise smooth directed curve

in R
n which is the union of directed curves (Ŵi )

k
i=1 and F is either a vector field

along Ŵ or a real-valued function on Ŵ we let

∫

Ŵ

F =

k
∑

i=1

∫

Ŵi

F.

In the next proposition it is necessary to assume that any pair of points in the open

set U can be joined by a piecewise smooth directed curve which lies in U ; an open

set of this kind is said to be connected.

Proposition 6.3 Let F : U ⊂ R
n → R

n denote a continuous vector field on the

connected open subset U of R
n . If for any two points A and B in R

n and any two

piecewise smooth directed curves Ŵ1 and Ŵ2 joining A and B we have

∫

Ŵ1

F =

∫

Ŵ2

F

then F has a potential.

Proof Let A denote a fixed point in U . For any X in U let f (X) =
∫

Ŵ
F where Ŵ

is any piecewise smooth directed curve in U joining A to X . By our hypothesis f is

well defined, i.e. there is no ambiguity in the definition. Let F = ( f1, . . . , fn) and

let Ŵ denote a curve joining A to X . Fix j , 1 ≤ j ≤ n, and let Y = he j where h

denotes a real number close to 0. Let Ŵ1 denote the directed curve parametrized by

P(t) = X + tY , 0 ≤ t ≤ 1. Then Ŵ1 joins X to X + Y and Ŵ ∪ Ŵ1 is a piecewise

smooth directed curve in U which joins A to X + Y (Fig. 6.3).
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Hence

f (X + Y ) − f (X) =

∫

Ŵ∪Ŵ1

F −

∫

Ŵ

F

=

∫

Ŵ1

F =

∫ 1

0

F
(

P(t)
)

· P ′(t) dt.

Since P ′(t) = Y = he j

f (X + Y ) − f (X) =

∫ 1

0

F
(

P(t)
)

· he j dt

= h

∫ 1

0

f j (X + tY ) dt

= h f j (X) + h

∫ 1

0

(

f j (X + tY ) − f j (X)

)

dt.

As F is continuous, each component in F and, in particular, f j is also continuous.

Hence

max
0≤t≤1

∣

∣ f j (X + tY ) − f j (X)
∣

∣ −−−→ 0 as h → 0

and
∣

∣

∣

∫ 1

0

(

f j (X + tY ) − f j (X)

)

dt

∣

∣

∣
≤ max

0≤t≤1

∣

∣ f j (X + tY ) − f j (X)
∣

∣.

We have shown

f (X + he j ) = f (X) + h f j (X) + g(X, h)h

where g(X, h) → 0 as h → 0. Hence
∂ f

∂x j

(X) = f j (X) and this completes the

proof. ⊓⊔

Proposition 6.3 can be used to find potentials but is not very practical for showing

existence. We need a simpler method which follows from the observation:

if F = ( f1, . . . , fn) is a continuously differentiable vector field with potential f ,

i.e. f j =
∂ f

∂x j

for all j , then for all i and j

∂ fi

∂x j

=
∂

∂x j

( ∂ f

∂xi

)

=
∂2 f

∂x j∂xi

=
∂

∂xi

( ∂ f

∂x j

)

=
∂ f j

∂xi

.

The converse is true for suitable open sets—the whole space R
n is always suitable

and so also is any convex set in R
n . In R

2 an open set U is suitable if and only

if the “interior” of any closed curve in U also lies in U ; roughly speaking this

means that U contains no holes. In particular the open set R
2\{(0, 0)} is not suitable.
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However, in R
3 the whole space with a finite number of points removed is suitable.

These examples show that the concept of suitability is rather subtle. The proof of the

following result involves Green’s theorem (Chap. 9) and Proposition 6.3.

Proposition 6.4 If F = ( f1, . . . , fn) is a continuously differentiable vector field on

a suitable open set in R
n then F has a potential if and only if

∂ fi

∂x j

=
∂ f j

∂xi

(6.2)

for all i and j .

Example 6.5 We wish to show that F(x, y, z) = (yez, xez, xyez) has a potential.

Let F = ( f1, f2, f3). To apply Proposition 6.4 we must verify (6.2), that is we must

show
∂ f1

∂y
=

∂ f2

∂x
,

∂ f1

∂z
=

∂ f3

∂x
,

∂ f2

∂z
=

∂ f3

∂y
.

We have

∂ f1

∂y
= ez =

∂ f2

∂x
,

∂ f1

∂z
= yez =

∂ f3

∂x
,

∂ f2

∂z
= xez =

∂ f3

∂y

and hence F has a potential on R
3.

The following is probably the simplest way to find a potential. If f is a potential

for F then
∂ f

∂x
= yez,

∂ f

∂y
= xez,

∂ f

∂z
= xyez . (6.3)

Hence

f =

∫

∂ f

∂x
dx =

∫

yez dx = xyez + φ(y, z)

where φ is the constant of integration with respect to x which may, however, depend

on y and z. Differentiating with respect to y we get

∂ f

∂y
= xez +

∂φ

∂y

and comparing this with the formula for
∂ f

∂y
in (6.3) we have

xez +
∂φ

∂y
= xez

and
∂φ

∂y
= 0.

http://dx.doi.org/10.1007/978-1-4471-6419-7_9
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x

z

y
(0, 0, 0)

(x, 0, 0)

(x, y, z)

(x, y, 0)

Γ1

Γ2

Γ3

Fig. 6.4

Hence φ does not depend on y and we let φ(y, z) = ψ(z). Now differentiating

f (x, y, z) = xyez + ψ(z)

and comparing this with (6.3) gives

∂ f

∂z
= xyez + ψ ′(z) = xyez

and ψ ′(z) = 0. This implies that ψ is a constant and we have shown

f (x, y, z) = xyez + c

for some constant c.

We can also use Proposition 6.3 to find a potential f . This proposition tells us

that

f (x, y, z) =

∫

Ŵ

F

where Ŵ is any piecewise smooth directed curve in R
3, joining a fixed point to

(x, y, z), is a potential of F . We take the fixed point to be the origin in R
3 and a

piecewise smooth curve Ŵ consisting of three straight lines parallel to the axis Ŵ1,

Ŵ2, Ŵ3. Specifically we use the following:

Ŵ1 joins (0, 0, 0) to (x, 0, 0), P1(t) = (t, 0, 0), P ′
1(t) = (1, 0, 0), 0 ≤ t ≤ x

Ŵ2 joins (x, 0, 0) to (x, y, 0), P2(t) = (x, t, 0), P ′
2(t) = (0, 1, 0), 0 ≤ t ≤ y

Ŵ3 joins (x, y, 0) to (x, y, z), P3(t) = (x, y, t), P ′
3(t) = (0, 0, 1), 0 ≤ t ≤ z

(see Fig. 6.4).
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Then

f (x, y, z) =

∫

Ŵ1

F +

∫

Ŵ2

F +

∫

Ŵ3

F

=

∫ x

0

f1

(

P1(t)
)

dt +

∫ y

0

f2

(

P2(t)
)

dt +

∫ z

0

f3

(

P3(t)
)

dt

=

∫ x

0

f1(t, 0, 0) dt +

∫ y

0

f2(x, t, 0) dt +

∫ z

0

f3(x, y, t) dt

=

∫ x

0

0 · dt +

∫ y

0

xe0 dt +

∫ z

0

xyet dt

= 0 + xy +
[

xy · et
]z

0

= xy + xyez − xy

= xyez .

We verify this result by noting

∂

∂x
(xyez) = yez = f1,

∂

∂y
(xyez) = xez = f2,

∂

∂z
(xyez) = xyez = f3.

We now define the cross-product of two vectors in R
3. This allows us to present the

classical notation for what are essentially vector derivatives. We shall also need this

product when we discuss the Frenet-Serret equations in Chap. 7. If v = (v1, v2, v3)

and w = (w1, w2, w3) are two vectors in R
3 then the cross product of v and w, v×w,

is defined as

v × w =

∣

∣

∣

∣

∣

∣

i j k

v1 v2 v3

w1 w2 w3

∣

∣

∣

∣

∣

∣

= (v2w3 − v3w2)i − (v1w3 − v3w1)j + (v1w2 − v2w1)k

= (v2w3 − v3w2,−v1w3 + v3w1, v1w2 − v2w1).

Since ∇ f =
( ∂

∂x
,

∂

∂y
,

∂

∂z

)

( f ) we define curl(F) or ∇ × F , F = ( f1, f2, f3) a

vector field, by the formula

∇ × F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂

∂x

∂

∂y

∂

∂z

f1 f2 f3

∣

∣

∣

∣

∣

∣

∣

∣

=
(∂ f3

∂y
−

∂ f2

∂z

)

i −
(∂ f3

∂x
−

∂ f1

∂z

)

j +
(∂ f2

∂x
−

∂ f1

∂y

)

k.

One easily sees that curl(∇ f ) = 0 for any real-valued function with continuous first-

and second-order partial derivatives while Proposition 6.4 says the converse is true

on suitable domains, that is

http://dx.doi.org/10.1007/978-1-4471-6419-7_7
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F = ∇ f ⇐⇒ curl(F) = 0.

If F is the velocity of a fluid then curl (F) measures the tendency of the fluid to

curl or rotate about an axis. Curl(F) gives the direction of the axis of rotation and

‖curl(F)‖ measures the speed of rotation.

Since the symbolism ∇ × F has proved useful we consider the analogous symbol

∇ · F where the dot replaces the cross product. This makes sense for a vector field

on R
n . If F = ( f1, f2, . . . , fn), we let

∇ · F =
( ∂

∂x1
, . . . ,

∂

∂xn

)

· ( f1, . . . , fn) =

n
∑

i=1

∂ fi

∂xi

:= div(F).

This is called the divergence of F and written div(F) (see Chap. 15). A vector field

G is a vector potential for the vector field F on the open subset U of R
3 if on U we

have

curl(G) = ∇ × G = F.

On “suitable” open sets a vector field F has a vector potential if and only if ∇ · F =

div(F) = 0.

Example 6.6 We show that F(X) = X
/

‖X‖3 has a vector potential on

R
3\{ the z-axis}. Let

G(x, y, z) =
(yz,−xz, 0)

(x2 + y2)(x2 + y2 + z2)1/2
=

z

‖X‖2 − z2
·

1

‖X‖
(y,−x, 0)

on R
3\{ the z-axis} = R

3\{(x, y, z) : x = y = 0}. We calculate curl(G).

To simplify our calculations we use symmetry and the following result which follows

immediately from Exercise 1.10:

∂

∂x

(

‖X‖
)

=
x

‖X‖
.

We have

curl (G) = (g1, g2, g3) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂

∂x

∂

∂y

∂

∂z

yz

(x2 + y2)‖X‖

−xz

(x2 + y2)‖X‖
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

http://dx.doi.org/10.1007/978-1-4471-6419-7_15
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which implies

g1 =
∂

∂z

( xz

(x2 + y2)‖X‖

)

=
x

x2 + y2

∂

∂z

( z

‖X‖

)

=
x

x2 + y2
·

(

‖X‖ − z2

‖X‖

)

‖X‖2

=
x

x2 + y2
·

(

‖X‖2 − z2
)

‖X‖3

=
x

‖X‖3
,

since x2 + y2 + z2 = ‖X‖2. By symmetry g2 = y
/

‖X‖3. Finally

g3 =
∂

∂x

( −xz

(x2 + y2)‖X‖

)

−
∂

∂y

( yz

(x2 + y2)‖X‖

)

= −z

[

(x2 + y2)‖X‖ − 2x2‖X‖ −
x2(x2+y2)

‖X‖

(x2 + y2)2‖X‖2

+
(x2 + y2)‖X‖ − 2y2‖X‖ −

y2(x2+y2)
‖X‖

(x2 + y2)2‖X‖2

]

=
−z(−1)

‖X‖3
=

z

‖X‖3

and we have shown

curl(G) =
(x, y, z)

(x2 + y2 + z2)3/2
=

X

‖X‖3
= F.

Exercises

6.1 Evaluate
∫

Ŵ
F where F is a vector field and P is a parametrization of the directed

curve Ŵ

(a) F(x, y, z) = (x, y, z), P(t) = (sin t, cos t, t), 0 ≤ t ≤ 2π ,

(b) F(x, y, z) = x2 dx + xyz dy + xz dz, P(t) = (t, t2, t3), 0 ≤ t ≤ 1,

(c) F(x, y, z) = cos zi + ex j + eyk, P(t) = (1, t, et ), 0 ≤ t ≤ 4.

6.2 Find, if they exist, scalar potentials for the following vector fields

(a) F(x, y, z) = (2x + zexz, z, y + xezx ),

(b) G(x, y, z) = (y, z cos yz, y cos yz),

(c) H(x, y, z) =
(

y + yz cos(xyz), x + xz cos(xyz), 2z + xy cos(xyz)
)

,

(d) K (x, y, z) =
(

2x cos(x2 + yz), z cos(x2 + yz), y cos(x2 + yz)
)

.
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6.3 Let f (x, y, z) = x2 y2 + y2z2. Verify directly that ∇ × ∇ f = 0.

6.4 Compute the curl of each of the following vector fields:

(a) F1(x, y, z) =
(3, 1, 2)

‖X‖

(b) F2(x, y, z) =
(yz, zx, xy)

‖X‖

(c) F3(X) =
〈X, X〉X

‖X‖4

where X = (x, y, z) ∈ R
3 \ {0}.

6.5 If a, b, c and d are vectors in R
3 show that

(a) a · b × c = c · a × b =

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

.

(b) a × (b × c) = (a · c)b − (a · b)c

(c) (a × b) · (c × d) =

∣

∣

∣

∣

a · c a · d

b · c b · d

∣

∣

∣

∣

.

6.6 Let f, g : R
3 → R and F, G : R

3 → R
3 denote smooth functions. Prove

(a) div( f F) = f div(F) + ∇ f · F

(b) div(F × G) = curl(F) · G − F · curl(G)

(c) curl( f F) = ∇ f × F + f curl(F).

6.7 If f : U (open) ⊂ R
3 → R has continuous second-order derivatives show that

div(∇ f ) =
∂2 f

∂x2
+

∂2 f

∂y2
+

∂2 f

∂z2
.

Symbolically the left-hand side has the form ∇ · ∇ f and is written (for this

reason) ∇2 f . (∇2 f is called the Laplacian of f and if ∇2 f = 0 then f is

called harmonic).

6.8 Show that
z

(x2 + y2 + z2)3/2
is harmonic on R

3 \ {0, 0, 0}.

6.9 If f : R
+ → R and g(X) = f (‖X‖) for X ∈ R

3 \ {0, 0, 0} show that

∇g(X) = f ′(‖X‖)
X

‖X‖
and ∇2g(X) = f ′′(‖X‖) +

2

‖X‖
f ′(‖X‖).

Show that g is harmonic on R
3 \ {0, 0, 0} if and only if

f (r) =
A

r
+ B

for all r �= 0 in R.



Chapter 7

The Frenet–Serret Equations

Summary We discuss curvature and torsion of directed curves and derive the Frenet–

Serret equations. Vector-valued differentiation and orthonormal bases are the main

tools used.

In this chapter we define geometric concepts associated with a directed curve and

derive a set of equations—the Frenet–Serret equations—which capture the funda-

mental relationships between them.

We begin with directed curves in R
2 since this particular case exhibits special

features not present in higher dimensions. These are due to considering a one-

dimensional object (the directed curve) in two-dimensional space, R
2. The same

phenomena appear in Chap. 12 when we examine a two-dimensional object (an ori-

ented surface) in three-dimensional space, R
3, and the same underlying principles

are present when we introduce torsion later in this chapter. Moreover, our motivation

and interpretation of normal curvature (Chap. 16) and geodesic curvature (Chap. 18)

are based on our study of curves in R
2. This special straightforward case deserves

particular attention because of the insight it provides into later developments.

Let P : [a, b] → R
2 denote a unit speed parametrization of the directed curve Ŵ

and let P(t) =
(

x(t), y(t)
)

for all t in [a, b]. At P(t) ∈ Ŵ the unit tangent, T (t), is

given by

T (t) = P ′(t) =
(

x ′(t), y′(t)
)

.

The special features, mentioned above, imply that there are just two unit vectors in R
2

perpendicular to T (t) and using the anticlockwise (or counterclockwise) orientation

of R
2 we can distinguish between them. If we rotate T (t) through +π/2 in an

anticlockwise direction we obtain a unit vector on the left-hand side of the direction

of motion along Ŵ (Fig. 7.1). We call this unit vector the unit normal to Ŵ at P(t)

and denote it by N (t). In coordinates

N (t) =
(

−y′(t), x ′(t)
)

.

We have 〈T (t), T (t)〉 = 1 and differentiating we get, by the product rule,

S. Dineen, Multivariate Calculus and Geometry, 69
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A

N(t)

π/2 T (t)

B

Fig. 7.1

d

dt
〈T (t), T (t)〉 = 0 = 〈T ′(t), T (t)〉 + 〈T (t), T ′(t)〉.

Since

〈T ′(t), T (t)〉 = 〈T (t), T ′(t)〉

this implies

〈T ′(t), T (t)〉 = 0.

Hence T ′(t) is perpendicular to T (t) and, using once more the fact that R
2 is two-

dimensional, we see that T ′(t) is parallel to N (t). The curvature of Ŵ at P(t) is

defined as the unique scalar, κ(t), satisfying

T ′(t) = κ(t)N (t). (7.1)

In terms of coordinates

κ(t) = 〈κ(t)N (t), N (t)〉 = 〈T ′(t), N (t)〉
=

(

x ′′(t), y′′(t)
)

·
(

−y′(t), x ′(t)
)

= y′′(t)x ′(t) − x ′′(t)y′(t) (7.2)

for all t ∈ [a, b]. We call |κ(t)| the absolute curvature of Ŵ at P(t) and note that

|κ(t)| = ‖T ′(t)‖ = ‖P ′′(t)‖. (7.3)

Example 7.1 Let P : [a, b] → R
2 denote an arbitrary parametrization of the

directed curve Ŵ. We recall from Chap. 5 that P ◦ s−1 : [0, l] → Ŵ is a unit speed

parametrization of Ŵ where l is the length of Ŵ and s is the length function. If

P(t) =
(

x(t), y(t)
)

, t ∈ [a, b], then

P ◦ s−1(t) =
(

x ◦ s−1(t), y ◦ s−1(t)
)

, t ∈ [0, l]
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and, moreover,

(s−1)′(t) =
1

‖P ′(s−1(t)
)

‖
=

1
(

x ′(s−1(t)
)2 + y′(s−1(t)

)2
)1/2

.

We have

(x ◦ s−1)′(t) = x ′(s−1(t)
)

· (s−1)′(t)

and

(x ◦ s−1)′′(t) = x ′′(s−1(t)
)(

(s−1)′(t)
)2 + x ′(s−1(t)

)

· (s−1)′′(t)

and analogous formulae for (y ◦ s−1)′(t) and (y ◦ s−1)′′(t). Substituting these into

(7.2) and simplifying we obtain the curvature at the point P(t), t ∈ [a, b],

κ(t) =
y′′(t)x ′(t) − x ′′(t)y′(t)
(

(

x ′(t)
)2 +

(

y′(t)
)2

)3/2
. (7.4)

If Ŵ is the graph of a smooth function f : [a, b] → R directed from left to right

then P(t) =
(

t, f (t)
)

, t ∈ [a, b], is a parametrization of Ŵ. This parametrization

is only unit speed in the trivial case of a horizontal line (why?). Since x(t) = t we

have x ′(t) = 1 and x ′′(t) = 0 and as y(t) = f (t) we obtain y′(t) = f ′(t) and

y′′(t) = f ′′(t). Hence the curvature at
(

t, f (t)
)

is

κ(t) =
f ′′(t)

(

1 + f ′(t)2
)3/2

.

We now discuss the geometric significance of curvature. Let P denote a unit speed

parametrization of the directed curve Ŵ. For simplicity we suppose 0 ∈ [a, b], the

domain of definition of P . If t is close to zero then

P(t) = P(0) + P ′(0)t + P ′′(0)
t2

2
+ g(t)t2 (7.5)

where g(t) → 0 as t → 0. Since P ′(0) = T (0) and P ′′(0) = T ′(0) = κ(0)N (0)

we can rewrite this as

P(t) = P(0) + T (0)t + κ(0)N (0)
t2

2
+ g(t)t2.

The function

Q(t) = P(0) + T (0)t + κ(0)N (0)
t2

2
(7.6)
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(0, bt)

N

Q(t)

TtQ(0)

N

tQ(0)

T
Q(t)

(0, bt)

(a) (b)

Fig. 7.2

is the best quadratic approximation to Ŵ near P(0) and the curve, parametrized by

Q, has the same tangent, the same normal and the same curvature as Ŵ at P(0).

By translating and rotating the plane, if necessary, we can suppose P(0) = (0, 0),

T (0) = (1, 0) and N (0) = (0, 1). This implies Q(t) = (t, κ(0)t2/2) and, if κ(0) 	=
0, then one of the two situations portrayed in Fig. 7.2 holds.

Let Ct denote the circle with centre (at , bt ) which passes through the points

Q(−t), Q(0), Q(t). By symmetry (at , bt ) lies on the y-axis, hence at = 0 and |bt |
is the radius of Ct . As t tends to zero the circles Ct converge to a circle C with centre

(0, b) and radius |b|. This is the circle of curvature at Q(0) to the directed curve

parametrized by Q. Since P(t)−Q(t)

t2 → 0 as t → 0 it can easily be shown that C

is also the circle of curvature to Ŵ at P(0), i.e. the circle that fits closest to Ŵ near

P(0). The centre (0, b) is called the centre of curvature of Ŵ at P(0) and |b| is the

radius of curvature.

We have

b2
t = ‖(0, bt ) − (t, κ(0)t2/2)‖2 = t2 + (bt − κ(0)t2/2)2.

Hence

b2
t = t2 + b2

t − btκ(0)t2 + κ(0)2t4/4

and

btκ(0) = 1 +
κ(0)2t2

4
.

Letting t tend to zero we get bκ(0) = 1. We interpret |κ(0)| as

1

|b|
=

1

radius of circle of curvature
.

Since the sign of b tells us on which side of Ŵ the circle of curvature lies and bκ(0) = 1

we have
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C

B T

A

D

Fig. 7.3

κ(0) > 0 ⇐⇒ the circle of curvature and the normal are

on the same side of Ŵ (Fig.7.2a)

κ(0) < 0 ⇐⇒ the circle of curvature and the normal lie

on opposi te sides of Ŵ(Fig.7.2b).

If κ(0) = 0 then Ŵ is rather flat near P(0) and the circle of curvature has infinite

radius and thus is a straight line—in our case the x-axis.

We have thus established a geometric interpretation for both absolute curvature

and the sign of curvature in R
2 and this often yields immediate and useful information.

For example, consider the ellipse in Fig. 7.3, oriented in an anticlockwise direction.

The normal will always point into the ellipse and is called, for this reason, the inner

normal. Since the circle of curvature at any point has finite radius and lies on the

same side of the tangent line as the curve the curvature is always strictly positive.

At the points A and C the circles of closest fit to the ellipse have minimum radii

among all points on the ellipse. Hence we have maximum curvature at A and C and,

similarly, minimum curvature at B and D.

Now consider a directed curve Ŵ in R
n , n > 2, with unit speed parametrization

P : [a, b] → Ŵ. As before the unit tangent to Ŵ at P(t) is P ′(t) = T (t). We

cannot, however, define the unit normal to Ŵ at P(t) by rotating T (t) since there

are not just two but an infinite number of sides to Ŵ and thus an infinite number

of ways of choosing a unit vector perpendicular to T (t). Even if there were only

two directions we would require some concept of anticlockwise direction in R
n to

distinguish between them.

To define a normal we need to choose a direction perpendicular to T which is

associated in some way to the curve Ŵ. We still have 〈T (t), T (t)〉 = 1 for all t

in [a, b] and differentiating, as we did previously, we get 〈T ′(t), T (t)〉 = 0. We

have found a special vector, T ′(t), perpendicular to T (t) and if this is non-zero (or

equivalently if P ′′(t) 	= 0) we define the unit normal, N (t), by

N (t) =
T ′(t)

‖T ′(t)‖
.
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We define the curvature κ(t) by κ(t) = ‖T ′(t)‖. Thus the normal is only defined at

points of non-zero curvature and at such points we obtain the equation

T ′(t) = κ(t)N (t). (7.1′)

Note that (7.1′) and (7.1) are the same equation. However, (7.1) applies to a curve

in R
2 while (7.1′), which is the first of the Frenet–Serret equations when n = 3,

applies to a curve in R
n . The definitions of curvature and normal are different in

these two equations. The technique of using an equation in a simple setting to extend

a definition to a more general setting is standard and useful in mathematics.

Now that we have defined κ and N in R
n we must investigate their properties

as they could well be different to those in R
2. Using the same terminology is an

expression of our aspirations but does not qualify as a proof. We note first that

curvature in R
n is always defined and always non-negative but certain curves, such

as straight lines, do not have a normal.

Equation (7.5) and the approximation (7.6) are still valid for curves in R
n and

the same analysis shows that κ(t) can be interpreted as the reciprocal of the radius

of the circle of curvature to Ŵ at P(t). Hence curvature in R
n , n > 2, has the same

geometrical interpretation as absolute curvature in R
2. We have seen that the sign

of curvature in R
2 was related to the different sides of a curve and, in view of our

previous remarks, it is not surprising that it does not feature when n > 2.

From now on we restrict ourselves to curves in R
3. The approximation

Q(t) = P(0) + T (0)t + κ(0)N (0)
t2

2

near 0 ∈ [a, b] is still valid and shows that the plane (or two-dimensional subspace) in

R
3 closest to the curve near P(t) is the plane through P(t) spanned by {T (t), N (t)}.

We call this the osculating plane of the curve at P(t). We may consider the osculating

plane as the two-dimensional analogue of the tangent line. As we move along the

curve the osculating plane will generally change and the more it changes the more

twisted the curve. We measure this by defining a new concept—torsion—which we

denote by τ . We define torsion and a third unit vector, the binormal in R
3, in a fashion

similar to the way we introduced curvature and the normal for curves in R
2. At each

point on the directed curve Ŵ in R
3 we have obtained two perpendicular unit vectors

T and N and these span a two-dimensional subspace of R
3. Hence there are precisely

two unit vectors perpendicular to T and N . To choose one of these unambiguously

we require a sense of direction or orientation in R
3. This will also be important in

integration theory. The basis of this sense of direction is known as “the right-hand

rule” and we describe it in the special case in which we are interested. Use the right

thumb as the vector T and the first finger in place of N . Then the second finger will,

when put perpendicular to T and N , give the direction of the binormal, B (Fig. 7.4).

Think of T and N as determining the flat plane of this page. This page has two

sides and thus two unit vectors perpendicular to it. Since the vector N is obtained in
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B

T

N

Fig. 7.4

Fig. 7.4 by rotating T in an anticlockwise direction, B will be the unit vector on this

side of the page. Note that we placed T before N in this construction.

Mathematically, we can find the binormal by using the cross product in R
3. For

a directed curve Ŵ in R
3 with parametrization P , unit tangent T (t) and unit normal

N (t) the binormal at the point P(t) is given by

B(t) = T (t) × N (t).

To derive further results we list standard properties of the cross product—all of which

follow easily from well-known results about determinants.

Let v, w and u be vectors in R
3 then

(a) v × w = −w × v

(b) v × w 	= 0 ⇐⇒ v and w are linearly independent

(c) v × w is perpendicular to both v and w

(d) ‖v × w‖ = ‖v‖ · ‖w‖ · | sin θ |, where θ is the angle between v and w

(e)

u · v × w =

∣

∣

∣

∣

∣

∣

u1 u2 u3

v1 v2 v3

w1 w2 w3

∣

∣

∣

∣

∣

∣

and

u · v × w = w · u × v = v · w × u

(f) ‖u · v × w‖ = volume of the parallelepiped with adjacent sides v, w and u

(g) 1
2
‖(v − u) × (w − u)‖ = area of triangle with vertices v, w and u.

By (c), B(t) is perpendicular to both T (t) and N (t) and, by (d),

‖B(t)‖ = ‖T (t)‖ · ‖N (t)‖ · | sin(π/2)| (sinceT (t) ⊥ N (t))

= 1.

Hence {T (t), N (t), B(t)} consists of three mutually perpendicular unit vectors in

R
3. In particular, they are linearly independent and so form a basis for R

3. We call
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T
N

B

T

N

B T

N

B

Fig. 7.5

N

T

B

Fig. 7.6

them an orthonormal basis (“ortho” comes from orthogonal or perpendicular and

normal comes from the fact that they are unit vectors). Another orthonormal basis

for R
3 is the set {i, j, k}. We consider {T (t), N (t), B(t)} as a special basis which is

adapted to studying the curve Ŵ near P(t). As t varies the basis {T (t), N (t), B(t)}
changes and is called a moving frame along the curve (see Fig. 7.5).

Since N (t) × B(t) is easily seen to be a unit vector perpendicular to both N and

B we must have

N (t) × B(t) = ±T (t).

Hence

T (t) · N (t) × B(t) = ±T (t) · T (t) = ±1

‖ by (e)

B(t) · T (t) × N (t) = B(t) · B(t) = 1

and N (t)× B(t) = T (t). Similarly B(t)×T (t) = N (t) and, using (a), the remaining

cross products involving T , N and B can be found.

The simplest way to remember these is to use the diagram shown in Fig. 7.6. The

cross product of any two taken in an anticlockwise direction is the one that follows

it, e.g. N × B = T . If we work in a clockwise direction we get, from (a), the negative

of the following one, e.g. N × T = −B.

We are now in a position to make effective use of the orthonormal basis {T, N , B}.
Since it is a basis any vector v can be written in the form

v = αT + βN + γ B
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for some real numbers α, β and γ . If we take the inner product of both sides with

respect to T then

〈v, T 〉 = α〈T , T 〉 + β〈N , T 〉 + γ 〈B, T 〉 = α

‖ ‖ ‖
1 0 0

Similarly β = 〈v, N 〉 and γ = 〈v, B〉 and thus

v = 〈v, T 〉T + 〈v, N 〉N + 〈v, B〉B. (7.7)

We also note, although we do not require it here, that Pythagoras’ Theorem implies

‖v‖2 = 〈v, T 〉2 + 〈v, N 〉2 + 〈v, B〉2.

We use vector-valued differentiation to find B ′(t). Since ‖B(t)‖ = 1 we have

〈B(t), B(t)〉 = 1 and hence

0 =
d

dt
〈B(t), B(t)〉 = 〈B ′(t), B(t)〉 + 〈B(t), B ′(t)〉

= 2〈B ′(t), B(t)〉. (7.8)

Since 〈B(t), T (t)〉 = 0 we get, in the same way,

0 =
d

dt
〈B(t), T (t)〉

= 〈B ′(t), T (t)〉 + 〈B(t), T ′(t)〉
= 〈B ′(t), T (t)〉 + 〈B(t), κ(t)N (t)〉 (by (7.1′))

= 〈B ′(t), T (t)〉 + κ(t)〈B(t), N (t)〉
= 〈B ′(t), T (t)〉 (sinceB ⊥ N ). (7.9)

Replacing v by B ′(t) in (7.7) and using (7.8) and (7.9) we have

B ′(t) = 〈B ′(t), N (t)〉N (t)

i.e. B ′(t) is parallel to N (t). We use this equation to define the torsion of Ŵ at P(t),

τ(t), by letting1

τ(t) = −〈B ′(t), N (t)〉

and obtain another of the Frenet–Serret equations

B ′(t) = −τ(t)N (t). (7.10)

1 By introducing one minus sign here we avoid many more minus signs later.
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We discuss the geometric significance of torsion in Chap. 8 but note at this point

that B(t) is normal to the osculating plane and hence torsion is a measure of the rate

of change of the osculating plane.

We have found T ′ and B ′ in Eqs. (7.1′) and (7.10) for a directed curve in R
3 and

the remaining Frenet–Serret equation is an expression for N ′ in terms of the basis

{T, N , B}. To find N ′ we differentiate the equation N = B × T using the product

rule. We have

N ′ = B ′ × T + B × T ′ = −τ N × T + B × κ N = τT × N − κ N × B.

Since T × N = B and N × B = T we obtain for all t the equation

N ′(t) = −κ(t)T (t) + τ(t)B(t). (7.11)

Equations (7.1′), (7.10) and (7.11) which express T ′, N ′ and B ′ in terms of T , N and

B are known as the Frenet–Serret equations and contain, for all practical purposes,

complete information on the curve (see also Example 8.5). The set {T, N , B, κ, τ }
is known as the Frenet–Serret apparatus of the curve Ŵ. It is important to remember

that whenever we discuss normals to curves in R
3 or the Frenet–Serret equations for

a curve we assuming the curvature is strictly positive.

The Frenet–Serret equations are easily remembered when expressed in matrix

form
⎛

⎝

T

N

B

⎞

⎠

′

=

⎛

⎝

0 κ 0

−κ 0 τ

0 −τ 0

⎞

⎠

⎛

⎝

T

N

B

⎞

⎠ .

Certain classical curves are not covered by Definition 5.1 and we encounter one of

these—the helix—in our next example. In its natural state the helix does not have an

initial or final point and is usually parametrized over R. The reader should have little

difficulty analysing such curves by the methods we have already developed. Essen-

tially one examines different finite parts of the curve in turn—for example consider

how we treated a part of the helix in Example 5.2. For the sake of completeness,

however, we mention how our definition of parametrized curve can be extended in

the following natural way to include such curves:

a continuous mapping P : I −→ R
n , I an interval in R, is a parametrized curve

if for every closed interval [a, b] ⊂ I the restriction of P to [a, b] satisfies (a), (c)

and (d) of Definition 5.1.

Example 7.2 Let Ŵ denote the helix parametrized by

P(t) = (r cos ωt, r sin ωt, hωt), −∞ < t < +∞
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where ω = (r2 + h2)−1/2 and r, h and ω are all positive. Since

P ′(t) = (−rω sin ωt, rω cos ωt, hω)

and

‖P ′(t)‖ = (r2ω2 sin2 ωt + r2ω2 cos2 ωt + h2ω2)1/2

= (r2ω2 + h2ω2)1/2 = ω(r2 + h2)1/2 = 1

the parametrization is unit speed and T (t) = P ′(t). We have

P ′′(t) = T ′(t) = (−rω2 cos ωt,−rω2 sin ωt, 0)

and

κ(t) = ‖T ′(t)‖ = (r2ω4 cos2 ωt + r2ω4 sin2 ωt)1/2 = ω2r.

Note that Ŵ is not a circle but has constant curvature. Hence κ(t) > 0 and

N (t) =
T ′(t)

‖T ′(t)‖
=

1

ω2r
(−rω2 cos ωt,−rω2 sin ωt, 0)

= (− cos ωt,− sin ωt, 0).

We have

B(t) = T (t) × N (t) =

∣

∣

∣

∣

∣

∣

i j k

−rω sin ωt rω cos ωt hω

− cos ωt − sin ωt 0

∣

∣

∣

∣

∣

∣

= (hω sin ωt,−hω cos ωt, rω)

and

B ′(t) = (hω2 cos ωt, hω2 sin ωt, 0).

Since τ(t) = −〈B ′(t), N (t)〉 this implies

τ(t) = −
〈

(hω2 cos ωt, hω2 sin ωt, 0), (− cos ωt,− sin ωt, 0)

〉

= hω2 cos2 ωt + hω2 sin2 ωt = hω2.

We have calculated the Frenet–Serret apparatus for the helix. In doing so we used

two of the Frenet–Serret equations. The third equation

N ′ = −κT + τ B
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may be used to check our calculations. The Frenet–Serret apparatus was found in

the following sequence: first check that P is unit speed then

{

T (t) , κ(t) , N (t) , B(t) , τ (t)
}

‖ ‖ ‖ ‖ ‖
P ′(t) ‖T ′(t)‖ T ′(t)/κ(t) T (t) × N (t) −〈B ′(t), N (t)〉

Other sequences are also possible but the above appear to be generally more direct

(for unit speed curves).

Exercises

7.1 Parametrize the curve x2 + (y/3)2 = 9 with an anticlockwise orientation and

hence find its curvature. Find the points where the curvature is a maximum

(a) by inspecting a sketch;

(b) by differentiating the curvature function;

(c) by inspection of the curvature function.

7.2 Let f : U (open) ⊂ R
2 → R and suppose f −1(0) has full rank at each point.

If f −1(0) can be parametrized as a directed curve in R
2 show that its absolute

curvature equals

| fxx f 2
y − 2 fxy fx fy + fyy f 2

x |
( f 2

x + f 2
y )3/2

.

Using this result find the curvature at all points on the ellipse (x/a)2 +
(y/b)2 = 1 directed so that the normal points outwards. Verify your answer

when a = 3 and b = 9 using Exercise 7.1.

7.3 Let Ŵ denote the plane curve parametrized by

P(t) = (t, log cos t), −π/4 ≤ t ≤ π/4.

Show that Ŵ has curvature − cos t at P(t).

7.4 Show that a directed curve in R
3 is a straight line if and only if all its tangent

lines are parallel.

7.5 Show that each of the following gives a unit speed parametrization of a curve

Ŵ in R
3. Calculate the Frenet–Serret apparatus of the curve and verify that

N ′ = −κT + τ B.

(a) P(t) =
( (1 + t)3/2

3
,

(1 − t)3/2

3
,

t
√

2

)

, 0 ≤ t ≤ 1/2

(b) P(t) =
1

2

(

cos−1(t) − t
√

1 − t2, 1 − t2, 0
)

, 0 ≤ t ≤ 1/2

(c) P(t) =
( (1 + t2)1/2

√
5

,
2t
√

5
,

log(t +
√

1 + t2)
√

5

)

, t ∈ R.
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7.6 Let P(t) = (a cos t, a sin t, at tan α) denote a parametrization of a helix where

0 < cos α < a < 1. Find a unit speed parametrization. Show that the centre of

curvature also moves on a helix and find the cylinder on which this helix lies.

7.7 If a and b are positive real numbers show that the curve parametrized by

P(t) =
(

a cos t, a sin t, b cosh
at

b

)

, t ∈ R

lies on the cylinder x2 + y2 = a2. Show that the osculating plane at any point

on the curve makes a constant angle with the tangent plane to the cylinder at

that point.

7.8 If P : [a, b] → Ŵ is a unit speed parametrized curve show that

〈P ′ × P ′′, P ′′′〉 = κ2τ

and if τ 	= 0 show that

τ =
〈P ′ × P ′′, P ′′′〉

〈P ′′, P ′′〉
.

7.9 A plane in R
3 (or a cross-section of R

3) consists of all points (x, y, z) satisfying

a linear equation ax + by + cz = d where at least one of a, b, c is non-zero.

Find A ∈ R
3 and α ∈ R such that the plane above coincides with

{A ∈ R
3; A · X = α}.

Find α when the plane goes through the origin.

7.10 Let P denote a unit speed parametrization of a directed curve in R
3 with non-

zero curvature at P(0). Show that the equation of the osculating plane at P(0)

is

{X ∈ R
3 : (X − P(0)) × P ′(0) · P ′′(0) = 0}.

7.11 Let P : [0, l] → R
3 denote a unit speed parametrization of a directed curve Ŵ,

with positive curvature and torsion. For t ∈ [0, l] let

Q(t) =
∫ t

0

B(x)dx .

Show that Q defines a unit speed parametrization of a directed curve Γ̃ . If

{T, N , B, κ, τ } is the Frenet–Serret apparatus for Ŵ show that {B,−N , T, τ, κ}
is the Frenet–Serret apparatus for Γ̃ .

7.12 Let Ŵ denote a directed curve in R
3 with positive curvature at all points and

suppose P : [a, b] −→ R
3 is a unit speed parametrization of Ŵ. Using the

Frenet-Serret equations and the identity a × b · c = c × a · b find a mapping

X : [a, b] −→ R
3 such that T ′(t) = X (t) × T (t), N ′(t) = X (t) × N (t) and

B ′(t) = X (t) × B(t) for all t ∈ [a, b].



Chapter 8

Geometry of Curves in R3

Summary We apply the Frenet–Serret equations to study the geometric significance

of torsion, to analyse curves in spheres and to characterise generalised helices.

We first provide a geometrical interpretation of zero torsion.

Proposition 8.1 If Γ is a directed curve in R
3 with positive curvature at all points

then the following are equivalent

(a) Γ is a plane curve.

(b) the function t → B(t) is constant.

(c) τ(t) = 0 for all t .

Proof Since κ(t) > 0, N (t) is defined. By the Frenet–Serret equations B ′(t) =
−τ(t)N (t) and since ‖N (t)‖ = 1 we have:

B(t) is independent of t ⇐⇒ B ′(t) = 0 ⇐⇒ τ(t) = 0.

Hence (b) and (c) are equivalent. Now suppose Γ is a plane curve, i.e. there

exists a plane in R
3 which contains Γ . Then there exists a unit vector A in R

3 and

a real number c such that Γ ⊂ {X ∈ R
3 : X · A = c}. Let P denote a unit speed

parametrization of Γ with domain [a, b]. For all t ∈ [a, b], P(t) · A = c. We have

d

dt
(P(t) · A) = T (t) · A = 0

and
d2

dt2
P(t) · A = T ′(t) · A = κ(t)N (t) · A = 0.

Hence A is perpendicular to both T (t) and N (t) and B(t) = ±A for all t . Suppose

B(t1) = A and B(t2) = −A. The mapping g : t −→ B(t) · A is a continuous real-

valued function on [a, b], g(t) = ±1 for all t , g(t1) = 1 and g(t2) = −1. This

is impossible, since it would imply, by the Intermediate Value Theorem, that there

exists t0 ∈ (a, b) such that g(t0) = 0. Hence g(t) = +1 for all t or g(t) = −1 for
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all t and this implies B(t) = A for all t or B(t) = −A for all t . In either case B is a

constant function and (a) =⇒ (b).

Now suppose (b) holds. Let P denote a unit speed parametrization of Γ with

domain [a, b]. If t0 ∈ (a, b), X0 = P(t0) and B(t) = B for all t , then

d

dt
〈P(t) − X0, B〉 = 〈P ′(t), B(t)〉 + 〈P(t) − X0, 0〉

= 〈T (t), B(t)〉 + 0

= 0 (since T (t) ⊥ B(t)).

Hence there exists a constant c such that

〈P(t) − X0, B〉 = c

and P lies in the plane through X0 perpendicular to B. This shows that (b) =⇒ (a)

and completes the proof. �

Proposition 8.1 gives a precise geometric interpretation of zero torsion. To inter-

pret non-zero torsion we look at an expansion of the parametrization P about a fixed

point relative to the basis {T (t0), N (t0), B(t0)}. For convenience we may suppose

t0 = 0.

In Chap. 7 we obtained, using orthogonality, the Taylor series expansion and the

Frenet–Serret equations, the following three expansions of P(t):

P(t) = 〈P(t), T (0)〉T (0) + 〈P(t), N (0)〉N (0) + 〈P(t), B(0)〉B(0) (8.1)

= P(0) + P ′(0)t + P ′′(0)
t2

2
+ g(t)t2 (8.2)

= P(0) + T (0)t +
κ(0)N (0)

2
t2 + g(t)t2 (8.3)

where g(t) → 0 in R
3 as t → 0. From (8.3) we can identify the main influence—the

first non-constant term in the Taylor series expansion—on the shape of the curve in

the T (0) and N (0) directions. Comparing (8.1–8.3) we see also that the first possi-

ble non-zero term in the B(0) direction will be
d3

dt3
〈P(t), B(0)〉

∣

∣

∣

t=0
. By repeated

differentiation and use of the Frenet–Serret equation for T ′ we obtain

〈P ′(t), B(0)〉 = 〈T (t), B(0)〉
〈P ′′(t), B(0)〉 = 〈T ′(t), B(0)〉 = 〈κ(t)N (t), B(0)〉

and, using the Frenet–Serret equation for N ′,

〈P ′′′(t), B(0)〉 = 〈κ ′(t)N (t) + κ(t)N ′(t), B(0)〉
= 〈κ ′(t)N (t) + κ(t)

(

−κ(t)T (t) + τ(t)B(t)
)

, B(0)〉.

http://dx.doi.org/10.1007/978-1-4471-6419-7_7
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Letting t = 0 we get

〈P ′′′(0), B(0)〉 = κ ′(0)〈N (0), B(0)〉 − κ2(0)〈T (0), B(0)〉
+ κ(0)τ (0)〈B(0), B(0)〉

= κ(0)τ (0)

since {T, N , B} are mutually perpendicular unit vectors. This gives us the approxi-

mation

Q(t) = P(0) + T (0)t + κ(0)N (0)
t2

2
+ κ(0)τ (0)B(0)

t3

6

called the Frenet approximation to the curve Γ at 0. The Frenet approximation is

clearly a refinement of (8.3) which takes account of torsion. The function t → Q(t)

defines a parametrized curve which has the same Frenet–Serret apparatus as the

original curve at P(0). From the Frenet approximation we see the influence of non-

zero torsion on the shape of the curve. Torsion controls the motion of the curve

orthogonal to the osculating plane. If τ(0) > 0 then the curve twists towards the

side of the osculating plane which contains B(0) and the greater τ(0) the more

dramatic the twist. If τ(0) < 0 the curve twists towards −B(0).

An everyday example of non-zero torsion is given by the curve on the edge of a

screw. In tightening a screw one usually uses the right-hand and follows the right-

hand rule while in loosening a screw one follows the left-hand rule. If you have

any doubts about the difference change hands. This also illustrates the two different

orientations of R
3.

Example 8.2 In this example we study a directed curve Γ which lies in a sphere

with centre c and radius r . Let P denote a unit speed parametrization of Γ . Our

hypothesis states that

‖P(t) − c‖2 = 〈P(t) − c, P(t) − c〉 = r2.

Consider the expansion of P(t) − c relative to the orthonormal basis {T (t),

N (t), B(t)}, i.e.

P(t) − c = 〈P(t) − c, T (t)〉T (t) + 〈P(t) − c, N (t)〉N (t)

+ 〈P(t) − c, B(t)〉B(t). (8.4)

Differentiating we get

d

dt
〈P(t) − c, P(t) − c〉 = 0 = 2〈P(t) − c, P ′(t)〉 .

Since P is unit speed, P ′(t) = T (t), and we may restate this as follows:

〈P(t) − c, T (t)〉 = 0. (8.5)
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Differentiating again and using the Frenet–Serret equation for T ′ gives us

0 =
d

dt
〈P(t) − c, T (t)〉 = 〈T (t), T (t)〉 + 〈P(t) − c, T ′(t)〉

= 1 + κ(t)〈P(t) − c, N (t)〉.

Hence κ(t) �= 0 for all t , N (t) is defined and

〈P(t) − c, N (t)〉 = −
1

κ(t)
. (8.6)

Differentiating (8.6) and applying the Frenet–Serret equation for N ′ we obtain

−
(

1

κ(t)

)′
=

d

dt
〈P(t) − c, N (t)〉

= 〈T (t), N (t)〉 + 〈P(t) − c, N ′(t)〉
= 〈P(t) − c,−κ(t)T (t) + τ(t)B(t)〉 (since N ⊥ T )

= τ(t)〈P(t) − c, B(t)〉 (by (8.5)).

If τ(t0) �= 0 for some t0 then, by continuity, τ(t) �= 0 for all t near t0 and

〈P(t) − c, B(t)〉 = −
1

τ(t)

(

1

κ(t)

)′
. (8.7)

Substituting (8.5–8.7) into (8.4) we get

P(t) − c = −
1

κ(t)
N (t) −

1

τ(t)

(

1

κ(t)

)′
B(t)

and we have found P(t) in terms of the Frenet–Serret apparatus of Γ . By Pythagoras’

theorem

r2 = ‖P(t) − c‖2 =
1

κ(t)2
+

(

( 1

κ(t)

)′
·

1

τ(t)

)2

.

Hence we have recovered the radius of the sphere from the curvature and torsion

when we know that the curve lies in a sphere. In particular, we see that r2 ≥ 1/κ(t)2,

or κ(t) ≥ 1/r , which we may loosely rephrase as saying that a curve in a sphere is

at least as curved as the sphere in which it lies.

If τ(t) = 0 for all t in an open interval I then the above implies that κ(t) is constant

on I . Since a plane circle has constant curvature, Proposition 8.1 and Example 8.5

imply that the part of Γ parametrized by restricting P to I is part of a circle contained

in a plane in R
3.

Example 8.3 The helix in Example 7.2 satisfies 〈Tp, (0, 0, 1)〉 = hω for all p where

Tp is the unit tangent at the point p. We generalise this by defining a generalised
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helix in R
3, as a curve Γ of positive curvature (at all points) for which there exists a

unit vector u in R
3 such that

〈Tp, u〉 = c (constant)

for all p ∈ Γ . Let P denote a unit speed parametrization of the generalised helix

Γ and let {T (t), N (t), B(t), κ(t), τ (t)} denote the Frenet–Serret apparatus at P(t).

We prove the following characterisation:

Γ is a generalised helix ⇐⇒
τ(t)

κ(t)
is constant (i.e. independent of t).

Since 〈T (t), u〉 is constant it follows, by the Cauchy–Schwarz inequality

(Example 3.4), that

|〈T (t), u〉| ≤ ‖T (t)‖ · ‖u‖ ≤ 1

and 〈T (t), u〉 = cos θ for some θ . If θ = nπ then, by the equality case in the

Cauchy–Schwarz inequality, T (t) = ±u. By the Intermediate Value Theorem (see

the proof of Proposition 8.1) this implies that T (t) is a constant function of t . Hence

T ′(t) = 0 and this contradicts our hypothesis. We thus have 〈T (t), u〉 = cos θ for

some θ �= nπ . Again using the orthonormal basis {T (t), N (t), B(t)} we have

u = 〈u, T (t)〉T (t) + 〈u, N (t)〉N (t) + 〈u, B(t)〉B(t).

Since 〈T (t), u〉 = cos θ

d

dt

(

〈T (t), u〉
)

= 0 = 〈T ′(t), u〉 + 〈T (t), (u)′〉 = 〈κ(t)N (t), u〉

(since u is a constant, (u)′ = 0). By our hypothesis κ(t) �= 0 and this implies

〈u, N (t)〉 = 0. Hence

u = cos θT (t) + sin θ B(t).

A further application of the Frenet–Serret equations implies

0 =
d

dt
u = cos θT ′(t) + sin θ B ′(t)

= cos θκ(t)N (t) − sin θτ(t)N (t)

=
(

cos θκ(t) − sin θτ(t)
)

N (t).

Since ‖N (t)‖ = 1 this implies cos θκ(t) = sin θτ(t) and

τ(t)

κ(t)
=

cos θ

sin θ
= cot θ.
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We have shown τ(t)/κ(t) is constant for any generalised helix. In obtaining this

result we obtained a formula for u and now use this to prove the converse. Let Γ

denote a directed curve with non-zero curvature in R
3 such that τ(t)/κ(t) is constant

(i.e. independent of t). This hypothesis implies that there exists a real number θ ,

0 < θ < π , such that cot θ = τ(t)/κ(t) for all t (note that θ does not depend on t).

Let

u(t) = cos θ T (t) + sin θ B(t).

By Pythagoras’ theorem ‖u‖2 = cos2 θ + sin2 θ = 1 and u is a unit vector. To

show that u does not depend on t we prove
d

dt

(

u(t)
)

= 0. By the Frenet–Serret

equations

d

dt

(

u(t)
)

= cos θ T ′(t) + sin θ B ′(t)

=
(

κ(t) cos θ − τ(t) sin θ
)

N (t) = 0.

Hence u does not depend on t and so is a constant. Moreover, since T ⊥ B,

〈T (t), u〉 = 〈T (t), cos θ T (t) + sin θ B(t)〉 = cos θ.

This shows that Γ is a generalised helix and justifies our claim.

Our analysis so far applies to unit speed parametrizations of a directed curve.

Unfortunately, many natural parametrizations of curves are not unit speed. It is thus

useful to be able to calculate the Frenet–Serret apparatus directly from an arbitrary

parametrization.

Let P : [a, b] → R
3 denote an arbitrary parametrization of the directed curve

Γ . We suppose P ′(t) and P ′′(t) are both non-zero for all t . Let s : [a, b] → [0, l]
denote the length function associated with P (see Chap. 5). Then l is the length of

Γ , ‖P ′(t)‖ = s′(t) and Q := P ◦ s−1 is a unit speed parametrization of Γ . Let

{T (t), N (t), B(t), κ(t), τ (t)} denote the Frenet–Serret apparatus at the point P(t)

on Γ . We have

Q ◦ s(t) = P ◦ s−1 ◦ s(t) = P(t).

Hence
d

dt

(

Q
(

s(t)
)

)

= Q′(s(t)
)

s′(t) = P ′(t) = ‖P ′(t)‖T (t)

and

Q′(s(t)
)

= T (t) =
P ′(t)

‖P ′(t)‖
. (8.8)

http://dx.doi.org/10.1007/978-1-4471-6419-7_5
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Differentiating again

d2

dt2

(

Q
(

s(t)
)

)

=
d

dt

(

Q′(s(t)
)

· s′(t)
)

= Q′′(s(t)
)(

s′(t)
)2 + Q′(s(t)

)

s′′(t) = P ′′(t).

Since Q has unit speed the Frenet–Serret equations imply

Q′′(s(t)
)

= κ(t)N (t)

and

P ′′(t) =
(

s′(t)
)2

κ(t)N (t) + s′′(t)T (t).

Hence

P ′(t) × P ′′(t) = s′(t)T (t) ×
(

s′(t)2κ(t)N (t) + s′′(t)T (t)
)

= s′(t)3κ(t)B(t)

since T × N = B and T × T = 0. Since ‖B(t)‖ = 1 and s′(t) = ‖P ′(t)‖ this

implies

κ(t) =
‖P ′(t) × P ′′(t)‖

‖P ′(t)‖3
(8.9)

and

B(t) =
P ′(t) × P ′′(t)

‖P ′(t) × P ′′(t)‖
. (8.10)

The simplest way to obtain N is to use the formula

N = B × T . (8.11)

The Frenet–Serret equation for N ′ implies

Q′′′(s(t)
)

= (κ N )′(t) = κ ′(t)N (t) + κ(t)N ′(t)

= κ ′(t)N (t) + κ(t)
(

−κ(t)T (t) + τ(t)B(t)
)

and hence

〈Q′′′(s(t)
)

, B(t)〉 = κ(t)τ (t).
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On the other hand

d3

dt3

(

Q
(

s(t)
)

)

= P ′′′(t)

= Q′′′(s(t)
)

s′(t)3 + 3Q′′(s(t)
)

s′(t)s′′(t) + Q′(s(t)
)

s′′′(t)

= Q′′′(s(t)
)

s′(t)3 + 3κ(t)s′(t)s′′(t)N (t) + s′′′(t)T (t).

By orthogonality

〈

P ′′′(t),
P ′(t) × P ′′(t)

‖P ′(t) × P ′′(t)‖

〉

= 〈P ′′′(t), B(t)〉 = s′(t)3〈Q′′′(s(t)
)

, B(t)〉

= ‖P ′(t)‖3κ(t)τ (t).

Finally

τ(t) =
〈P ′′′(t), P ′(t) × P ′′(t)〉

‖P ′(t) × P ′′(t)‖ · ‖P ′(t)‖3κ(t)
=

〈P ′′′(t), P ′(t) × P ′′(t)〉
‖P ′(t) × P ′′(t)‖2

. (8.12)

Equations (8.8–8.12) are the Frenet–Serret apparatus at P(t) for Γ in terms of

the parametrization P .

Example 8.4 Calculate the Frenet–Serret apparatus of the curve parametrized by

P(t) = (t − cos t, sin t, t).

We first calculate the required derivatives of P; P ′, P ′′ and P ′′′. We have P ′(t) =
(1 + sin t, cos t, 1), P ′′(t) = (cos t,− sin t, 0) and P ′′′(t) = (− sin t,− cos t, 0).

Next, we obtain the cross product

P ′(t) × P ′′(t) =

∣

∣

∣

∣

∣

∣

i j k

1 + sin t cos t 1

cos t − sin t 0

∣

∣

∣

∣

∣

∣

= (sin t, cos t,− sin t − 1)

and finally the norms or lengths

‖P ′(t)‖ = (1 + 2 sin t + sin2 t + cos2 t + 1)1/2 = (3 + 2 sin t)1/2

‖P ′(t) × P ′′(t)‖ = (sin2 t + cos2 t + sin2 t + 2 sin t + 1)1/2

= (2 + 2 sin t + sin2 t)1/2.

Hence

T (t) =
P ′(t)

‖P ′(t)‖
=

(1 + sin t, cos t, 1)

(3 + 2 sin t)1/2
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κ(t) =
‖P ′(t) × P ′′(t)‖

‖P ′(t)‖3
=

(2 + 2 sin t + sin2 t)1/2

(3 + 2 sin t)3/2

B(t) =
P ′(t) × P ′′(t)

‖P ′(t) × P ′′(t)‖
=

(sin t, cos t,− sin t − 1)

(2 + 2 sin t + sin2 t)1/2

τ(t) =
〈P ′′′(t), P ′(t) × P ′′(t)〉

‖P ′(t) × P ′′(t)‖2

=
(− sin t,− cos t, 0) · (sin t, cos t,− sin t − 1)

2 + 2 sin t + sin2 t

=
−1

2 + 2 sin t + sin2 t

N (t) = B(t) × T (t)

=
1

√
3 + 2 sin t

√

2 + 2 sin t + sin2 t

∣

∣

∣

∣

∣

∣

i j k

sin t cos t − sin t − 1

1 + sin t cos t 1

∣

∣

∣

∣

∣

∣

=
(2 cos t + sin t cos t,−1 − 3 sin t − sin2 t,− cos t)

(6 + 10 sin t + 7 sin2 t + 2 sin3 t)1/2

Example 8.5 In Example 8.2 we showed that curvature and torsion together allowed

us to deduce properties of spherical curves. In this example we show that curvature

and torsion completely determine the shape of a curve in R
3. Let Γ and Γ1 denote two

directed curves having the same length l in R
3. We suppose that both have positive

curvature. Now transfer Γ1 so that its initial point coincides with the initial point of

Γ and rotate it so that the tangents, normals and binormals of Γ and Γ1 coincide at

the initial point. These operations do not affect the shape of Γ1. Let P : [0, l] → Γ

and P1 : [0, l] → Γ1 denote unit speed parametrizations. We now suppose that the

curvature and torsion of Γ and Γ1 at P(t) and P1(t) coincide for all t and thus we

have the Frenet–Serret apparatus {T, N , B, κ, τ } and {T1, N1, B1, κ, τ } for Γ and

Γ1 respectively. Using the dot product in R
3 we define g: [0, l] → R by

g(t) = T (t) · T1(t) + N (t) · N1(t) + B(t) · B1(t).

By our hypothesis g(0) = 3 and by the Cauchy–Schwarz inequality (Example 3.4)

−3 ≤ g(t) ≤ 3 for all t and g(t) = 3 if and only if T (t) = T1(t), N (t) = N1(t) and

B(t) = B1(t). From the Frenet–Serret equations

g′ = κ N ·T1+κT ·N1+(−κT +τ B)·N1+N ·(−κT1+τ B1)−τ N ·B1−τ B ·N1 = 0.

Hence g is a constant mapping and, since g(0) = 3, we have g(t) = 3 for all t

and the Frenet–Serret apparatus is the same for both curves. In particular

(P − P1)
′(t) = P ′(t) − P ′

1(t) = T (t) − T1(t) = 0
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and P(t) = P1(t) + C for all t . Since P(0) = P1(0) this implies P(t) = P1(t) for

all t and one curve lies on top of the other. We conclude that Γ and Γ1 have the same

shape.

Exercises

8.1 Show that each of the directed curves in Exercise 7.5 is a generalised helix. In

each case find a unit vector u such that 〈T (t), u〉 is independent of t .

8.2 Let P(t) = (t, 1 + t−1, t−1 − t), 1 ≤ t ≤ 2, denote a parametrization of the

curve Γ in R
3. Show that B(t) = (1/

√
3,−1/

√
3, 1/

√
3) for all t and hence

deduce that Γ lies in the plane x − y + z = −1. Find the Frenet–Serret apparatus

for Γ .

8.3 If Γ is parametrized by

P(θ) = (log cos θ, log sin θ,
√

2θ),
π

4
≤ θ ≤

π

3

show that Γ has curvature sin 2θ/
√

2 at P(θ).

8.4 For the curve parametrized by P(t) = (3t2, 3t − t3, 3t + t3), −1 ≤ t ≤ 1, show

that

κ(t) = −τ(t) =
1

3(1 + t2)2
.

Find a unit vector u such that 〈T (t), u〉 is independent of t .

8.5 Find the curvature and torsion of the curve parametrized by

P(t) = (et cos t, et sin t, et ), t ∈ R.

8.6 The plane through a point on a curve perpendicular to the tangent line is called

the normal plane to the curve at the point. Show that a curve lies on a sphere if

the intersection of all normal planes is non-empty. Hence show that the curve

parametrized by

P(θ) = (− cos 2θ,−2 cos θ, sin 2θ), θ ∈ [0, 2π ]

lies in a sphere. Find the centre and radius of the sphere.

8.7 Show that the curve parametrized by P(t) = (at, bt2, t3), ab �= 0, is a gener-

alised helix if and only if 4b4 = 9a2.



Chapter 9

Double Integration

Summary We define the double integral of a function over an open subset of R
2 and

use Fubini’s theorem to evaluate such integrals. We discuss the fundamental theorem

of calculus in R
2—Green’s theorem.

We discuss (double) integration of a real-valued function of two variables f (x, y)

over an open set Ω in R
2. Motivated by the one-dimensional theory we divide Ω

into rectangles—the natural analogue of intervals—by first drawing horizontal and

vertical lines and thus partitioning the x- and y-axes.

Let xi denote a typical element of the partition of the the x-axis and let y j be a

typical element on the y-axis. The resulting grid of rectangles gives a partition of Ω

(Fig. 9.1) and we form the Riemann sum

∑

i

∑

j

f (xi , y j ) · ∆xi · ∆y j , ∆xi = xi+1 − xi , ∆y j = y j+1 − y j

where we sum over all rectangles which are strictly contained in Ω . If this sum tends

to a limit as we take finer and finer partitions we say that f is integrable over Ω and

denote the limit by ∫∫

Ω

f (x, y) dxdy.

We call this the integral (or double integral) of f over Ω . If Ω is the inside of a

closed curve Γ and f is continuous on Ω it can be shown that f is integrable over Ω .

When f (x, y) = 1 for all (x, y) ∈ Ω the Riemann sum is the area of the rectangles

in the partition inside Γ and on taking a limit we obtain

∫∫

Ω

dxdy = Area of Ω.

S. Dineen, Multivariate Calculus and Geometry, 93

Springer Undergraduate Mathematics Series, DOI: 10.1007/978-1-4471-6419-7_9,

© Springer-Verlag London 2014
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y

Fig. 9.1

y = g(x)

y = h(x)

Ω

y

x0

Fig. 9.2

If f (x, y) ≥ 0 then the volume of the solid over Ω and beneath the graph of f is

∫∫

Ω

f (x, y)dxdy.

We only evaluate double integrals over rather simple open sets. An open set is said

to be of type I if it is bounded above by the graph of a continuous function y = h(x),

bounded below by the graph of a continuous function y = g(x) and on the left and

right by vertical lines of finite length (see Fig. 9.2).

Take a fixed interval in the partition of the x-axis, say (xi , xi+1), and consider the

terms in the Riemann sum

∑

i

∑

j

f (xi , y j ) · ∆xi · ∆y j

which only involve ∆xi = xi+1 − xi . This gives the sum

(∑

j

f (xi , y j ) · ∆y j

)
∆xi .

Taking limits—this can be justified for continuous functions—we get
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∑

j

f (xi , y j ) · ∆y j −→
h(xi )∫

g(xi )

f (xi , y) dy

as we take finer and finer partitions of the y-axis. Let

H(x) =
h(x)∫

g(x)

f (x, y) dy.

Then

∑

i, j

f (xi , y j ) · ∆xi · ∆y j ≈
∑

i

H(xi ) · ∆xi →
b∫

a

H(x) dx

and taking the limit on both sides we get

∫∫

Ω

f (x, y) dydx =
b∫

a

H(x) dx =
b∫

a

{ h(x)∫

g(x)

f (x, y) dy

}
dx .

This method of integration, together with the similar method obtained by reversing

the roles of x and y, is known as Fubini’s theorem. We define an open set to be of

type II if it is bounded on the left and right by the graphs of continuous functions of

y, k and l, which are defined on the interval [c, d] and above and below by horizontal

lines of finite length. For domains of type II Fubini’s theorem is

∫∫

Ω

f (x, y) dxdy =
d∫

c

{ l(y)∫

k(y)

f (x, y) dx

}
dy.

If we are given an open set we recognise it is of type I if each vertical line cuts the

boundary at two points except possibly at the end points and type II if each horizontal

line cuts the boundary at two points except, perhaps, at the end points.

Example 9.1 Evaluate

∫∫

Ω

x√
16 + y7

dxdy

over the set Ω bounded above by the line y = 2, below by the graph of y = x1/3

and on the left by the y-axis (Fig. 9.3). By inspection the domain Ω is of type I and

type II and we have a choice of method, i.e. we can integrate first with respect to
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Ω

0

x

y

y = x1/3

2

8

Fig. 9.3

y
0 y3

Fig. 9.4

either variable. Our choice may be important since one method may be very simple

and the other quite difficult.

We have to evaluate two integrals of a single variable. In the first integral, the

inner integral, one of the variables takes a fixed value and is really a constant. Thus

we have to first evaluate either

∫
x dx or

∫
dy√

16 + y7
.

In these situations looks are usually not deceiving and we opt for the simpler looking

integral. So, we choose to integrate first with respect to x . The limits of integration

in the first integral will influence the degree of difficulty that arises in evaluating

the second, or outer, integral. If you run into problems with the second integral you

should consider starting again using a different order of integration. In our case we

have decided to consider

∫ { ∫
x√

16 + y7
dx

}
dy

and now need to determine the variation in x for fixed y. We draw a typical line

through Ω on which y is constant—i.e. a horizontal line.

We must now express the end points in terms of y. Using once more Fig. 9.3

we see that the end points of the line of variation of x are (0, y) and (x, y) where

y = x1/3. Hence y3 = x and we have the required variation of x (Fig. 9.4).

We see also that y varies from 0 to 2. Hence

∫∫

Ω

x√
16 + y7

dxdy =
2∫

0

{ y3∫

0

x dx√
16 + y7

}
dy
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=
2∫

0

x2 dx

2
√

16 + y7

∣∣∣∣∣

y3

0

dy

=
2∫

0

y6

2
√

16 + y7
dy

=
1

14

∫
dw
√

w

w = 16 + y7

dw = 7y6 dy

=
1

14
·

w1/2

1/2
=

1

7
(16 + y7)1/2

∣∣∣∣
2

0

=
1

7

(
(144)1/2 − (16)1/2

)
=

8

7
.

Example 9.2 In this example we reverse the order of integration and evaluate

3∫

0

{
√

4−y∫

1

(x + y) dx

}
dy.

From the limits of integration in the inner integral the left-hand side of the domain

of integration, Ω , is bounded by the line x = 1 and the right-hand side by points

satisfying x =
√

4 − y, i.e. x2 = 4 − y or y = 4 − x2. Hence the right-hand side

is bounded by the graph of y = 4 − x2 and we have the following diagram for our

domain (Fig. 9.5).

Reversing the order of integration we get

2∫

1

{ 4−x2∫

0

(x + y) dy

}
dx =

2∫

1

(
xy +

y2

2

)∣∣∣∣
4−x2

0

dx

=
2∫

1

(
x(4 − x2) +

(4 − x2)2

2

)
dx =

241

60
(eventually).

The fundamental theorem of one-variable calculus

f (b) − f (a) =
b∫

a

f ′(t)dt (9.1)

is used to evaluate integrals of certain functions over intervals from their boundary

values. In this theorem integration on the right-hand side is over a directed interval
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y = 4 − x2
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Fig. 9.5

while on the left positive and negative signs are assigned to the initial and final points

of the interval respectively. Thus we see that a certain coherence has to be established

between the orientations on the two sides of (9.1). The fundamental theorem of two-

variable calculus is known as Green’s theorem. To obtain this result by an immediate

application of the one-variable theorem it is usual to begin with an open subset Ω in

R
2 which is of type I and type II. In applying (9.1) it is necessary to be careful with

signs and this means that in Green’s theorem the boundary of Ω , Γ , is oriented in

an anticlockwise or counterclockwise direction.

Theorem 9.3 (Green’s Theorem) Let P and Q denote real-valued functions with

continuous first-order partial derivatives on the open subset U of R
2. If Γ is a

closed curve directed in an anticlockwise direction such that the interior (inside) Ω

of Γ is an open set of type I and type II and Γ ∪ Ω ⊂ U then

∫

Γ

Pdx + Qdy =
∫∫

Ω

(∂ Q

∂x
−

∂ P

∂y

)
dxdy. (9.2)

Proof We show ∫

Γ

Qdy =
∫∫

Ω

∂ Q

∂y
dxdy

and for this we use the type II property of Ω . From the representation in Fig. 9.6 we

have
∫∫

Ω

∂ Q

∂x
dxdy =

d∫

c

{ l(y)∫

k(y)

∂ Q

∂x
dx

}
dy.

By (9.1)

l(y)∫

k(y)

∂ Q

∂x
(x, y)dx = Q(x, y)

∣∣∣
l(y)

k(y)
= Q

(
l(y), y

)
− Q

(
k(y), y

)
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Ω

Γ

(l(y), y)

(k(x), x)

a

d

y

x

Fig. 9.6

and
∫∫

Ω

∂ Q

∂x
dxdy =

d∫

c

(
Q

(
l(y), y

)
− Q

(
k(y), y

))
dy.

On the other hand, using the parametrizations y →
(
l(y), y

)
and y →

(
k(y), y

)
, we

obtain

∫

Γ

Qdy =
∫

(graph of l)

Qdy −
∫

(graph of k)

Qdy

=
d∫

c

Q
(
l(y), y

)
dy −

d∫

c

Q
(
k(y), y

)
dy.

This proves ∫∫

Ω

∂ Q

∂x
dxdy =

∫

Γ

Qdy.

The equality ∫∫

Ω

(
−

∂ P

∂y

)
dxdy =

∫

Γ

Pdx

is obtained in the same way and this completes the proof. ⊓⊔

Green’s theorem is true for many other sets Ω and the proof usually proceeds

by partitioning Ω into sets (Ωi )i and applying the simple case above to each Ωi

(Fig. 9.7). Note that each new curve created in partitioning Ω appears as part of the

boundary of two Ωi ’s and each direction along these new curves appears precisely

once. Hence, when we apply (9.2) to each Ωi and add them together the integrals
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ΩΩ

Γ

(a) (b)

Fig. 9.7

along the newly created curves cancel and we are left with a line integral over the

original curve Γ .

A glance at Fig. 9.7a shows that we no longer have an anticlockwise oriented

boundary. In our new situation a finite number of piecewise smooth curves form the

boundary of Ω and as we proceed along Γ in the given direction the open set Ω lies

on the left-hand side. With these modifications Green’s theorem is still true. We are,

of course, always assuming that P and Q are nice smooth functions.

Example 9.4 We wish to calculate

I =
∫

Γ

(5 − xy − y2)dx + (2xy − x2)dy

where Γ is the boundary of the unit square [0, 1]× [0, 1] in R
2. By Green’s theorem

I =
1∫

0

1∫

0

( ∂

∂x
(2xy − x2) −

∂

∂y
(5 − xy − y2)

)
dxdy

=
1∫

0

1∫

0

(2y − 2x + x + 2y)dxdy

=
∫ 1

0

∫ 1

0

(4y − x)dxdy

=
(

1∫

0

4ydy
)(

1∫

0

dx
)
−

(
1∫

0

dy
)(

1∫

0

xdx
)

=
4y2

2

∣∣∣∣
1

0

x

∣∣∣∣
1

0

−y

∣∣∣∣
1

0

x2

2

∣∣∣∣
1

0

= 2 −
1

2
=

3

2
.
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The change of variables rule for double integrals can be considered as a special case

of the same rule for triple integrals and this is discussed in Chap. 14.

Exercises

9.1 Find
∫∫
U

x2 sin2 ydxdy where A = {(x, y) ∈ R
2, 0 < x < 1, 0 < y < π/4}.

9.2 Evaluate

(a)
∫∫
U

x cos(x + y)dxdy where U is the subset of R
2 bounded by the triangle

with vertices (0, 0), (π, 0) and (π, π).

(b)
∫∫
U

(x2 + y2)dxdy where U = {(x, y) ∈ R
2; x2 + y2 ≤ 2y}.

(c)
∫∫
U

y2

x2
dxdy where U is the region bounded by y = x , y = 2 and xy = 1.

9.3 Find the area bounded by the curves x = y2 and x = 4y − y2.

9.4 If Γ is a closed anticlockwise directed curve in R
2 with interior Ω and F is a

smooth vector field on an open set containing Ω ∪Γ show that Green’s theorem

is equivalent to ∫∫

Ω

div(F) =
∫

(F · n)ds

where n is the outward normal to Γ .

If f is harmonic on Ω , i.e.

∂2 f

∂x2
+

∂2 f

∂y2
= 0

and continuous on Ω ∪ Γ show that
∫
Γ

(∇ f · n)ds = 0.

9.5 By reversing the order of integration find

(a)
6∫

0

{ 2∫
x/3

ey2
dy

}
dx

(b)
4∫

0

{√
y∫

y/2

ey/x dx
}

dy.

9.6 Find the volume of

{(x, y, z) ∈ R
3; x2 + y2 ≤ 1, x ≥ 0, y ≥ 0, 0 ≤ z ≤ 1 − xy} .

9.7 If Ω is an open set enclosed by the anticlockwise directed curve Γ show, using

Green’s theorem, that

http://dx.doi.org/10.1007/978-1-4471-6419-7_14
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Area (Ω) =
∫

Γ

xdy =
∫

Γ

−ydx =
1

2

∫

Γ

xdy − ydx .

Using one of these line integrals find the area of the interior of the ellipse (x/4)2+
(y/5)2 = 1.

9.8 Verify Green’s theorem for the following integrals:

(a)
∫
Γ

xy2dx + 2x2 ydy, Γ is the ellipse 4x2 + 9y2 = 36

(b)
∫
Γ

(x2 + 2y3)dy, Γ is the circle (x − 2)2 + y2 = 4

(c)
∫
Γ

2x2 y2dx − 3yxdy, Γ is the square bounded by the lines x = 3, x = 5,

y = 1, y = 4

where Γ is always directed in an anticlockwise direction.



Chapter 10

Parametrized Surfaces in R3

Summary We discuss theoretical and practical approaches to parametrizing a sur-

face in R
3.

In this chapter we begin a systematic study of surfaces in R
3, a topic which will

occupy the remaining chapters of this book. We begin with an informal discussion

of the background we bring to this investigation and reveal our general intentions.

Daily we encounter most of the classical Euclidean surfaces in R
3 such as a

sphere (football, globe), cone (ice-cream cone), ellipsoid (egg, American foot-

ball), cylinder (jar, can), plane (floor, wall, ceiling) and the non-Euclidean torus

(doughnut, tube). Many of our examples involve these surfaces and a solid geo-

metric understanding of these should be deliberately cultivated. Initially these

surfaces are merely subsets of R
3 which have a certain recognisable shape. We

have already established mathematical contact with them as level sets and graphs

of functions. Our studies have been confined to the classical problem in

differential calculus of finding the maximum and minimum of a scalar-valued func-

tion over a surface and for this we introduced the geometric concepts of tan-

gent plane and normal line. This essentially summarises the formal knowledge

we have acquired but we do have at our disposal a range of mathematical ideas

and techniques which, if not directly applicable, will often hint at the way for-

ward.

Our plan is to develop integration theory on surfaces and to investigate the geom-

etry of surfaces. Keep in mind the following topics as particularly relevant to the

theories we develop:

(a) integration over open subsets of R
2 (Chap. 9)

(b) integration along directed curves in R
2 and R

3 (Chap. 6)

(c) the geometry of curves in R
2 and R

3 (Chaps. 7 and 8).

For instance an open subset U in R
2 can be considered, or identified with, a surface

Ũ in R
3 by means of the mapping

(x, y) ∈ U −−−→ (x, y, 0) ∈ Ũ.

S. Dineen, Multivariate Calculus and Geometry, 103
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Fig. 10.1

Thus any theory of integration over a surface will extend integration theory over

open subsets of R
2. We can say more since parametrizations (Definition 10.2) are a

means of identifying a simple surface with an open subset of R
2 and this eventually

allows us to reduce integration over a surface to integration over an open subset of

R
2 in much the same way that we reduced line integrals in R

n to integration over

an interval in R (the key word in this sentence is unfortunately “eventually”). Thus

our theory of integration over surfaces is obtained by combining and developing

techniques already used in (a) and (b). We shall see later how (b) and (c) and, in

particular, the methods used to derive the Frenet–Serret equations, can be extended

to investigate the geometry of surfaces in R
3.

We begin our formal study of surfaces by defining the concept of a parametrized

surface in R
3. Our definition is mathematically simple, a good starting point, and

carries us a long way but does have certain inadequacies that we discuss as we

proceed.

Definition 10.1 A parametrized surface in R
3 consists of a pair (S, φ) where S is

a subset of R
3 and φ is a bijective mapping from an open subset of R

2 onto S such

that the following conditions hold:

(i) φ has derivatives of all orders (we say that φ is smooth or C ∞)

(ii) φx × φy �= 0 at all points.

Condition (ii) is the analogue of P′ �= 0 for a parametrized curve in R
3 and is

equivalent to the requirement that φx and φy are linearly independent vectors at all

points (see Fig. 10.1).

Definition 10.2 A simple surface in R
3 is a subset S of R

3 for which there exists a

mapping φ such that (S, φ) is a parametrized surface. We call φ a parametrization of

S.

One notable difference between the above definitions and the corresponding def-

inition of directed curve (Definition 5.1) is the change from a closed interval in R

to an open subset of R
2 for the domain of parametrization. For a directed curve the

inclusion of end points in the domain of definition leads to a sense of direction along

the curve and we will need an analogous concept, a sense of orientation, to develop

vector-valued integration theory over a surface. However, a sense of direction along a
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curve can also be obtained by using tangent vectors at interior points of the curve and

we develop the concept we require for surfaces by using the interior of the surface.

Unfortunately, many of the classical Euclidean surfaces, e.g. the sphere, are not

simple surfaces but, fortunately, for many practical purposes, e.g. the calculation of

surface area and the evaluation of surface integrals, they may be considered as simple

surfaces. We will make this precise later and also define a general surface in R
3.

We now examine three specific examples—graphs, surfaces of revolution and

the classical ellipsoid. These, although apparently rather limited, appear in many

different contexts and we allow them to divert us to essential ideas associated with

any parametrized surface.

Example 10.3 (see Example 7.1) Let f : U ⊂ R
2 → R denote a smooth function

defined on the open subset U of R
2 and let S denote the graph of f , i.e.

S =
{(

x, y, f (x, y)
)

: (x, y) ∈ U
}
.

The form of S immediately gives a parametrization φ defined by

φ(x, y) =
(
x, y, f (x, y)

)

with domain U. Since φx = (1, 0, fx) and φy = (0, 1, fy) we have

φx × φy =

∣∣∣∣∣∣

i j k

1 0 fx

0 1 fy

∣∣∣∣∣∣
= (−fx,−fy, 1).

As the final coordinate of φx × φy is always 1 we have φx × φy �= 0. If φ(x1, y1) =
φ(x2, y2) then (

x1, y1, f (x1, y1)
)

=
(
x2, y2, f (x2, y2)

)
.

Hence x1 = x2 and y1 = y2 and so φ is injective. Clearly φ(U) = S.

As a particular example consider the unit sphere S : x2 + y2 + z2 = 1. We have

z2 = 1 − x2 − y2 and z = ±(1 − x2 − y2)1/2. Hence the upper hemisphere of S is

the graph of the function

g(x, y) = (1 − x2 − y2)1/2

and the mapping g̃ : (x, y) →
(
x, y, (1−x2−y2)1/2

)
is a parametrization of the upper

hemisphere. The domain of g̃ is the disc {(x, y) ∈ R
2 : x2 + y2 < 1}. To visualise

this physically imagine the hemisphere as a dome S and take U to be the floor of

the dome. If you can now accept yourself as a point p on the floor and look directly

upwards your eyes will focus on a unique point q in the dome S (Fig. 10.2). Moving

around you will be identifying the points of U with points of the surface. The floor U

is the domain of the parametrization while the parametrization itself is the mapping

which takes p to q. The fact that you are always looking in the same direction means
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Fig. 10.2

0

θ

(r, θ)

r

Fig. 10.3

that the identification or parametrization is given by a set of parallel lines (Fig. 10.2)

and since parallel lines never meet the mapping is injective or one-to-one. Since each

point on the dome is hit by an arrow we also have an onto or surjective mapping

and thus a bijective mapping. In general any natural identification of a flat set with a

surface by means of parallel lines will lead to a parametrization (see Example 11.2).

A point P in R
2 can be identified by means of its distance r from the origin and

the angle θ between the positive x-axis and the vector OP (Fig. 10.3).

We call (r, θ) the polar coordinates of P. Polar coordinates are particularly useful

when dealing with circles and discs and with functions involving the expression

x2 + y2 in Cartesian coordinates. Unfortunately, the correspondence

(r, θ) −−−→ (x, y) = (r cos θ, r sin θ)

is not bijective but we get around this difficulty by removing a small portion of the

domain. The domain of the parametrization of the hemisphere S given above is the

disc x2 + y2 < 1 and suggests the use of polar coordinates. Since

(1 − x2 − y2)1/2 = (1 − r2 cos2 θ − r2 sin2 θ)1/2 = (1 − r2)1/2

the mapping

F : (r, θ) ∈ (0, 1) × (−π, π) →
(
r cos θ, r sin θ, (1 − r2)1/2

)



10 Parametrized Surfaces in R
3 107

z

y

x

(x(t),y(t))

a b

Fig. 10.4

is a bijective mapping onto S \ Γ where Γ is the set

{
(−r, 0, (1 − r2)1/2), 0 ≤ r < 1

}
.

On (0, 1) × (−π, π)

Fr × Fθ =
(

r2 cos θ

(1 − r2)1/2
,

r2 sin θ

(1 − r2)1/2
, r

)

is non-zero and we have found a second parametrization of (almost) the whole hemi-

sphere.

Example 10.4 Let P(t) =
(
x(t), y(t)

)
, t ∈ [a, b] denote a directed curve Γ in R

2.

We suppose y(t) > 0 for all t. The surface obtained by revolving this curve about

the x-axis is called the surface of revolution of P about the x-axis (Fig. 10.4).

Consider a typical point on the circle obtained by rotating the point
(
x(t), y(t)

)
.

The first coordinate remains unchanged. The second coordinate will generate a cir-

cle in the (y, z)-plane with centre (0, 0) and radius y(t). Using the standard para-

metrization of the circle we see that a typical point on this circle has coordinates(
y(t) cos θ, y(t) sin θ

)
. Putting these together we obtain a parametrization

(t, θ) −−−→
(
x(t), y(t) cos θ, y(t) sin θ

)

where t ∈ (a, b) and θ ∈ (0, 2π). Now

φt =
(
x′(t), y′(t) cos θ, y′(t) sin θ

)

and

φθ =
(
0,−y(t) sin θ, y(t) cos θ

)
.

Hence
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P (t) = (r cos t, r sin t)

P (t) = (ht, rt) P (t) = (t, r)

(c)

(b)(a)

Fig. 10.5

φt × φθ =

∣∣∣∣∣∣

i j k

x′(t) y′(t) cos θ y′(t) sin θ

0 −y(t) sin θ y(t) cos θ

∣∣∣∣∣∣

=
(
y′(t)y(t),−x′(t)y(t) cos θ,−x′(t)y(t) sin θ

)
.

Since

‖φt × φθ‖ =
(
(y′)2y2 + (x′)2y2 cos2 θ + (x′)2y2 sin2 θ

)1/2

= y(t)
(
y′(t)2 + x′(t)2

)1/2 = y(t)‖P′(t)‖ �= 0

we have φt × φθ �= 0. Since the mapping φ is bijective as long as we do not include

θ and θ + 2π in the domain we let U = (a, b) × (0, 2π) and obtain a bijective

mapping onto the surface of revolution with one curve, the original or profile curve,

removed. Many classical surfaces may be realised as surfaces of revolution; e.g. the

cone (Fig. 10.5a), cylinder (Fig. 10.5b) and sphere (Fig. 10.5c).

These induce the following parametrizations:

Cone (t, θ) −−−→ (ht, rt cos θ, rt sin θ),

Cylinder (t, θ) −−−→ (t, r cos θ, r sin θ),

Sphere (t, θ) −−−→ (r cos t, r sin t cos θ, r sin t sin θ).

We parametrize, in Example 11.1 the torus as a surface of revolution.
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We now examine in considerable detail a particular surface—the standard ellip-

soid. This includes the sphere as a special case. We use this example as an excuse

to explore and comment on many of the practical and theoretical considerations that

arise in studying any surface and to shed some light on the necessity and significance

of later developments. In studying this example the reader should keep in mind that

parametrizations are nothing more than coordinate systems, that we are always trying

to interpret mathematical facts geometrically and constantly attempting to articulate

mathematically our geometric observations.

Example 10.5 We consider the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1.

This specialises to the sphere of radius a centred at the origin when a = b = c.

Two of the most frequently used coordinate systems on the sphere are spherical

polar coordinates and geographical coordinates. These, as we shall see, are closely

related. Spherical polar coordinates are more popular in the mathematical literature

but since geographical coordinates are in everyone’s normal experience we devote

more time to them here.

The representation of the ellipsoid as a level set of a sum of squares suggests

we use the elementary identity sin2 θ + cos2 θ = 1 to develop our parametrization.

Rewriting the formula for the ellipsoid as a sum of two squares we get

⎛

⎝

√

x2

a2
+

y2

b2

⎞

⎠

2

+
( z

c

)2
= 1.

Now let
√

x2

a2
+

y2

b2
= cos θ and

z

c
= sin θ.

Hence z = c sin θ and

x2

a2
+

y2

b2
= cos2 θ, i.e.

( x

a cos θ

)2
+

( y

b cos θ

)2
= 1.

A further similar substitution gives

x

a cos θ
= cos ψ and

y

b cos θ
= sin ψ.

This implies x = a cos θ cos ψ and y = b cos θ sin ψ . Our parametrization, denoted

by F, has the form
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Fig. 10.6

F : U −−−→ S (ellipsoid)

(θ, ψ) −−−→ (a cos θ cos ψ, b cos θ sin ψ, c sin θ)

but we must specify U, check that F is bijective and see that conditions (i) and (ii)

are satisfied. Geometrically we have the following diagram (Fig. 10.6) in the case of

the sphere a = b = c.

Thus we project the point P = (x, y, z) onto the xy-plane to get the point Q =
(x, y, 0). The angle θ is the angle between the vectors OQ and OP and hence θ =
tan−1

(
z

/
(x2 + y2)1/2

)
. The level set of the surface through P parallel to the xy-

plane is a circle (remember we are just considering a sphere here) and this is also

projected onto the xy-plane and the angle ψ is obtained by using polar coordinates

on this circle. Hence ψ = tan−1(y/x). From Fig. 10.6 it is clear that θ ranges over

the interval (−π/2, π/2) and ψ over the interval (0, 2π). Clearly the smoothness

condition (i) is satisfied no matter what domain U we choose for F. In many examples

condition (ii) is easily checked and formal identification of the range of F is obtained

using a diagram. In this example, however, we adopt a more analytic approach in

verifying that F is a parametrization.

We have

Fθ = (−a sin θ cos ψ,−b sin θ sin ψ, c cos θ)

and

Fψ = (−a cos θ sin ψ, b cos θ cos ψ, 0).

Hence,

Fθ × Fψ =

∣∣∣∣∣∣

i j k

−a sin θ cos ψ −b sin θ sin ψ c cos θ

−a cos θ sin ψ b cos θ cos ψ 0

∣∣∣∣∣∣

= (−bc cos2 θ cos ψ,−ac cos2 θ sin ψ,−ab cos θ sin θ)

= −abc cos θ

(
cos θ cos ψ

a
,

cos θ sin ψ

b
,

sin θ

c

)
.
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If a = b = c then

‖Fθ × Fψ‖ = a2 cos θ(cos2 θ cos2 ψ + cos2 θ sin2 ψ + sin2 θ)1/2

= a2 cos θ. (10.1)

Before proceeding we make a brief observation which we develop in more detail

in Chaps. 16–18. If we fix ψ and let θ vary we obtain a mapping

θ −−−→ F(θ, ψ)

where θ ranges over an interval in R. This defines a directed curve which lies in S with

tangent Fθ . Similarly Fψ is tangent to the curve ψ → F(θ, ψ) in S. These curves

are called coordinate curves (of the parametrization). The vectors Fθ and Fψ lie in

the tangent space of S at P and are called tangent vectors. Tangent vectors enable us

to define directional derivatives of functions defined on the surface. If G : S → R
n

and P ∈ S then the directional derivative of G at P in the direction of the tangent

vector v at P is given by

DvG(p) =
d

dt
(G ◦ φ)(t)|t=0

where φ is any differentiable mapping from (−a, a) into S such that φ(0) = P and

φ′(0) = v.

Condition (ii) says that Fφ and Fθ span the tangent space and the following

relationship holds in any surface S.

{The tangent space of S at P} =
{

set of tangents at P of all curves

in S which pass through P

}

=

⎧

⎨

⎩

all linear combinations spanned

by the partial derivatives at P

of any parametrization

⎫

⎬

⎭

=

⎧

⎨

⎩

set of directional derivatives

at P which operate on

functions defined on S.

⎫

⎬

⎭

Since Fθ × Fψ �= 0, the vector Fθ × Fψ is perpendicular to the tangent space and

hence parallel to the normal. In our case the surface S is the level set g−1(0) where

g(x, y, z) =
x2

a2
+

y2

b2
+

z2

c2
− 1.

We now confine ourselves to the special case of the unit sphere, i.e. the ellipsoid with

a = b = c = 1. The adjustments necessary, when this case has been considered, in

order to examine the general situation are fairly minor. We have seen in Chap. 2 that

http://dx.doi.org/10.1007/978-1-4471-6419-7_16
http://dx.doi.org/10.1007/978-1-4471-6419-7_18
http://dx.doi.org/10.1007/978-1-4471-6419-7_2
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the normal is parallel to ∇g and by inspecting (10.1) we see that ∇g(P) is parallel to

Fθ (P) × Fψ (P). This observation can be used to partially check calculations and, in

some cases, may even be used to avoid calculating Fφ × Fψ . We have thus related

our earlier concepts of tangent space and normal with terms which can be calculated

from any parametrization.

We next turn to find a domain U for F and to verify that all requirements necessary

for a parametrization are satisfied by (F, U). Initially, it is usually better to choose

the domain of parametrization to be as large and as simple as possible. These twin

aims may not always be compatible with the requirements for a parametrization or,

indeed, with one another so some judgement is necessary and this usually comes

with experience.

By (10.1), Fθ ×Fψ �= 0 if and only if cos θ �= 0 and a natural choice for the domain

of θ is the interval −π/2 < θ < π/2. This is also suggested by Fig. 10.6. Since both

the sine and cosine functions have period 2π the length of the interval of definition

of ψ cannot be greater than 2π . The interval (0, 2π) is a natural choice and leads to

U = {(θ, ψ) : −π/2 < θ < π/2, 0 < ψ < 2π}

as our domain for F. Clearly the set U is open. If F(θ1, ψ1) = F(θ2, ψ2) then,

comparing final coordinates in F, we get sin θ1 = sin θ2. Since the sine function is

injective on (−π/2, π/2) this implies θ1 = θ2. Moreover, cos θ �= 0 on (−π/2, π/2)

and comparing the first two coordinates of F we see that cos ψ1 = cos ψ2 and

sin ψ1 = sin ψ2. Since (cos(ψ), sin(ψ)), 0 < ψ < 2π, are the coordinates of a

unique point on the unit circle we have ψ1 = ψ2 and F is injective on U.

We have thus shown that F is a parametrization of its range or image, F(U). By

our construction the image of F lies in the ellipsoid. Does it cover the full ellipsoid? If

F(θ, ψ) = (0, 0, c) then sin θ = 1. However, −π/2 < θ < π/2, and so (0, 0, c) /∈
F(U) and F does not cover the ellipsoid. To find the range of F we proceed as

follows. The set U is an open rectangle in R
2 and its boundary is the perimeter of

this rectangle. The function F has a nice smooth extension from U to its boundary

(Fig. 10.7) and the image of this boundary is the boundary of the image of F in the

surface we are examining.

−π
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2π

2
π/

IIIIV

0
I

II

ψ

θ

Fig. 10.7
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Since F(θ, 0) = F(θ, 2π) = (−a cos θ, 0, c sin θ), F(π/2, ψ) = (0, 0, c),

F(−π/2, ψ) = (0, 0,−c), and −π/2 < θ < π/2 the boundary of U is mapped onto

one half of the ellipse (x/a)2+(z/c)2 = 1, y = 0. Hence F is a parametrization of the

ellipsoid with one curve removed, the half ellipse PQR in Fig. 10.8. As we develop

geometric insight we will find that a good sketch often leads to a rapid identification

of the domain of definition of the parametrization and it will not be necessary to go

through the protracted investigation we have just completed.

A different choice of domain would have led to a parametrization which almost

certainly would have covered a different part of the ellipsoid and perhaps covered

the curve that we missed. However, no parametrization will cover the full ellipsoid.

This, although intuitively clear, is a highly non-trivial mathematical result.

A parametrization identifies, with F as the mode of identification, a flat set of

points, the open subset U of R
2, with a subset of the surface, F(U), in a one-to-one

fashion. So essentially we are taking a sheet of paper U and using F to wrap it around

a sphere. The first stage of wrapping turns the sheet of paper into a cylinder with

the sphere inside it (Fig. 10.9). This identifies the boundary lines I and II with one

another (Fig. 10.7) and is equivalent mathematically to F(θ, 0) = F(θ, 2π) for all θ .

The final steps in the wrapping collapses III onto (0, 0, c) and IV onto (0, 0,−c).

Mathematically this says F(π/2, ψ) = (0, 0, c) and F(−π/2, ψ) = (0, 0,−c) for
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all ψ . We thus see geometrically that if we include the boundary of U in the domain

of F then the curve, which we previously missed, is covered twice and F is not

one-to-one. If we do not include the boundary then this curve is not in the image of

F.

Next we discuss parametrizations as coordinate systems. A useful initial approach

to any such system is to sketch and examine the coordinate curves on the surface. In

our case, since we are still looking at the unit sphere, we consider the curves obtained

by fixing one of the variables of the function

F(θ, ψ) = (cos θ cos ψ, cos θ sin ψ, sin θ), −π/2 < θ < π/2, 0 < ψ < 2π.

Since F is bijective, a point on the surface corresponds to a unique pair (θ1, ψ1)

and F(θ1, ψ1) is the point of intersection of the coordinate curves θ → F(θ, ψ1),

ψ → F(θ1, ψ). For this reason, the pair (θ, ψ) is often referred to as the curvilinear

coordinates of the point F(θ, ψ). Fixing θ is clearly equivalent to taking a fixed value

of z and amounts to taking a cross-section of the unit sphere parallel to the xy-plane.

Geometrically we get a circle (Fig. 10.10).

This may also be seen analytically since the mapping F(θ, ψ) can be written as

(0, 0, sin θ) + cos θ(cos ψ, sin ψ, 0).

As ψ varies over (0, 2π) we get a circle (with one point removed) in a plane parallel

to the xy-plane, with centre (0, 0, sin θ) on the z-axis, and radius cos θ . A number of

level sets of θ are given in Fig. 10.11.

Now fix ψ and let θ range over the interval −π/2 < θ < π/2. We have

F(θ, ψ) = cos θ(cos ψ, sin ψ, 0) + sin θ(0, 0, 1).

Since (cos ψ, sin ψ, 0) and (0, 0, 1) are perpendicular unit vectors we get, by

Pythagoras’ theorem, a semicircle of radius 1. We do not get the full circle because

of the restricted range of θ . This is easily seen, either geometrically or from

the above formula, to be a semicircle running from (−1, 0, 0) to (+1, 0, 0), i.e.
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(0, 0, −1)

(0, 0, 1)

Fig. 10.12

from the bottom to the top of the sphere. In Fig. 10.12 we sketch a number of these

level sets of ψ .

One can find a ready-made example of this by examining a globe representing

the Earth. The level sets of θ are the lines or parallels of latitude with the equator

corresponding to θ = 0. Instead of + and − the terms North and South are used. The

level sets of ψ are called lines of longitude or meridians with the level set ψ = 0

going through Greenwich, England. In place of + and − we use East and West (of

Greenwich). The range here is from 0 to 180◦ while for θ we use 0 to 90◦. If we

represent the Earth on a map we are unwrapping the sphere, or mathematically, taking

the inverse of a parametrization. The most common map (Fig. 10.13) is obtained by

using Mercator’s projection. This first unwraps the sphere onto a cylinder in such a

way that when the cylinder is unrolled shapes are preserved (but area is distorted—see

Exercise 11.8). What happens if we replace the cylinder by a cone?

Note that East meets West on the International Date Line in the middle of the

Pacific Ocean. There is a certain ambiguity about this line—is it 180◦ East or 180◦

West of Greenwich? This, once more, reflects the fact that we do not obtain a bijective

mapping if we include the boundary in the domain of definition of the parametrization.
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Different maps result from using different parametrizations or coordinate systems.

The mapping F that we have been discussing is called the geographical coordinate

system. It is as useful and as intuitive a system as the more popular spherical polar

coordinate system that we now discuss.

A small change in our method of introducing geographical coordinates leads to

the definition of spherical polar coordinates. Recall that, for the ellipsoid, we have

(( x2

a2
+

y2

b2

)1/2
)2

+
( z

c

)2
= 1.

Now we interchange the role of sine and cosine and let

z

c
= cos θ and

( x2

a2
+

y2

b2

)1/2
= sin θ.

This implies ( x

a sin θ

)2
+

( y

b sin θ

)2
= 1 .

Let x/a sin θ = cos ψ and y/b sin θ = sin ψ . This defines the mapping

G(θ, ψ) = (a sin θ cos ψ, b sin θ sin ψ, c cos θ)

which are the spherical polar coordinates of the point (x, y, z).

From Fig. 10.14 we see that 0 < θ < π and 0 < ψ < 2π . The angle θ is called

the colatitude and ψ is sometimes called the azimuth. Note that we obtain the same

two sets of coordinate curves for geographical and spherical polar coordinates—the

labelling is, however, different.

For a sphere of radius r with centre at the origin this gives

G(θ, ψ) = (r sin θ cos ψ, r sin θ sin ψ, r cos θ).
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Fig. 10.15

Note that

Gθ × Gψ = r2 sin θ(sin θ cos ψ, sin θ sin ψ, cos θ)

and

‖Gθ × Gψ‖ = r2 sin θ.

If we wish to parametrize a part of the sphere we can still use G—and hence all cal-

culations involving G and its derivatives—but it is necessary to identify the restricted

domain on which we are working. Fig. 10.14 is useful for this purpose. Suppose, for

instance, we wish to parametrize that portion of the sphere of radius 5 with centre at

the origin which lies between the planes z = −3 and z = 4.

Figure 10.15a and b gives the minimum and maximum values of θ , θ1 and θ2, and

there is no restriction on ψ . Hence our parametrization G has domain

U = {(θ, ψ) : sin−1
(3

5

)
< θ < π − sin−1

(4

5

)
, 0 < ψ < 2π}.

From Fig. 10.14 we get the spherical polar coordinates in terms of the Cartesian

coordinates (x, y, z):
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r = (x2 + y2 + z2)1/2, θ = tan−1
( (x2 + y2)1/2

z

)
and ψ = tan−1

(y

x

)
.

The parametrization of the sphere can also be used to parametrize the inverted vertical

cone of height a and base radius a (Fig. 10.16a).

Note that the angle between the z-axis and the curved surface of the cone is π/4.

If we take the cross-section of the cone of height r, 0 < r < a, then we obtain a

circle of colatitude π/4 on the sphere of radius r
√

2 (Fig. 10.16b). The spherical

polar coordinates of this circle are

(
r
√

2 sin
π

4
cos ψ, r

√
2 sin

π

4
sin ψ, r

√
2 cos

π

4

)
, 0 < ψ < 2π,

= (r cos ψ, r sin ψ, r)

and we have the parametrization

(r, ψ) −−−→ (r cos ψ, r sin ψ, r), 0 < ψ < 2π, 0 < r < a.

This completes our analysis of the ellipsoid and sphere. We remark that many of our

comments apply to a wide variety of surfaces.

A simple surface may have different parametrizations and depending on the cir-

cumstances one may be more useful than another. In Examples 10.3 and 10.4 we

derived other parametrizations for the “sphere”. An important technique that we

discuss in Chap. 14 is how to go from one parametrization to another. Since para-

metrizations are coordinate systems involving variables this process is known as a

change of variable.

In the above discussion we have seen that ellipsoids and spheres are not simple

surfaces, although they may be written as a union of a simple surface and a para-

metrized curve and for practical purposes, such as integration, they may be regarded

as simple surfaces. Nevertheless, it is desirable to have a definition of surface in R
3

which implies, for instance, that a sphere is a surface. Such a definition, as we have

just noted, requires more than one parametrization.

http://dx.doi.org/10.1007/978-1-4471-6419-7_14
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Definition 10.6 A subset of R
3 is a surface if it can be covered by a collection of

(generally overlapping) simple surfaces.

With the aid of the following important and highly non-trivial result we outline

a relationship between surfaces, simple surfaces, level sets and graphs. This also

shows that an ellipsoid is a surface.

Theorem 10.7 (Inverse Mapping Theorem.) If F : U(open)⊂ R
n −→ R

n is con-

tinuously differentiable and F ′(p) is invertible at p ∈ U then there exist V and W

open in R
n, p ∈ V , such that the restriction of F to V defines a bijective mapping

from V onto W with continuously differentiable inverse.

Theorem 10.8 If S is a subset of R
3 then the following are equivalent:

1. S is a surface,

2. for each P ∈ S there exists ε > 0 such that S ∩ {X : ‖X − P‖ < ε} is a simple

surface,

3. for each P ∈ S there exists ε > 0 such that S ∩ {X : ‖X − P‖ < ε} is the graph

of a smooth function,

4. for each P ∈ S there exists ε > 0 and a smooth function f : {X : ‖X − P‖ <

ε} −→ R such that ∇f (X) �= 0 for ‖X − P‖ < ε and

S ∩ {X : ‖X − P‖ < ε} = {X : ‖X − P‖ < ε, f (X) = 0}.

Proof The first two conditions are equivalent by Definition 10.6. By Example 1.7,

graphs are level sets and, by the Implicit Function Theorem (Theorem 2.1), level sets

are locally graphs and the final two conditions are also equivalent. By Example 10.3

every graph is a simple surface and thus it suffices to show that every simple surface

is locally a level set.

Suppose φ : U(open in R
2) −→ S is a parameterized surface. Define F : U ×

R −→ R
3 by letting

F(x, y, z) = φ(x, y) + zG(x, y)

where G(x, y, z) = φx(x, y) × φy(x, y). Then F is continuously differentiable and

F ′(x, y, 0) = [φx(x, y), φy(x, y), G(x, y)]

is invertible. If P ∈ S then, by the Inverse Mapping Theorem, we can find open

subsets of R
3, V and W , such that P ∈ W , F(V) = W and F restricted to V has

a continuously differentiable inverse. Let g = π3 ◦ F−1 where π3(x, y, z) = z. If

(x, y, z) ∈ W , then for a unique (x′, y′, z′) ∈ V we have

(x, y, z) = F(x′, y′, z′) = φ(x′, y′) + G(x′, y′)z′.

This implies
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g(x, y, z) = π3 ◦ F−1(x, y, z) = 0 ⇐⇒ π3 ◦ F−1 ◦ F(x′, y′, z′) = z′ = 0

⇐⇒ (x, y, z) = F(x′, y′, 0) = φ(x′, y′)

⇐⇒ (x, y, z) ∈ S

and hence g−1(0) ∩ W = S ∩ W . Since ∇g(X) �= 0 for all X ∈ W this completes the

proof. ⊓⊔

The above shows that graphs are much more than simple examples. This will

become very evident when we examine curvature in the final three chapters.

Exercises

10.1 By using cosh2 − sinh2 = 1 and cos2 + sin2 = 1 parametrize the surfaces

(a)
x2

a2
+

y2

b2
−

z2

c2
= 1

(b)
x2

a2
−

y2

b2
−

z2

c2
= 1.

10.2 Show that the following are parametrizations of simple surfaces

(a) P1(r, θ) = (r cos θ, r sin θ, θ), 0 < θ < 2π, 0 < r < 1

(b) P2(x, θ) = (x cos θ, y sin θ, x + y), 0 < x < 1, 0 < θ < 2π , y �= 0

(c) P3(u, v) = (u + v, u − v, uv), 0 < u < 1, 0 < v < 1.

10.3 By using a parametrization of an ellipsoid parametrize an inverted cone of

height h and base radius r.

10.4 Use geographical and spherical polar coordinates to parametrize that portion of

the sphere x2 + y2 + z2 = r2 which lies in the first octant {(x, y, z) : x ≥ 0, y ≥
0, z ≥ 0}.

10.5 Let S = {(x, y, z) : x2+y2+z2 = 1} denote the unit sphere in R
3. If (u, v) ∈ R

2

then the line determined by (u, v, 0) and (0, 0, 1) intersects S in a point other

than (0, 0, 1). Let φ(u, v) denote this point. Find the coordinates of φ(u, v)

in terms of u and v. Show that φ(R2) is a simple surface parametrized by φ.

Identify φ(R2).

10.6 Find the length of the portion of the curve u = v lying in the surface parametrized

by

φ(u, v) = (u cos v, u sin v, u
√

3)

which lies between the planes z = 0 and z = 2
√

3.

10.7 Let f (x, y, z) = x +xy+yz and let S = f −1(1). Find two parametrized surfaces

which lie in S and cover S.

10.8 Consider a line L initially lying along the positive y-axis and attached orthogo-

nally to the z-axis. If L moves along the z-axis with constant speed a and at the

same time rotates about the z-axis with constant speed b show that it sweeps

out a surface parametrized by

φ(u, t) = (u sin bt, u cos bt, at), u > 0, t > 0.



Chapter 11

Surface Area

Summary We define and calculate surface area.

We follow the method used in Chap. 5 to calculate the length of a curve in order

to define the (surface) area of a simple surface S in R
3. Let φ : U → S denote

a parametrization of S where U is an open subset of R
2. We take a rectangular

partition of U (Fig. 11.1), find the approximate area of the image of each rectangle

in the partition, form a Riemann sum and obtain the surface area as the limit of the

Riemann sums.

If R denotes a typical rectangle in U (Fig. 11.2) then

φ(x + �x, y) − φ(x, y) ≈ φx(x, y)�x

and

φ(x, y + �y) − φ(x, y) ≈ φy(x, y)�y.

If θ = θ(x, y) is the angle between φx(x, y) and φy(x, y) then using the well-known

formula for the area of a triangle, 1
2

ab sin C, we get

Area
(

φ(R)
)

≈ 2 ·
1

2
‖φx(x, y)‖ · ‖φy(x, y)‖ · | sin θ(x, y)|�x�y

= ‖φx × φy(x, y)‖�x�y.

If φ is integrable over U, and this will be the case if, for instance U is bounded, with

smooth boundary, and φ has a continuous extension to U, then

∑

i,j

Area
(

φ(Rij)
) ∼=

∑

i,j

‖φx × φy(xi, yj)‖�xi�yj

−−−→
∫∫

U

‖φx × φy‖ dxdy

S. Dineen, Multivariate Calculus and Geometry, 121
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as we take finer and finer partitions of U. Hence the surface area of S, A(S), has the

form

A(S) =
∫∫

U

‖φx × φy‖ dxdy

and is calculated using a parametrization. In general, a surface will admit many

different parametrizations but, as we will see later, they all give the same value

for surface area. In this chapter we are using the usual physical idea of area and

angle. These non-negative absolute quantities do not require a sense of direction or

orientation on the surface and lead, as we have just seen, to a relatively straightforward

form of integration. In the next chapter we require more sophisticated concepts of

area and angle to integrate vector fields over a surface.

We now obtain another formula for surface area which avoids the cross product.

We maintain the notation φ : U → S for our parametrization and introduce, in their

traditional form, three quantities that make regular and important appearances in the

remaining chapters of this book. Let

E (or E(x, y)) = φx · φx = ‖φx‖2

F (or F(x, y)) = φx · φy

G (or G(x, y)) = φy · φy = ‖φy‖2.

We have

‖φx × φy‖2 = ‖φx‖2‖φy‖2 sin2 δ
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where δ is the angle between φx and φy. Hence

cos δ =
φx · φy

‖φx‖ · ‖φy‖

and

‖φx × φy‖2 = ‖φx‖2‖φy‖2(1 − cos2 δ)

= ‖φx‖2‖φy‖2
(

1 −
(φx · φy)

2

‖φx‖2‖φy‖2

)

= ‖φx‖2‖φy‖2 − (φx · φy)
2 = EG − F2.

This gives the following useful formula for surface area

A(S) =
∫∫

U

√
EG − F2 dxdy.

Figure 11.2 shows how E, F and G quantify the distortion of a rectangle by the

parametrization. The stretching or contraction of the sides is measured by E and G

while F measures the change in angle. Thus we see that shape is preserved if E = G

and F = 0 while (relative) area is preserved if EG − F2 is constant. For many

important parametrizations, including geographical and spherical polar coordinates,

F = 0. This implies that angles between curves are preserved and, in particular,

parallels (of latitude) and meridians (of longitude) cross one another at right angles.

For geographical coordinates on a sphere of radius r, E = r2 and G = r2 cos2 θ and

hence neither shape nor area are preserved. On the Equator, where θ = 0, we have

E = G = r2 but as one moves towards the North and South Poles, θ → ±π/2 and

G → 0 while E = r2. Consequently, near the Equator shape is fairly well preserved

but as one moves towards the polar regions it becomes more and more distorted.

Mercator’s projection is a modification of geographical coordinates—notice how the

lines of latitude in Fig. 10.13 are not equally spaced in order to preserve shape. If the

cylinder in Mercator’s construction is replaced by a cone we obtain Lambert’s equal

area projection which preserves (relative) area but distorts shape and distance.

In Chap. 10 we noted that many well-known surfaces S could be written in the

form S = S1 ∪ Ŵ where S1 is a simple surface and Ŵ is a curve parametrized by a

smooth function on a closed interval. We see now that the surface area of Ŵ is zero

and from this conclude that A(S) = A(S1) and thus we may use a parametrization of

S1 to calculate the surface area of S. To show A(Ŵ) = 0 enclose Ŵ in a finite union

of rectangles of small width ε (Fig. 11.3).

The sum of the lengths of the rectangles is approximately the length of Ŵ, l(Ŵ).

Hence

A(Ŵ) ≈ ε × l(Ŵ).

http://dx.doi.org/10.1007/978-1-4471-6419-7_13
http://dx.doi.org/10.1007/978-1-4471-6419-7_10
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Since ε is arbitrarily small this implies A(Ŵ) = 0. This intuitive “proof” can be

developed into a rigorous proof using the Mean Value Theorem for differentiable

functions of one variable. A differentiable parametrization of the curve is necessary,

although our intuition might suggest otherwise, since there is a famous example of

a square filling curve parametrized by a continuous function.

Example 11.1 In this example we consider the surface of revolution S parametrized

as in Example 10.4. Let P : [a, b] → R
2 denote a parametrization of the curve to be

revolved. Our parametrization φ of S is defined on U = {(t, θ) : a < t < b, 0 <

θ < 2π} and has the form

φ(t, θ) =
(
x(t), y(t) cos θ, y(t) sin θ

)

where P(t) =
(
x(t), y(t)

)
. We have already shown in Example 10.4 that

‖φt × φθ‖ = y(t)‖P′(t)‖

and so the surface area of S is

2π∫

0

b∫

a

y(t)‖P′(t)‖dtdθ =

⎛
⎝

2π∫

0

dθ

⎞
⎠

⎛
⎝

b∫

a

y(t)‖P′(t)‖dt

⎞
⎠

= 2π

b∫

a

y(t)‖P′(t)‖dt.

For the cone of height h and (base) radius r, P(t) = (ht, rt), P′(t) = (h, r), ‖P′(t)‖ =
(h2 + r2)1/2 and the curved surface area is

2π

1∫

0

rt(r2 + h2)1/2dt = 2πr(h2 + r2)1/2

1∫

0

tdt = πr(h2 + r2)1/2.

For the cylinder of radius r and height h we have P(t) = (t, r), P′(t) = (1, 0) and

‖P′(t)‖ = 1. Hence the curved surface area of the cylinder is
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2π

h∫

0

r · 1dt = 2πrh.

For the sphere of radius r, P(t) = (r cos t, r sin t), P′(t) = (−r sin t,

r cos t) and ‖P′(t)‖ = r and the surface area of the sphere of radius r is

2π

π∫

0

r sin t · rdt = 2πr2(− cos t)

∣∣∣∣
π

0

= 4πr2.

We now parametrize the torus by realising it as a surface of revolution. We adopt a

slightly different approach to that in Example 10.4 in order to obtain what is regarded

as the standard parametrization. Place a circle of radius r in the (y, z)-plane with

centre on the y-axis at a distance b, r > b, from the origin and revolve this circle

about the z-axis (Fig. 11.4).

The coordinates of a typical point on the original curve in the (x, z)-plane are

(b + r cos θ, r sin θ). When rotated about the z-axis the third coordinate remains

unchanged while the first two coordinates describe a circle of radius b + r cos θ

about the origin. This gives a parametrization f with formula

f (θ, ψ) =
(
(b + r cos θ) cos ψ, (b + r cos θ) sin ψ, r sin θ

)

and domain (0, 2π) × (0, 2π). Hence

fθ = (−r sin θ cos ψ,−r sin θ sin ψ, r cos θ)

fψ =
(
−(b + r cos θ) sin ψ, (b + r cos θ) cos ψ, 0

)
.

b

(b + r cos θ, r sin θ)

r

x

z

y

Fig. 11.4
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By inspection we see that fθ and fψ are perpendicular and hence F = 0. We have

E = ‖fθ‖2 = r2 sin2 θ cos2 ψ + r2 sin2 θ sin2 ψ + r2 cos2 θ

= r2 sin2 θ(cos2 ψ + sin2 ψ) + r2 cos2 θ

= r2 sin2 θ + r2 cos2 θ = r2

and

G = ‖fψ‖2 = (b + r cos θ)2 sin2 ψ + (b + r cos θ)2 cos2 ψ

= (b + r cos θ)2.

Hence,
√

EG − F2 = r(b + r cos θ), and

A(Torus) =
2π∫

0

2π∫

0

√
EG − F2dθdψ

=
2π∫

0

2π∫

0

r(b + r cos θ)dθdψ

=

⎛
⎝

2π∫

0

dψ

⎞
⎠

⎛
⎝

2π∫

0

r(b + r cos θ)dθ

⎞
⎠

= 4π2rb.

Some geometric insight might have led you to this answer without any calculations

or integration (see Example 14.5). The coordinates (θ, ψ) for the torus defined above

are called toroidal polar coordinates.
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Example 11.2 We wish to find the surface area of the portion of the paraboloid

z = 4 − x2 − y2 that lies above the xy-plane. This is the graph of the function

f (x, y) = 4 − x2 − y2 and we could find a parametrization using the method in

Example 10.3. We prefer, however, to take a more geometric approach.

The standard paraboloid z = x2 +y2 can be sketched by noting that cross-sections

parallel to the xy-plane are circles (Fig. 11.5a). This surface is turned upside down

by taking z = −x2 − y2 and then moved up 4 units in the direction of the z-axis to

give us the original surface z = 4 − x2 − y2 (Fig. 11.5b).

The surface cuts the xy-plane when 0 = z = 4 − x2 − y2, i.e. on the circle

x2 + y2 = 4. Clearly the geometry shows that we can project the surface in a

one-to-one fashion onto the disc x2 + y2 ≤ 4 and if we reverse this we obtain the

parametrization

(x, y) ∈ {x2 + y2 < 4} −−−→ (x, y, 4 − x2 − y2) ∈ Paraboloid.

We could proceed directly to use this parametrization to compute the surface area.

This would require a change of variable in working out the double integral. It is

just as easy to initially use a more appropriate parametrization which avoids a later

change of variable.

We note that the domain of the above parametrization is a disc and the formula for

the parametrization function involves x2 + y2. Either of these on their own suggest

polar or spherical coordinates. Since, however, the disc shape and x2+y2 only involve

the first two coordinates this inclines us towards polar coordinates for the pair (x, y).

We use the parametrization

f : (r, θ) −−−→ (r cos θ, r sin θ, 4 − r2), 0 < r < 2 and 0 < θ < 2π.

We have fr = (cos θ, sin θ,−2r), fθ = (−r sin θ, r cos θ, 0). Hence E = 1 + 4r2,

G = r2 and since fr · fθ = 0 we have F = 0. The surface area is

2∫

0

2π∫

0

√
EG − F2drdθ =

2∫

0

2π∫

0

r
√

1 + 4r2drdθ

= 2π

2∫

0

r
√

1 + 4r2dr

=
2π

8

∫
u1/2du, 1 + 4r2 = u, 8rdr = du

=
π

4
·

2

3
u3/2 =

π

6
(1 + 4r2)3/2

∣∣∣∣
2

0

=
π

6
(173/2 − 1).
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Example 11.3 We wish to find in this example the surface area of that portion of the

sphere x2 + y2 + z2 = 4z which lies outside the paraboloid x2 + y2 = 3z.

For this problem we first get some idea of the geometry and see, once this is

reasonably clear, that the parametrization, the domain of the parametrization and

even the integration are relatively straightforward.

We have two surfaces, a sphere and a paraboloid. Rewriting the equation for the

sphere by completing the square we get

x2 + y2 + z2 − 4z + 4 = 4

i.e.

x2 + y2 + (z − 2)2 = 22

and this is the sphere of radius 2 with centre (0, 0, 2) (Fig. 11.6).

If we take the cross-section of the paraboloid corresponding to the plane z = c

we get a circle of radius
√

3c and so we can sketch the paraboloid (Fig. 11.7). The

points of intersection of the two surfaces are identified by letting

2

z

y

x

Fig. 11.6

x

z

y

Fig. 11.7
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y

x

1

z

2

Fig. 11.8

x2 + y2 + z2 − 4z = 0 = x2 + y2 − 3z.

This implies z2 − 4z = −3z, i.e. z2 − z = 0 and z = 1 or z = 0. When z = 0 we

get the point (0, 0, 0) on both surfaces and when z = 1 we get the curve x2 +y2 = 3,

i.e. a circle of radius
√

3. This usually indicates where one surface crosses over from

the inside to the outside of the other and gives us the working diagram (Fig. 11.8).

To find when the sphere is outside the paraboloid it suffices to compare the points

(x, y, zp) and (x, y, zs) on the paraboloid and sphere, respectively, which project onto

the same point (x, y, 0) in the (x, y)-plane. From the defining equations of the surfaces

we have

x2 + y2 = 4zs − z2
s = 3zp.

Hence

zs − z2
s = 3zp − 3zs, i.e. zs(1 − zs) = 3(zp − zs).

Since zs ≥ 0 we have zp ≥ zs if and only if 1−zs ≥ 0, i.e. when 0 ≤ zs ≤ 1. Thus the

part of the sphere which lies outside the paraboloid is precisely that portion which

lies between the parallel planes z = 0 and z = 1.

We thus have to find the surface area of the sphere x2 +y2 +(z−2)2 = 22 between

the planes z = 0 and z = 1. We use the formula for spherical polar coordinates

obtained in Example 10.5 translated so that the origin is at the point (0, 0, 2), i.e. let

x = 2 sin θ cos ψ, y = 2 sin θ sin ψ, z − 2 = 2 cos θ

and it is now only necessary to find the domain of the parametrization. Since 0 ≤
z ≤ 1 we consider −2 ≤ z − 2 ≤ −1, i.e. −2 ≤ 2 cos θ ≤ −1. This implies (see

Fig. 10.14) 2π/3 ≤ θ ≤ π and, since there is no restriction on ψ , 0 < ψ < 2π .

http://dx.doi.org/10.1007/978-1-4471-6419-7_10
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Denote this parametrization by f . Then

fθ = (2 cos θ cos ψ, 2 cos θ sin ψ,−2 sin θ)

and

fψ = (−2 sin θ sin ψ, 2 sin θ cos ψ, 0).

Hence

E = 4 cos2 θ cos2 ψ + 4 cos2 θ sin2 ψ + 4 sin2 θ

= 4(cos2 ψ + sin2 ψ) cos2 θ + 4 sin2 θ

= 4 cos2 θ + 4 sin2 θ = 4

and

G = 4 sin2 θ sin2 ψ + 4 sin2 θ cos2 ψ = 4 sin2 θ.

Since fθ · fψ = 0, F = 0 and the surface area is

2π∫

0

π∫

2π/3

2 · 2 sin θdθdψ =
(

4

2π∫

0

dψ

)( π∫

2π/3

sin θdθ

)

= 8π(− cos θ)

∣∣∣∣
π

2π/3

= 8π(1 − 1/2) = 4π.

Example 11.4 We calculate the surface area of the level set x2 − 2y − 2z = 0 which

projects onto the region U of the xy-plane bounded by the lines x = 2, y = 0 and

y = 4x. On the surface S we have z = 1
2

x2 − y and the surface is the graph of the

function g(x, y) = 1
2

x2 − y. Using Example 10.3 we obtain the parametrization

φ : (x, y) ∈ U −−−→ (x, y,
1

2
x2 − y)

and, moreover,

‖φx × φy‖ = ‖(−gx,−gy, 1)‖ = ‖(x,−1, 1)‖ = (x2 + 2)1/2.

Note that only part of the surface lies above the xy-plane. Our surface area is

∫∫

U

(x2 + 2)1/2 dxdy.
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(x, 0) 2

x

y

8

(x, 4x)

U

Fig. 11.9

We integrate first with respect to y and note, from Fig. 11.9, that y varies from 0

to 4x and afterwards integrate with respect to x which varies from 0 to 2. We have

∫∫

U

(x2 + 2)1/2 dxdy =
2∫

0

{ 4x∫

0

(x2 + 2)1/2dy
}

dx

=
2∫

0

(x2 + 2)1/2y

∣∣∣
4x

0
dx =

2∫

0

4x(x2 + 2)1/2dx

= 2

∫
u1/2du = 2

u3/2

3/2
=

4

3
(x2 + 2)3/2

∣∣∣
2

0

=
4

3

(
63/2 − 23/2

)
=

8

3

(
3
√

6 −
√

2
)

where u = x2 + 2, du = 2xdx.

Exercises

11.1 Calculate the surface area of the paraboloid z = x2 + y2 which lies between

the planes z = 0 and z = 4.

11.2 Find the area of the surface generated by revolving about the x-axis the curves

(a) y = x3, 0 ≤ x ≤ 1,

(b) y = x2, 0 ≤ x ≤ 1.

11.3 Show that the area of the helicoid defined by the parametrization
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P(r, θ) = (r cos θ, r sin θ, θ), 0 < θ < 2π, 0 < r < 1

is π
(√

2 + log(1 +
√

2)
)
.

11.4 If U is open in R
2 and f : U → R is a smooth function show

Area
(
graph(f )

)
=

∫∫

U

(
1 + ‖∇f ‖2

)1/2
dxdy.

11.5 Find the surface area of the paraboloid in Example 11.3 that lies inside the

sphere.

11.6 Find the area of the portion of the surface z = xy which lies inside the cylinder

x2 + y2 = a2.

11.7 Use the parametrization (r, θ) → (r2/16, r cos θ, r sin θ) to find the area of

the part of y2 + z2 = 16x which lies in the first octant (x ≥ 0, y ≥ 0, z ≥ 0)

between the planes x = 0 and x = 12 and inside the cylinder y2 = 4x.

11.8 Let φ : U → S denote a parametrization of the simple surface S in R
3. Give

some intuitive reasons why φ preserves

(a) angles if F = 0

(b) relative area if EF − G2 is constant

(c) shape if E = G and F = 0.

11.9 Use the Cauchy–Schwarz inequality (Example 3.4) to show that EG−F2 ≥ 0

where E, F and G are calculated from any parametrization of a surface.

11.10 Let Ŵ denote a directed curve in a surface parametrized by a mapping φ. Show

that Ŵ has a parametrization of the form P : [a, b] −→ Ŵ, P(t) = φ(α(t), β(t))

where α and β are real valued functions. Show that

l(Ŵ) =
b∫

a

√
E(P(t))α′(t)2 + 2F(P(t))α′(t)β ′(t) + G(P(t))β ′(t)2 dt.

(see Table 11.1)



11 Surface Area 133

Table 11.1 Useful parametrizations

1. Sphere x2 + y2 + z2 = r2; geographical coordinates

f (θ, ψ) = (r cos θ cos ψ, r cos θ sin ψ, r sin θ), −π/2 < θ < π/2, 0 < ψ < 2π

fθ = (−r sin θ cos ψ,−r sin θ sin ψ, r cos θ), fψ = (−r cos θ sin ψ, r cos θ cos ψ, 0)

fθ × fψ = −r2 cos θ(cos θ cos ψ, cos θ sin ψ, sin θ)

E = r2, F = 0, G = r2 cos2 θ, ‖fθ × fψ‖ =
√

EG − F2 = r2 cos θ

n = −(cos θ cos ψ, cos θ sin ψ, sin θ)

2. Sphere x2 + y2 + z2 = r2; spherical polar coordinates

f (θ, ψ) = (r sin θ cos ψ, r sin θ sin ψ, r cos θ), 0 < θ < π, 0 < ψ < 2π

fθ = (r cos θ cos ψ, r cos θ sin ψ,−r sin θ), fψ = (−r sin θ sin ψ, r sin θ cos ψ, 0)

fθ × fψ = r2 sin θ(sin θ cos ψ, sin θ sin ψ, cos θ)

E = r2, F = 0, G = r2 sin2 θ, ‖fθ × fψ‖ =
√

EG − F2 = r2 sin θ

n = (sin θ cos ψ, sin θ sin ψ, cos θ)

3. Cylinder x2 + y2 = r2, 0 < z < h; cylindrical polar coordinates

f (θ, z) = (r cos θ, r sin θ, z), 0 < θ < 2π, 0 < z < h

fθ = (−r sin θ, r cos θ, 0), fz = (0, 0, 1)

fθ × fz = (r cos θ, r sin θ, 0)

E = r2, F = 0, G = 1, ‖fθ × fz‖ =
√

EG − F2 = r

n = (cos θ, sin θ, 0)

4. Inverted cone x2 + y2 = z2, 0 < z < a

f (r, θ) = (r cos θ, r sin θ, r), 0 < r < a, 0 < θ < 2π

fr = (cos θ, sin θ, 1), fθ = (−r sin θ, r cos θ, 0)

fr × fθ = (−r cos θ,−r sin θ, r)

E = 2, F = 0, G = r2, ‖fr × fθ‖ =
√

EG − F2 =
√

2r

n = − 1√
2
(cos θ, sin θ,−1)

(Continued)
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Table 11.1 (Continued)

5. Torus—rotate circle of radius r in yz-plane, centre (b, 0), b > r,

about z-axis; toroidal polar coordinates

f (θ, ψ) =
(
(b + r cos θ) cos ψ, (b + r cos θ) sin ψ, r sin θ

)
, 0 < θ,ψ < 2π

fθ = (−r sin θ cos ψ,−r sin θ sin ψ, r cos θ),

fψ =
(
−(b + r cos θ) sin ψ, (b + r cos θ) cos ψ, 0

)

fθ × fψ = −r(b + r cos θ)(cos θ cos ψ, cos θ sin ψ, sin θ)

E = r2, F = 0, G = (b + r cos θ)2, ‖fθ × fψ‖ =
√

EG − F2 = r(b + r cos θ)

n = −(cos θ cos ψ, cos θ sin ψ, sin θ)

6. Graph of f : U ⊂ R
2 → R

F(x, y) = (x, y, f (x, y)), (x, y) ∈ U

Fx = (1, 0, fx), Fy = (0, 1, fy), Fx × Fy = (−fx,−fy, 1)

E = 1 + f 2
x , F = fx fy, G = 1 + f 2

y , ‖Fx × Fy‖ =
√

EG − F2 =
√

1 + f 2
x + f 2

y

n =
(−fx,−fy, 1)√

1 + f 2
x + f 2

y

7. Surface of revolution of Ŵ parametrized by P(t) = ((x(t), y(t)), a ≤ t ≤ b,

y(t) > 0 for all t, ‖P′(t)‖ �= 0

f (t, θ) =
(
x(t), y(t) cos θ, y(t) sin θ

)
, a < t < b, 0 < θ < 2π

ft =
(
x′(t), y′(t) cos θ, y′(t) sin θ

)
, fθ =

(
0,−y(t) sin θ, y(t) cos θ

)

ft × fθ =
(
y′(t)y(t),−x′(t)y(t) cos θ,−x′(t)y(t) sin θ

)

E = ‖P′(t)‖2, F = 0, G = y(t)2, ‖ft × fθ‖ =
√

EG − F2 = y(t)‖P′(t)‖

n = 1
‖P′(t)‖

(
y′(t),−x′(t) cos θ,−x′(t) sin θ

)



Chapter 12

Surface Integrals

Summary We define the integral of a vector field over an oriented surface. Geomet-

rical interpretations are discussed.

Integrals are used to measure quantities such as length, area, expected value, etc., and

as with all measurements, there has to be a unit of measurement. Our basic unit of

measurement in integration theory over R is obtained by assigning the value 1 to the

rectangle of height 1 over an interval of length 1 measured from left to right. From

this we are able to define Riemann sums and afterwards the Riemann integral of a

continuous function over a closed interval. The inclusion of “left to right” is crucial

for without it we would have an ambiguous definition—and to a mathematician an

ambiguous definition is no definition. To emphasis this point we call an interval [a, b]
directed from left to right a positive interval in R.

Now suppose Ŵ is a curve in R
2 and, for the sake of simplicity, we suppose that Ŵ is

not closed and that we are interested in defining the integral of a function over Ŵ. We

have seen in Chap. 7 that we can define two integrals over Ŵ since Ŵ can be directed

in two different ways and we have to decide, before doing any calculations, which

interests us. We may think of a curve as having two sides—one for each direction of

motion—like two escalators side by side, one going up and the other coming down

(Fig. 12.1). We call one side positive and the other negative. If we are interested in

evaluating integrals over {Ŵ, A, B} we call Ŵ directed from A to B the positive side.

We use a parametrization to transfer the integral over {Ŵ, A, B} to an integral

over an interval in R which we subsequently evaluate. However, the parametrization

must be directed correctly. This means that it must map a positive interval in R onto

the positive side of Ŵ. Surface integrals are defined in the same way—just step up a

dimension.

Consider the unit sphere x2 + y2 + z2 = 1 in R
3. It has two sides—an inside and

an outside. More generally, the surface S which is the level set {X ∈ U : f (X) =
0 and ∇ f (X) �= 0} has ±∇ f (X)

/

‖∇ f (X)‖ as unit normals at each point and we

may consider ∇ f (X)
/

‖∇ f (X)‖ and −∇ f (X)
/

‖∇ f (X)‖ as lying on different sides.

We distinguish between the sides of a surface by using normals.

S. Dineen, Multivariate Calculus and Geometry, 135
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A

B
+ side

− side
{Γ, A, B}

Fig. 12.1

Definition 12.1 An oriented surface in R
3 is a pair (S, n) where S is a surface and

n is a continuous mapping from S into R
3 such that n(P) is a unit normal to the

surface S at P .

We will also use S to denote an oriented surface. The appearance of S signals that

we have fixed an orientation on the underlying surface S. The notation S is simpler

but if we need to specify the normal or if there is any possibility of confusion we

write (S, n).

Clearly if (S, n) is an oriented surface, then (S,−n) is also an oriented surface and

the continuity requirement in the choice of normal implies that a connected surface

can have at most two orientations. There exist, however, surfaces which do not

admit any orientation and integration theory cannot be defined over such surfaces.

Fortunately, every simple surface admits an orientation. If φ : U ⊂ R
2 → S is a

parametrization of S then
(

S, φx × φy

/

‖φx × φy‖
)

and
(

S,−φx × φy

/

‖φx × φy‖
)

are two oriented surfaces associated with S and if S is connected these are the only

two oriented surfaces associated with S. Given an oriented surface (S, n) we call the

side of S containing n the positive side and the side which contains −n the negative

side. In the case of a simple oriented surface (S, n) a parametrization φ is said to be

consistent with the orientation if

φx × φy

‖φx × φy‖
= n.

If F is a continuous vector field on a simple oriented surface S we define

∫∫

S

F

by using a parametrization (φ, U ) consistent with the orientation and a process

involving Riemann sums similar to that used to define surface area in the previous

chapter (see Figs. 11.2 and 11.3 for reference). We find it convenient to use (u, v)

for the variables in the domain of φ and (x, y, z) for the range, i.e. x = x(u, v),

y = y(u, v) and z = z(u, v). We begin by partitioning the domain U into small

rectangles and consider a typical rectangle R in this partition. Now, however, instead

of taking the absolute area of φ(R) we take the (signed) volume of the parallelepiped

with base φ(R) and height determined by F (see Fig. 12.2).

We use n as our positive unit of measurement perpendicular to the surface. This is

reasonable since we are just considering a small portion of the surface φ(R), which

http://dx.doi.org/10.1007/978-1-4471-6419-7_11
http://dx.doi.org/10.1007/978-1-4471-6419-7_11
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R

(u,v)

(u,v+Δv)

(u+Δu,v)

n

S

φ(R)

φ

φuΔu

F

φvΔv

Fig. 12.2

Tp(S)

n

ψ

F

Fig. 12.3

lies approximately in the tangent plane, and n
(

φ(u, v)
)

is perpendicular to the tangent

plane at φ(u, v). The height of the parallelepiped is ‖F‖ cos ψ = F · n where ψ is

the angle between F and n at φ(u, v) (see Fig. 12.3).

We have already seen, in calculating surface area, that the area of φ(R), the base

of the parallelepiped, is ‖φx × φy‖�x�y and hence the (signed) volume is

(F · n)‖φu × φv‖�u�v = (F · φu × φv)�u�v.

Now taking the limit of Riemann sums in the usual way we define

∫∫

S

F =
∫∫

U

(F · n)‖φu × φv‖dudv

=
∫∫

U

(F · φu × φv)dudv.

From this analysis we expect the volume of the solid one unit high on the positive

side of the surface to equal the total surface area and to be obtained by integrating
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the vector field n over S. Indeed, we have

∫ ∫

(S,n)

n =
∫∫

U

(n · n)‖φu × φv‖dudv = Surface area (S).

It is now natural to define the surface integral of a scalar-valued function f on (S, n)

by identifying f with f n, i.e.

∫ ∫

(S,n)

f
def=

∫ ∫

(S,n)

f n =
∫∫

S

f
(

φ(u, v)
)

‖φu × φv‖dudv

where φ is a parametrization consistent with the orientation. This is analogous to the

way we defined, in Chap. 7, the integral of a scalar-valued function f along a curve

by identifying f with f T . Although we needed an orientation to define this integral

it is easily seen that ∫ ∫

(S,n)

f =
∫∫

(S,−n)

f

and the value of the integral is independent of the orientation. This might suggest

that it is possible to integrate a scalar-valued function over an arbitrary surface (see

Definition 10.6). This is not true. What is required is an orientable surface, i.e.

a surface which can be oriented. Simple surfaces are orientable. This means that

we can use any parametrization to integrate a scalar-valued function over a simple

surface.

If the vector field F is represented by vectors emanating from the surface and if

these all lie on the same side (of the surface) as n then the integral of F over (S, n) is

non-negative. On the right-hand diagram in Fig. 12.2 we see that {φu, φv, n} follows

the right-hand rule and note that F and n lie on the same side of (S, n) if and only

if the angle between them lies in [−π/2, π/2].

Example 12.2 We evaluate
∫∫

(S,n)

F where S is the sphere of radius r with centre at

the origin oriented outwards and F(x, y, z) = (x, y, z). Although a sphere is not

a simple surface we can treat it as one for integration theory (see our remarks in

the previous chapter). Here, however, we do not need any parametrization. The unit

normals at a point P on S are ±P/‖P‖ and since S is oriented outwards

n(P) =
P

‖P‖
=

P

r
.

Hence

F(P) · n(P) = P ·
P

r
=

‖P‖2

r
=

r2

r
= r

http://dx.doi.org/10.1007/978-1-4471-6419-7_7
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a

a

x

y

z z

y

x

z

y

x

Fig. 12.4

and ∫∫

S

F =
∫∫

S

rd A = r(Surface Area of S) = r · 4πr2 = 4πr3.

Example 12.3 We compute ∫∫

S

(x, y, z − a)
√

2az − z2

where S is the part of the surface x2 + y2 + (z − a)2 = a2 which lies inside the

cylinder x2 + y2 = ay and underneath the plane z = a oriented with outward

pointing normal.

We first sketch the surface over which we are integrating. Initially this appears as

a rather formidable task but by sketching each part separately (Fig. 12.4) and then

combining (Fig. 12.5) them it becomes relatively simple. The surface x2 + y2 + (z −
a)2 = a2 is a sphere of radius a with centre (0, 0, a). The equation x2 + y2 = ay

can be rewritten as

x2 + y2 − ay +
a2

4
=

a2

4

i.e.

x2 +
(

y −
a

2

)2 =
(a

2

)2

and this surface is the cylinder parallel to the z-axis above the circle with centre

(0, a/2) and radius a/2 in the xy-plane. The plane z = a is parallel to the xy-plane

and a units above it. The outward normal to the sphere of radius a with centre (0, 0, a)

at (x, y, z) is (x, y, z − a)/a. Hence

∫∫

S

(x, y, z − a)
√

2az − z2
=

∫∫

S

(x, y, z − a)
√

2az − z2
·
(x, y, z − a)

a
d A

=
∫∫

S

a
√

2az − z2
d A.
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x

a

y

z

Fig. 12.5

From Fig. 12.5 we observe that our integral is over part of the lower right-hand

quarter of the sphere. We use geographical coordinates about the point (0, 0, a)

F : (θ,ψ) −−−→ (a cos θ cos ψ, a cos θ sin ψ, a + a sin θ).

Since θ refers to latitude and we are considering the lower portion we have

−π/2 < θ < 0. From the sketch y > 0 and hence sin ψ > 0, i.e. 0 < ψ < π ,

and since the surface lies inside the cylinder we also have x2 + y2 < ay, i.e.

a2 cos2 θ < a2 cos θ sin ψ. Hence cos θ < sin ψ = cos(ψ − π
2
). By considering

separately the cases 0 < ψ < π
2

and π
2

< ψ < π we obtain π
2

+ θ < ψ < π
2

− θ.

Now

2az − z2 = −a2 + 2az − z2 + a2 = a2 − (a − z)2

and changing this into our new coordinates we get

√

2az − z2 = (a2 − a2 sin2 θ)1/2 = (a2 cos2 θ)1/2 = a cos θ.

From Example 10.5 we recall that

d A =
√

EG − F2dθdψ = a2 cos θdθdψ.

Hence

∫∫

S

(x, y, z − a)
√

2az − z2
=

∫ 0

−π/2

{∫ π/2−θ

π/2+θ

a2 cos θ · a

a cos θ
dψ

}

dθ = π2a2/4.

An alternative approach to vector-valued integration is possible by using ori-

ented (coordinate) planes in R
3. In oriented planes we can define positive and neg-

ative area and an anticlockwise sense of direction. The idea is to use consistent
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parameterizations to transfer integration from an oriented surface in R
3 to integra-

tion over subsets of the coordinate planes in R
3, i.e. the xy-plane, the yz-plane and

the xz-plane. Each of these planes is a surface in R
3 and to define our integral we must

assign a positive side to each of these planes for the same reason that we required

positive intervals in R.

We first define the positive unit vectors in the x , y and z directions in R
3 as

(1, 0, 0), (0, 1, 0) and (0, 0, 1). These choices are natural in view of the way we

sketch graphs in R
2 and R

3. Consider now the xy-plane in R
3 as the surface defined

by f −1(0) where f (x, y, z) = z. The unit normals to this surface are ±(0, 0, 1) and

we must choose between them to define a positive side to the xy-plane. We use the

positive unit vectors in the x and y directions in that order and the right-hand rule

or cross product to define the positive side of the xy-plane as that oriented by the

normal

(1, 0, 0) × (0, 1, 0) = (0, 0, 1).

We denote the positively oriented xy-plane in R
3 by R

2
(x,y)

. Similarly the positive

side of the yz-plane is defined by the normal (0, 1, 0) × (0, 0, 1) = (1, 0, 0)

and denoted by R
2
(y,z) and the positive side of the zx-plane is defined by (0, 0, 1) ×

(1, 0, 0) = (0, 1, 0) and denoted by R
2
(z,x)

.

In Fig. 12.6 we see the direction of rotation (i.e. rotation to the left) used

to measure angles in each of the coordinate planes and also the direction of a closed

anticlockwise oriented curve.

If we look at each individual coordinate plane we get, using Fig. 12.6, the diagrams

in Fig. 12.7 showing the anticlockwise directions.

In Chap. 9 we discussed Green’s theorem

∮

Ŵ

Pdx + Qdy =
∫∫

�

(∂ Q

∂x
−

∂ P

∂y

)

dxdy (12.1)

where the boundary of �, Ŵ is oriented in an anticlockwise direction. From (12.1) it

does not appear that � has been assigned any orientation but, in fact, if we identify

http://dx.doi.org/10.1007/978-1-4471-6419-7_9
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R
2 with R

2
(x,y)

⊂ R
3 then the integration on R

2 is really over the positive side of

R
2
(x,y)

. This is the matching up of orientations in Green’s theorem.

Let F = ( f, g, h) denote a continuous vector field on the simple oriented surface

S. Let

φ : (u, v) ∈ U −−−→
(

x(u, v), y(u, v), z(u, v)
)

denote a parametrization consistent with the orientation. We now take an independent

approach to defining separately
∫∫

S

( f, 0, 0),
∫∫

S

(0, g, 0) and
∫∫

S

(0, 0, h).

First observe that ( f, 0, 0) is parallel to the x-axis and may be represented as in

Fig. 12.8, where we have rotated the axes but preserved the orientation.

Since f points in the direction of the normal (1, 0, 0) to R
2
(y,z) it is natural to

project onto R
2
(y,z) and to define

∫∫

S

( f, 0, 0) as
∫∫

Py,z(S)⊂R
2
(y,z)

f where Py,z is the

projection (x, y, z) → (y, z) and Py,z(S) is given the induced orientation from

R
2
(y,z). Although the set Py,z(S) may not be open and the mapping

Py,z : (u, v) −−−→
(

y(u, v), z(u, v)
)
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is not necessarily a parametrization of Py,z(S) we may proceed as if they were.

Partition U into rectangles, (Ri j )i j . We consider the “boundary” of Py,z(Ri j ) as a

directed curve in R
2
(y,z) “parameterized” by Py,z restricted to the boundary of the

anticlockwise oriented rectangle Ri j in the uv-plane. Hence Py,z(Ri j ) will have

positive (or at least non-negative) area if it is oriented in an anticlockwise fashion in

R
2
(y,z). This gives us the approximation

Area
(

Py,z(Ri j )
)

in R
2
(y,z) ≈

∣

∣

∣

∣

yu zu

yv zv

∣

∣

∣

∣

(ui , v j )�ui�v j .

Next we transfer the partition of U to Py,z(S) by using Py,z and φ and form

the Riemann sum of f with respect to this partition. This analysis shows that the

Riemann sum

∑

i

∑

j

f
(

φ(ui , v j )
)

×
[

Area
(

Py,z(Ri j )
)

in R
2
(y,z)

]

is approximately equal to

∑

i

∑

j

f
(

φ(ui , v j )
)

∣

∣

∣

∣

yu zu

yv zv

∣

∣

∣

∣

(ui , v j )�ui�v j

and on taking a limit we get

∫∫

S

( f, 0, 0) =
∫∫

U

f
(

φ(u, v)
)

∣

∣

∣

∣

yu zu

yv zv

∣

∣

∣

∣

dudv.

We proceed in the same way with (0, g, 0) and obtain the diagram shown in

Fig. 12.9. This implies that z precedes x (see also Fig. 12.7c) and so the correctly

oriented “parametrization” in this case is

(u, v) −−−→
(

z(u, v), x(u, v)
)

and we obtain

∫∫

S

(0, g, 0) =
∫∫

U

g
(

φ(u, v)
)

∣

∣

∣

∣

zu xu

zv xv

∣

∣

∣

∣

dudv.

Similarly we are led to

∫∫

S

(0, 0, h) =
∫∫

U

h
(

φ(u, v)
)

∣

∣

∣

∣

xu yu

xv yv

∣

∣

∣

∣

dudv.
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Although each of these integrals looks rather complicated when we add them together

we obtain a familiar expression. Since

φ(u, v) =
(

x(u, v), y(u, v), z(u, v)
)

we have φu = (xu, yu, zu) and φv = (xv, yv, zv). Hence

φu × φv =

∣

∣

∣

∣

∣

∣

i j k

xu yu zu

xv yv zv

∣

∣

∣

∣

∣

∣

=
(∣

∣

∣

∣

yu zu

yv zv

∣

∣

∣

∣

, −
∣

∣

∣

∣

xu zu

xv zv

∣

∣

∣

∣

,

∣

∣

∣

∣

xu yu

xv yv

∣

∣

∣

∣

)

F · φu × φv = f

∣

∣

∣

∣

yu zu

yv zv

∣

∣

∣

∣

− g

∣

∣

∣

∣

xu zu

xv zv

∣

∣

∣

∣

+ h

∣

∣

∣

∣

xu yu

xv yv

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

f g h

xu yu zu

xv yv zv

∣

∣

∣

∣

∣

∣

= det

⎛

⎝

F

φu

φv

⎞

⎠

and

∫∫

S

( f, 0, 0) +
∫∫

S

(0, g, 0) +
∫∫

S

(0, 0, h)

=
∫∫

U

(

f

∣

∣

∣

∣

yu zu

yv zv

∣

∣

∣

∣

+ g

∣

∣

∣

∣

zu xu

zv xv

∣

∣

∣

∣

+ h

∣

∣

∣

∣

xu yu

xv yv

∣

∣

∣

∣

)

dudv (12.2)

=
∫∫

U

F
(

φ(u, v)
)

· φu × φv(u, v)dudv (12.3)

=
∫∫

U

det

⎛

⎝

F

φu

φv

⎞

⎠ dudv. (12.4)
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Formula (12.3) is our original definition of the integral of F over S and thus (12.2)

and (12.4) are new expressions for
∫∫

S

F. We have also shown, provided we use the

correct orientations on Py,z(S), Pz,x (S) and Px,y(S), that

∫∫

S

F =
∫∫

Py,z(S)

f +
∫∫

Pz,x (S)

g +
∫∫

Px,y(S)

h.

In certain cases these projections map S onto geometrically nice domains in the

coordinate planes and this may lead to simpler calculations -see for instance our next

example, Example 13.2 and Exercises 12.1, 12.2 and 12.8.

From (12.3) and the results of the previous chapter we also have

∫∫

S

F =
∫∫

U

(F · n)‖φu × φv‖dudv

=
∫∫

U

(F · n)
√

EG − F2dudv. (12.5)

Using the notation
∂(x, y)

∂(u, v)
=

∣

∣

∣

∣

xu yu

xv yv

∣

∣

∣

∣

, etc.

we obtain yet another formula for the integral:

∫∫

S

F =
∫∫

U

(F · n)

[

(∂(x, y)

∂(u, v)

)2
+

(∂(y, z)

∂(u, v)

)2
+

(∂(z, x)

∂(u, v)

)2
]1/2

dudv. (12.6)

In view of formula (12.5) the notation
∫∫

S

〈F, n〉d A is also used in place of
∫∫

(S,n)

F

where dA denotes surface area.

We have established five formulae for calculating surface integrals. Furthermore,

our excursion into oriented planes has led to geometric insights on the construction of

the integral and to a method of evaluating integrals by projecting onto the coordinate

planes. There are still a number of topics to be sorted out, e.g. independence of the

parametrization, and we discuss these in examples as we proceed.

Example 12.4 In this simple example we use projections to calculate the area of the

triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1). The fact that we can easily find

the answer independently allows us to check our solution.

From Fig. 12.10, P = (1/2, 1/2, 0) and

‖(1/2, 1/2, 0) − (0, 0, 1)‖ =
(

1

4
+

1

4
+ 1

)1/2

=
√

3

2
.
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Since ‖(1, 0, 0) − (0, 1, 0)‖ =
√

2 the (surface) area is 1/2 ·
√

2 ·
√

3/2 =
√

3/2.

We now calculate the area using
∫∫

(S,n)

n. Since the triangle is part of a plane the

normal n is constant on S. By symmetry it is easily seen that the triangle lies in

the plane x + y + z = 1 and hence the unit normals are ±(1/
√

3, 1/
√

3, 1/
√

3).

Let us take (1/
√

3, 1/
√

3, 1/
√

3) as our unit normal. By symmetry we only have

to calculate
∫∫

(S,n)

(

1/
√

3, 0, 0
)

. Clearly Py,z projects onto the anticlockwise oriented

triangle A1 ⊂ R
2
(y,z) with vertices (0, 0), (0, 1) and (1, 0) and

∫ ∫

(S,n)

( 1
√

3
, 0, 0

)

=
1

√
3

Area (A1) =
1

√
3

·
1

2
.

Hence
∫ ∫

(S,n)

n = 3 ·
1

√
3

·
1

2
=

√
3

2

and this agrees with our earlier result.

Exercises

12.1 Find
∫∫

S

F where F(x, y, z) = (1, 2, 3) and S is the triangle with vertices

(1, 0, 0), (0, 2, 0), (0, 0, 3) oriented so that the origin is on the negative side.

12.2 By using projections and the portion of the sphere that lies in the first octant

calculate the area of a sphere of radius r .

12.3 Express as an integral over a region in R
2 the integral

∫∫

S

F where F(x, y, z) =
(

−2/y3,−6xy2, 2z3/x3
)

, S is the graph of f (u, v) = uv3, (u, v) ∈ [1, 2] ×
[1, 2] and the parametrization φ(u, v) = (u, v, uv3) is consistent with the ori-

entation. Evaluate the integral.
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12.4 Let 0 < a < b and let Ŵ denote the circle of centre (b, 0) and radius a in the

xz-plane. Let S denote the surface obtained by rotating Ŵ about the z-axis. If S

is oriented with outward normal and

F(x, y, z) =
(

x −
bx

√

x2 + y2
, y −

by
√

x2 + y2
, z

)

show that
∫∫

S

F = 4π2a2b.

12.5 Evaluate

(a)

∫∫

S

y2 + z2

(b)

∫∫

S

1
(

x2 + y2 + (z + a)2
)1/2

where S is the portion of the sphere x2 + y2 + z2 = a2 above the xy-plane

oriented by the outward normal.

12.6 Describe the surface S = {(x, y, z) : z2 = x2 + y2, 1 ≤ z ≤ 3}. If n is the

outward pointing normal to S find

∫ ∫

(S,n)

(−xz,−yz, x2 + y2)

x2 + y2
.

12.7 Let S denote the portion of the level set z = tan−1(y/x) which lies between

the planes z = 0 and z = 2π , inside the cone x2 + y2 = z2 and outside the

cylinder x2 + y2 = π2. Let

G(x, y, z) =
(−x,−y,−z)

(x2 + y2 + z2)3/2
.

Show that

F(r, θ) = (r cos θ, r sin θ, θ), π < r < θ, π < θ < 2π

is a parametrization of S. If n =
Fr × Fθ

‖Fr × Fθ‖
evaluate

∫∫

(S,n)

G.

12.8 Evaluate
∫∫

S

F where F(x, y, z) = (y2 + z2, tan−1(x/z), z exp(x2 + y2)) and

S is the part of the sphere of radius a centered at the origin in the first octant

oriented outwards by (a) using a parametrization and (b) projecting onto the

coordinate planes.



Chapter 13

Stokes’ Theorem

Summary We discuss Stokes’ theorem for oriented surfaces in R
3.

Stokes’ theorem, the fundamental theorem of calculus for surfaces, generalises

Green’s theorem to oriented surfaces S = (S, n) with edge or boundary Ŵ (the

term edge avoids confusion with our other use of the word boundary) consisting of

a finite number of piecewise smooth directed curves. We suppose that the positive

side of S lies on the left-hand side as we move along Ŵ in the positive direction. In

practice this consistency between the orientations of the surface and its edge may be

verified by sketching. In certain cases the normal n admits a continuous extension to

the boundary and a parametrization P of the boundary has the correct orientation if

at one point, say P(t0), we have P ′(t0) ·n
(

P(t0)
)

> 0 where n
(
P(t0)

)
is the value of

the extension of n at P(t0). If a consistent parametrization of the surface extends to

give a parametrization of the boundary then the boundary is also correctly directed

(see Example 13.5).

Theorem 13.1 (Stokes’ Theorem) Let S = (S, n) denote an oriented surface in R
3

with boundary Ŵ consisting of a finite number of piecewise smooth directed curves.

We suppose that the positive side of S lies on the left of the positive side of Ŵ. If F is

a smooth vector field on S ∪ Ŵ then
∫

Ŵ

F =
∫∫

S

curl(F) (13.1)

i.e.
∫

Ŵ

〈F, T 〉ds =
∫∫

S

〈curl(F), n〉d A

where T is the unit tangent to the directed curves Ŵ.

The proof, which we omit, is obtained by applying Green’s theorem to the pro-

jections onto the coordinate planes. In Chaps. 6 and 12 we developed techniques

to evaluate the left- and right-hand sides of (13.1), respectively. Thus the only new
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factor in Stokes’ theorem is the correlation between the orientations of the surface

and its boundary.

Example 13.2 We use Stokes’ theorem to evaluate the line integral

∫

C

−y3dx + x3dy − z3dz

where C is the intersection of the cylinder x2 + y2 = 3 and the plane x + y + z = 1

and the orientation on C is anticlockwise when viewed from a point sufficiently high

up on the z-axis. Let S denote the portion of the plane inside the cylinder oriented so

that the normal lies above the surface (Fig. 13.1).

Let F = (−y3, x3,−z3) then

curl(F) =

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂

∂x

∂

∂y

∂

∂z

−y3 x3 −z3

∣

∣

∣

∣

∣

∣

∣

∣

= (0, 0, 3x2 + 3y2).

By Stokes’ theorem

∫

C

F =
∫∫

S

curl(F) =
∫∫

S

(0, 0, 3x2 + 3y2).

Since only the final coordinate of curl(F) is non-zero our analysis in the previous

chapter implies that we only need consider the projection of S onto R
2
(x,y)

. As C

projects onto an anticlockwise oriented curve Ŵ1 (Fig. 13.1) our projection is onto

the positive side of R
2
(x,y)

. Hence

∫

C

F =
∫∫

x2+y2≤3

(3x2 + 3y2)dxdy.
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We parametrize the surface x2 + y2 < 3 in R
3 by

φ(r, θ) = (r cos θ, r sin θ, 0), 0 < r <
√

3, 0 < θ < 2π.

We have φr = (cos θ, sin θ, 0) and φθ = (−r sin θ, r cos θ, 0). Hence

φr × φθ =

∣

∣

∣

∣

∣

∣

i j k

cos θ sin θ 0

r sin θ r cos θ 0

∣

∣

∣

∣

∣

∣

= (0, 0, r).

Since
φr × φθ

‖φr × φθ‖
= (0, 0, 1)

our parametrization is consistent with the positive orientation of R
2
(x,y)

. We have

∫

C

F =
∫

√
3

0

∫ 2π

0

3r2 · ‖φr × φθ‖drdθ = 6π

∫

√
3

0

r3dr =
27π

2
.

Moral A reasonable sketch is not just optional but necessary. The form of F, i.e.

the fact that the first two coordinates were zero, combined with information on how

surface integrals can be projected onto the coordinate planes greatly simplified the

calculations required.

Example 13.3 We evaluate

∫∫

S

curl(F) where

F(x, y, z) = (y2 cos xz, x3eyz,−e−xyz)

and S is the portion of the sphere x2 + y2 + (z − 2)2 = 8 which lies above the

xy-plane oriented outwards. The edge or boundary of S, Ŵ, is where the sphere cuts

the xy-plane, i.e. where z = 0. We have x2 + y2 +4 = 8, i.e. x2 + y2 = 4 (Fig. 13.2).

Since the positive side of the sphere is the outside we see from Fig. 13.2 that

the surface S is on the left as we move along Ŵ in an anticlockwise direction in the

xy-plane. This gives us our direction along Ŵ. By Stokes’ theorem

∫

Ŵ

F =
∫∫

S

curl(F).

But Ŵ with anticlockwise direction is also the boundary or edge of the surface

S1 = {(x, y, z) : x2 + y2 < 4, z = 0}
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oriented by the normal (0, 0, 1). Hence a further application of Stokes’ theorem

implies
∫

Ŵ

F =
∫∫

S1

curl(F).

Now

curl(F) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂

∂x

∂

∂y

∂

∂z

y2 cos xz x3eyz −e−xyz

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Since, however, S1 projects onto smooth curves, which have zero surface area in

R
2
(y,z) and R

2
(x,z), it suffices to consider the final coordinate of curl (F). This is

∂

∂x

(

x3eyz
)

−
∂

∂y

(

y2 cos xz
)

= 3x2eyz − 2y cos xz

and, since z = 0 on S1, we need only evaluate

∫∫

x2+y2≤4

(3x2 − 2y)dxdy.

By symmetry
∫∫

x2+y2≤4

(−2y)dxdy = 0.
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If we use the parametrization

(r, θ) −−−→ (r cos θ, r sin θ, 0), 0 < r < 2, 0 < θ < 2π

then

∫∫

S1

F =
∫ 2

0

∫ 2π

0

3r2 cos2 θrdrdθ =
∫ 2π

0

cos2 θdθ

∫ 2

0

3r3dr = 12π.

Moral A closed curve may be the edge or boundary of more than one surface and

a suitable choice (of surface) may simplify calculations. Projections and symmetry

are helpful.

Example 13.4 We wish to use Stokes’ theorem to find a suitable orientation of the

curve of intersection of x2 + y2 + z2 = a2 and x + y + z = 0, Ŵ, so that

∫

Ŵ

ydx + zdy + xdz =
√

3πa2.

The curve Ŵ is the intersection of a sphere and a plane through the centre of the

sphere and hence is a “great circle” or “equator” on a sphere (see Fig. 13.3).

The curve Ŵ is the edge or boundary of the two hemispheres on either side of it

and also of a portion of the plane x + y + z = 0. Which we use will depend on the

function being integrated. Let F(x, y, z) = (y, z, x). We have

curl(F) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂

∂x

∂

∂y

∂

∂z

y z x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1,−1,−1).
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The plane x + y + z = 0 has unit normals ±(1, 1, 1)/
√

3 = n1(x, y, z) while the

sphere has unit normals ±(x, y, z)/a = n2(x, y, z). By Stokes’ theorem

∫

Ŵ

ydx + zdy + xdz =
∫ ∫

(S,n)

(−1,−1,−1)

where S and n have to be chosen and Ŵ directed. If we take S as part of the plane

with normal (1, 1, 1)/
√

3 then

∫∫

S

(−1,−1,−1) =
∫∫

S

(−1,−1,−1) ·
(1, 1, 1)

√
3

dA = −
3

√
3

∫∫

S

dA

= −
√

3πa2

since S is a disc of radius a.

Since we obtained a negative answer we have been using the incorrect orientation

on S and so take (−1/
√

3,−1/
√

3,−1/
√

3) as the normal which describes the

orientation. Hence Ŵ is oriented as in Fig. 13.3, i.e. it appears clockwise when looked

at from, say, the point (1, 1, 1) or from any point sufficiently far out in the first octant.

Moral The curl of a vector field is a form of derivative. If the entries are linear, as

in this example, the curl is constant. If the entries are of degree 2 then the curl has

linear entries.

Example 13.5 In this example we verify Stokes’ theorem for the portion S of the

surface z = tan−1(y/x) which lies inside the cone x2 + y2 = z2 and between the

planes z = 0 and z = 2π by using the vector field

F(x, y, z) = xzi + yzj − (x2 + y2)k.

We first examine the surface z = tan−1(y/x). This can be parametrized as a graph

using Cartesian coordinates (see Example 10.3) but it is preferable to use polar

coordinates.

Let x = r cos θ , y = r sin θ then

tan−1
( y

x

)

= tan−1
( r sin θ

r cos θ

)

= tan−1(tan θ) = θ

and we obtain the parametrization

(r, θ) −−−→ (r cos θ, r sin θ, θ) (13.2)

where r > 0 and 0 < θ < 2π .

What sort of surface is this? Well, if we fix different values of r and let θ vary

we obtain a helix (see Example 5.2). In Fig. 13.4 we have sketched the surface for

1/2 ≤ r ≤ 1. We are considering the portion of the surface in Fig. 13.4, extended
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x
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z

Fig. 13.5

over all r , which lies inside the cone and between the two planes. It is thus a screw-

shaped surface or spiral staircase with the spirals or steps getting wider as we rise.

The fact that the surface lies between the planes z = 0 and z = π means that we

have just one full twist of the screw or one turn of the staircase (Fig. 13.5).

We can use the parametrization (13.2) but the restriction caused by lying inside

the other surfaces means that we must restrict the range. Translating the boundaries

into polar coordinates, we get

x2 + y2 = r2 cos2 θ + r2 sin2 θ = r2 = z2

and since 0 ≤ z ≤ 2π this implies r = z, 0 ≤ r ≤ 2π . Hence our parametrization

of the surface is

f : (r, θ) −−−→ (r cos θ, r sin θ, θ), 0 < r < θ, 0 < θ < 2π.
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r

θ

r = θ

θ = 2π

r = 0

2π

2π

U

Fig. 13.6

We have F( f (r, θ)) = (rθ cos θ, rθ sin θ,−r2) and

curl(F) =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z

xz yz −(x2 + y2)

∣

∣

∣

∣

∣

∣

∣

∣

= −3yi + 3xj = (−3r sin θ, 3r cos θ, 0).

We define our orientation on S by

fr × fθ =

∣

∣

∣

∣

∣

∣

i j k

cos θ sin θ 0

−r sin θ r cos θ 1

∣

∣

∣

∣

∣

∣

= (sin θ,− cos θ, r).

Hence

∫∫

S

curl(F) =
∫ 2π

0
(θ)

∫ θ

0
(r)

〈curl(F), fr × fθ 〉drdθ

=
∫ 2π

0

(

∫ θ

0

−3rdr
)

dθ =
∫ 2π

0

−
3r2

2

∣

∣

∣

θ

0
dθ

= −
3

2

∫ 2π

0

θ2dθ = −
3

2

θ3

3

∣

∣

∣

2π

0

= −
(2π)3

2
= −4π3.

The parametrization of S is over the set U in R
2 given in Fig. 13.6 and the boundary

or edge of the surface can be found by examining

f (r, θ) = (r cos θ, r sin θ, θ) (13.3)
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on the boundary of U . We can also look at it geometrically by examining where the

boundary curves intersect S. We first look at the curve of intersection of the cone

and the screw. The cone is parametrized (Examples 10.4 and 10.5) by

(r, θ) −−−→ (r cos θ, r sin θ, θ)

and comparing this with (13.3) we get a curve of intersection Ŵ1 when r = θ . This

curve is parametrized by

θ −−−→ (θ cos θ, θ sin θ, θ), 0 ≤ θ ≤ 2π.

The curve Ŵ1 joins the origin to P1 = (2π, 0, 2π). The second curve Ŵ2 is obtained

by putting θ = 2π and from (13.3) this is parametrized by

r −−−→ (r cos 2π, r sin 2π, 2π) = (r, 0, 2π)

where 0 < r < 2π . This is the straight line joining P1 to (0, 0, 2π). From Fig. 13.6

it runs in the negative direction and so we must reverse the orientation.

The third curve Ŵ3 is obtained by letting r = 0 in (13.3) and we have a parame-

trization

θ −−−→ (0, 0, θ), 0 ≤ θ ≤ 2π.

Ŵ3 joins (0, 0, 2π) to the origin and Ŵ = Ŵ1 ∪ Ŵ2 ∪ Ŵ3 is a closed piecewise smooth

directed curve (Fig. 13.7).

We have oriented the surface and directed its boundary. Are these consistent in

order to apply Stokes’ theorem? Yes, because the parametrization f of Ŵ is obtained

from a continuous extension of a consistent parametrization of the surface. You have

already seen two other ways in which it is possible to check this consistency. We

now have to evaluate
∫

Ŵ

F =
∫

Ŵ1

F +
∫

Ŵ2

F +
∫

Ŵ3

F.
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We have

∫

Ŵ1

F =
∫ 2π

0

( d

dθ
(θ cos θ, θ sin θ, θ)

)

· (θ2 cos θ, θ2 sin θ,−θ2) dθ

=
∫ 2π

0

(θ2 cos2 θ − θ3 sin θ cos θ + θ2 sin2 θ + θ3 sin θ cos θ − θ2) dθ

=
∫ 2π

0

0 dθ = 0

∫

Ŵ2

F =
∫ 0

2π

( d

dr
(r, 0, 2π)

)

· (2πr, 0,−r2)dr

=
∫ 0

2π

2πr dr =
2πr2

2

∣

∣

∣

0

2π
= −π(2π)2 = −4π3

∫

Ŵ3

F =
∫ 0

2π

( d

dθ
(0, 0, θ)

)

· (0, 0, 0)dθ = 0.

Hence
∫

Ŵ

F = −4π3 =
∫∫

S

curl(F)

and we have verified Stokes’ theorem.

Moral It is possible to verify Stokes’ theorem.

Exercises

13.1 Let S denote the portion of the sphere x2 + y2 + z2 = 4a2 in the first octant

which lies inside the cylinder x2 + y2 = 2ax oriented outwards. Let Ŵ denote

the boundary or edge of S directed in accordance with Stokes’ theorem. Sketch

S and Ŵ. Using Stokes’ theorem evaluate

(a)

∫

Ŵ

zdx − xdz,

(b)

∫

Ŵ

xdy − ydx ,

(c)

∫

Ŵ

ydz − zdy.

13.2 Sketch the surfaces az = xy and x2 + y2 = b2 in R
3. Show that

θ −−−→ (b cos θ, b sin θ,
b2 sin 2θ

2a
), 0 ≤ θ ≤ 2π

is a parametrization of the intersection Ŵ of the two surfaces oriented clockwise

when viewed from a high point on the z-axis. Show that the surface parame-

trized by
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P : (r, θ) −−−→ (r cos θ, r sin θ,
r2 sin 2θ

2a
), 0 < r < b, 0 < θ < 2π

has Ŵ as its edge or boundary. Using Stokes’ theorem find

∫

Ŵ

ydx + zdy + xdz.

13.3 Let Ŵ denote the curve of intersection of x + y = 2b and x2 + y2 + z2 =
2b(x + y) oriented in a clockwise sense when viewed from the origin. Sketch

the appropriate diagram. Using Stokes’ theorem evaluate

∫

Ŵ

ydx + zdy + xdz.

13.4 Let 0 < a < b and let S denote the torus obtained by rotating the circle

(x − b)2 + z2 = a2 in the xz-plane about the z-axis. Sketch S. Let Ŵ denote

the directed curve parametrized by

t −−−→
(

(b + a cos nt) cos t, (b + a cos nt) sin t, a sin nt
)

.

Show that Ŵ is a closed curve in S. Describe and sketch S. Let S denote the

surface parametrized and oriented by

P : (r, t) −−−→
(

r(b + a cos nt) cos t, r(b + a cos nt) sin t, a sin nt
)

where 0 ≤ r < 1, 0 < t < 2π . Show that Ŵ is the boundary of S. Let

F(x, y, z) = (−y, x, 0). By computing both
∫

Ŵ
F and

∫

S
curl(F) verify Stokes’

theorem. Show that the area of the projection of S onto R
2
(x,y)

is π(a2 +2b2)/2.

13.5 Let S denote the unit sphere oriented outwards. For 0 < b < c < 1 let

Sb,c denote the part of the sphere between the planes z = b and z = c. Let

F(X) = X‖X‖−3 for all X 
= 0 in R
3. By using the result in Exercise 6.3 and

Stokes Theorem find
∫∫

Sb,c

F.

13.6 Let Ŵ denote the curve of intersection of the cylinder x2 + y2 = a2 and the

plane x/a + z/b = 1, a > 0, b > 0. Use Stokes’ theorem to find a direction

along Ŵ so that
∫

Ŵ
(y − z, z −x, x − y) is positive. Find the value of this positive

number.

13.7 Use Stokes’ theorem to find a suitable orientation of the curve of intersection Ŵ

of the hemisphere x2 + y2 + z2 = 2ax , z > 0, and the cylinder x2 + y2 = 2bx ,

0 < b < a, so that

∫

Ŵ

(y2 + z2)dx + (x2 + z2)dy + (x2 + y2)dz = 2πab2.



Chapter 14

Triple Integrals

Summary We define triple integrals of scalar-valued functions over open subsets of

R
3, discuss coordinate systems in R

3, justify a change of variable formula and use

Fubini’s theorem to evaluate integrals.

Let f be a real-valued function defined on an open subset U of R
3. By using partitions

of the coordinate axes to draw planes parallel to the coordinate planes (Fig. 14.1) we

obtain a grid which partitions R
3 into cubes. Let (x i , y j , zk) denote a typical point

in the cube [xi , xi+1]× [y j , y j+1]× [zk, zk+1]. The Riemann sum of f with respect

to this grid

∑

i

∑

j

∑

k

f (x i , y j , zk)(xi+1 − xi ) (y j+1 − y j ) (zk+1 − zk)

is formed by summing over all cubes that lie in U . If the Riemann sums converge,

as we take finer and finer partitions and grids, to a limit then f is said to be Riemann

integrable and the limit ∫∫∫

U

f (x, y, z) dxdydz

is called the (Riemann) integral of f over U .

If U is a bounded open subset of R
3 with smooth boundary and f is the restriction

to U of a continuous function f on U then f is integrable over U . This result, proved

using uniform continuity of f on the compact subset U of R
3, implies the existence

of an abundance of integrable functions.

If f (x, y, z) ≡ 1 the Riemann sum is the volume of all cubes inside U and in the

limit equals the volume of U , Vol(U ). Thus

Vol(U ) =
∫∫∫

U

dxdydz.
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Springer Undergraduate Mathematics Series, DOI: 10.1007/978-1-4471-6419-7_14,

© Springer-Verlag London 2014



162 14 Triple Integrals
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In evaluating triple integrals we use an extension of Fubini’s theorem. This is obtained

from the Riemann sum by first summing over i , taking a limit, then summing over j

and taking a limit and finally summing over k and taking a limit. To justify this process

it is usual to assume that the domain of integration has a “box-like” appearance, i.e.

it is bounded above and below by surfaces z = f1(x, y) and z = f2(x, y), front and

rear by surfaces x = g1(y, z) and x = g2(y, z) and on the left and right by surfaces

y = h1(x, z) and y = h2(x, z). The situations we discuss are of this type but by no

means reflect the full range of examples to which Fubini’s theorem applies. Many

open sets can be partitioned into a finite union of sets and Fubini’s theorem applies

to each of these. We refer to our remarks on Green’s theorem in Chap. 9 for further

details.

To apply Fubini’s theorem we must examine various cross-sections of the domain

of integration U . First suppose that the set of non-empty cross-sections of U parallel

to the xy-plane, i.e. those obtained by fixing the z-coordinate, determine an interval

(a, b) on the z-axis (Fig. 14.2).

Let A(z) denote the cross-section defined by fixing z in (a, b), i.e.

A(z) = {(x, y) ∈ R
2
(x,y) : (x, y, z) ∈ U }.

http://dx.doi.org/10.1007/978-1-4471-6419-7_9
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This means

∫∫∫

U

f (x, y, z) dxdydz =
b∫

a

{ ∫∫

A(z)

f (x, y, z) dxdy

}

dz

and we now have to evaluate the inner integral of two variables. In some cases it

is possible to do this directly, see for instance Example 14.1, but usually we apply

the two-variable Fubini’s theorem to each A(z). For this we assume that the region

A(z) ⊂ R
2
(x,y)

is bounded on the left and right by the graphs of functions of y over

some interval (Fig. 14.3). Both the functions and the interval will depend on z and

we denote the interval by
(

c(z), d(z)
)

and the functions on the left and right by

y → l(y, z) and y → r(y, z) respectively.

This implies

∫∫

A(z)

f (x, y, z) dxdy =
d(z)
∫

c(z)

{

r(y,z)
∫

l(y,z)

f (x, y, z)dx

}

dy

and
∫∫∫

U

f (x, y, z) dxdydz =
b

∫

a

{

d(z)
∫

c(z)

{

r(y,z)
∫

l(y,z)

f (x, y, z) dx

}

dy

}

dz.

Thus to evaluate triple integrals it is necessary to identify, by sketching, cross-sections

of the open set U . Once this has been achieved and the result compared with the

abstract figures above it is a matter of writing down the iterated integrals and evalu-

ating them using one-variable integration theory. We have, as in the two-dimensional

case a choice in the order of integration—in fact a total of 3! = 6 choices, some may

be easy, others difficult and some impossible. There are no definite rules.
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A particularly simple situation occurs when U = (a1, b1) × (a2, b2) × (a3, b3)

and f (x, y, z) = g(x)h(y)k(z) where g, h and k are functions of a single variable.

In this case

∫∫∫

U

f (x, y, z) dxdydz =
(

b1
∫

a1

f (x) dx
) (

b2
∫

a2

g(y) dy
) (

b3
∫

a3

k(z) dz
)

.

For example, if U = (0, a) × (0, b) × (0, c) then

∫∫∫

U

xy2z3 dxdydz =
a

∫

0

xdx ·
b

∫

0

y2dy ·
c

∫

0

z3dz =
a2b3c4

24
.

Example 14.1 Let B denote the solid ball of radius r with centre at the origin, i.e.

B = {(x, y, z) : x2 + y2 + z2 < r2}. We calculate the volume of B by integrating

the function f ≡ 1 over B. Figure 14.4a shows clearly that the values of z which

give non-zero cross-sections lie in the interval (−r, r) and the cross-section for fixed

z is the disc x2 + y2 ≤ r2 − z2 (Fig. 14.4b).

In this special case a direct computation is possible since

∫∫

A(z)

1 dxdy = Area (A(z)) = π(r2 − z2)

and

Vol(B) =
r

∫

−r

{ ∫ ∫

A(z)

1 dxdy

}

dz (14.1)

=
r

∫

−r

π(r2 − z2)dz = π

(

r2z −
z3

3

) ∣

∣

∣

∣

r

−r

=
4

3
πr3. (14.2)

We now consider the more typical approach to evaluating the inner integral over A(z)

by applying Fubini’s theorem in two variables. In Fig. 14.4b we have sketched the

cross-section A(z) in the xy-plane. The equation x2 + y2 = r2 − z2 (z fixed) has

two solutions

x = ±
√

r2 − z2 − y2.

These give the total variation of x and the boundary functions, l and r . We thus have
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Vol(B) =
r∫

−r

{

+
√

r2−z2
∫

−
√

r2−z2

{

+
√

r2−y2−z2
∫

−
√

r2−y2−z2

dx

}

dy

}

dz

=
r

∫

−r

{ ∫ +
√

r2−z2

−
√

r2−z2
2

√

r2 − y2 − z2 dy

}

dz

= 2

r
∫

−r

{ ∫ +π/2

−π/2

(r2 − z2) cos2 θdθ

}

dz

= π

∫ r

−r

(r2 − z2)dz = π

(

r2z −
z3

3

)

∣

∣

∣

r

−r
=

4πr3

3

where we let y = (r2 − z2)1/2 sin θ , dy = (r2 − z2)1/2 cos θ .

The geometry of the previous example was reasonably straightforward. Many

examples appear initially to involve a rather complicated geometric shape. However,

we are usually dealing with a limited number of objects, mainly conic sections,

mixed together and once familiarity with these has been established and sufficiently

many cross-sections sketched—with the help of the defining inequalities—the correct

approach often presents itself.

Example 14.2 We wish to find the volume of the region V lying below the plane

z = 3 − 2y and above the paraboloid z = x2 + y2, i.e. the set {(x, y, z) : x2 + y2 <

z < 3 − 2y}. We begin by considering a full sketch (Fig. 14.5).

The coordinates of P and Q are found by solving between the equations z =
x2 + y2 and z = 3 − 2y. These imply x2 + y2 = 3 − 2y, i.e. x2 + y2 + 2y + 1 = 4.

Hence x2 + (y + 1)2 = 22. The extreme values of y are obtained by letting x = 0.

This gives (y + 1)2 = 22, i.e. y + 1 = ±2. Hence y = −3 or +1. The coordinates

of P and Q are (0,−3, 9) and (0, 1, 1) respectively. Hence −3 ≤ y ≤ +1. From
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Fig. 14.5 we see 0 ≤ z ≤ 9 and from the equation x2 + (y + 1)2 = 2 we deduce that

−2 ≤ x ≤ 2. Having found the extremal values for non-empty sections we sketch

the corresponding cross-sections.

First fix y, −3 ≤ y ≤ 1. In the zx-plane, z = y2 +x2 is a parabola and z = 3−2y

is a straight line. From Fig. 14.6 it follows that for fixed y,

−(3 − 2y − y2)1/2 ≤ x ≤ (3 − 2y − y2)1/2

and for fixed x and y

x2 + y2 ≤ z ≤ 3 − 2y.

We have

Vol(V ) =
1∫

−3

{

(3−2y−y2)1/2
∫

−(3−2y−y2)1/2

{

3−2y
∫

x2+y2

dz

}

dx

}

dy

=
1

∫

−3

{

(3−2y−y2)1/2
∫

−(3−2y−y2)1/2

[

z

]3−2y

x2+y2

dx

}

dy
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=
1∫

−3

{

(3−2y−y2)1/2
∫

−(3−2y−y2)1/2

(3 − 2y − y2 − x2) dx

}

dy

=
1

∫

−3

[

(3 − 2y − y2)x −
x3

3

](3−2y−y2)1/2

−(3−2y−y2)1/2

dy

=
1

∫

−3

4

3
(3 − 2y − y2)3/2dy =

4

3

1
∫

−3

(

4 − (y + 1)2
)3/2

dy

Let y + 1 = 2 sin θ , then dy = 2 cos θdθ , 4 − (y + 1)2 = 4 − 4 sin2 θ = 4 cos2 θ ,

so

Vol(V ) =
4

3

π/2
∫

−π/2

(4 cos2 θ)3/2 · 2 cos θdθ

=
64

3

π/2
∫

−π/2

cos4 θdθ

=
64

3

π/2
∫

−π/2

1

4

(

1 + 2 cos 2θ +
1

2
(1 + cos 4θ)

)

dθ

=
16

3
·

3π

2
= 8π.

We choose to take y as the final variable in our order of integration since it is clear

from Fig. 14.5 that all cross-sections parallel to the xz-plane are of the same type

whereas cross-sections parallel to the xy-plane, i.e. fixing z, are different for z < 1

and z ≥ 1. A different order of integration can be used as a second opinion.

From the two previous examples we see that the evaluation of triple integrals

proceeded in three stages. First we chose an order of integration and next examined the

geometry of the domain of integration in order to determine the limits of integration

in the inner integrals. Finally we evaluated a sequence of one variable integrals. The

alternatives at each stage in the process point towards a useful technique commonly

called change of variable. In place of a detailed motivation we briefly mention three

pertinent ideas.

(a) The domain of integration U was partitioned into cubes, Fig. 14.7a, with element

of volume �V easily calculated using �x × �y × �z. We could use instead a

grid based on spheres centred at the origin and planes through the origin to obtain

a different element of volume, Fig. 14.7b, or a grid based on cylinders parallel

to the z-axis and planes perpendicular and parallel to the z-axis (Fig. 14.7c).
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(a) (b) (c)

Fig. 14.7

These alternatives lead to more complicated formulae for �V but hopefully

the new limits of integration and the resulting one-variable integrals are less

complicated.

(b) We used Cartesian coordinates (x, y, z) to denote a typical point in the domain

of integration U but we may consider other methods of identifying points in U .

For instance, if U is the solid sphere of radius 1 then each point in U lies in a

sphere of radius r , 0 ≤ r ≤ 1, and using the parametrization of the sphere of

radius r given in Example 10.5 we can identify points of U by means of r (the

distance to the origin), θ the angle of latitude and ψ (the angle of longitude).

In terms of the coordinates (r, θ, ψ) the domain U becomes the parallelepiped

(0, 1)× (−π/2, π/2)× (0, 2π) and, as previously noted, integration in this case

is much more pleasant. The new set of coordinates gives a correspondence F

between a domain in R
3
(r,θ,ψ)

and the original domain U in R
3
(x,y,z) (Fig. 14.8).

By Example 10.5, F(r, θ, ψ) = (r cos θ cos ψ, r cos θ sin ψ, r sin θ). The idea

now is to transfer the cubical grid on U , using F , to a grid, which is usually

not cubical, on F(U ) and hence to evaluate the integral. In carrying out this

operation it will be necessary to calculate

Vol (F(�V )) = Vol (F(�r × �θ × �ψ))

θ

ψ

r F

x

y

z

U

F (U)

Fig. 14.8
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and this is the problem that also arises in (a). The mapping F has many of the

features that we have previously associated with a parametrization and, by now,

the following definition should appear natural.

Definition 14.3 A parametrization of an open set V in R
n is a bijective differentiable

mapping F from an open subset U of R
n onto V such that F ′(X) is an invertible

linear operator for all X in U .

This definition contains the essential properties that we used to parametrize curves

and surfaces and may also be regarded as a method of providing V with a new

coordinate system. The requirement that F ′(X) be invertible (or equivalently that

det
(

F ′(X)
)


= 0) is the three-dimensional analogue of the condition P ′(t) 
= 0 for

curves and φx × φy 
= 0 for surfaces.

(c) A third, perhaps more obscure, approach is motivated by the substitutions that

may arise in the one-variable integrals in the final stage. In Example 14.2 we

needed one such change. Working backwards it may be possible to choose ini-

tially a coordinate system which does not require a change of variable in the

iterated integrals.

We return now to (b) above to work out the formula for the change of variable.

Let U denote an open subset of R
3
(r,s,t) and let g : U → g(U ) = V denote a

parametrization of the open subset V of R
3
(u,v,w)

. Note that g−1 is a parametrization

of U . To avoid confusion we think of U and V as lying in different copies of R
3 each

with their own set of coordinates, (r, s, t) and (u, v, w) respectively. This explains

the terminology “change of variables”.

Let f denote an integrable function on g(U ) (Fig. 14.9). Take a cubical grid on

U , transfer it by g to a grid on g(U ) and then form a Riemann sum of f . A typical

term in this Riemann sum is

f
(

g(r i , s j , tk)
)

Vol
(

g(�ri × �s j × �tk)
)

.

r

t

s

∆V

U

g(∆V )

u

v

w

g

g(U)

Fig. 14.9
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gs∆s

gr∆r

θ

gr×gs

gr×gs

gr∆r

gt∆t

(a) (b)

Fig. 14.10

Now g(�ri ×�s j ×�tk) is approximately a parallelepiped with sides gr �r, gs�s

and gt�t . We have already discussed the volumes of parallelepipeds while intro-

ducing Stokes’ theorem in Chap. 12. The area of the base of the parallelepiped is

‖gr × gs�ri · �s j‖ (Fig. 14.10a) where the partial derivatives of g are evaluated at

(r i , s j , tk). The height of the parallelepiped is the length of the projection of gt�tk
onto a direction perpendicular to the base. Since gr × gs is perpendicular to the base

the required height is
(

gr × gs · gt

/

‖gr × gs‖
)

�tk = ‖gt‖ cos θ�tk (Fig. 14.10b).

Hence

Vol
(

g(�ri × �s j × �tk)
)

≈ ‖gr × gs · gt‖�ri�s j�tk .

By Exercise 6.5(a)

‖gr × gs · gt‖ =

∣

∣

∣

∣

∣

∣

det

⎛

⎝

gr

gs

gt

⎞

⎠

∣

∣

∣

∣

∣

∣

=
∣

∣det(g′)
∣

∣

and

Vol
(

g(�ri × �s j × �tk)
)

≈
∣

∣det(g′)
∣

∣�ri�s j�tk .

Hence the Riemann sum of f over g(U ) is approximately

∑

i

∑

j

∑

k

f
(

g(r i , s j , tk)
) ∣

∣det
(

g′(r i , s j , tk)
)∣

∣ �ri�s j�tk

where we sum over the cubes in the partition of U . In the limit we get the change of

variables formula

∫∫∫

g(U )

f (u, v, w)dudvdw =
∫∫∫

U

f (g(r, s, t))
∣

∣det
(

g′(r, s, t)
)∣

∣ drdsdt.

http://dx.doi.org/10.1007/978-1-4471-6419-7_12
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The notations J (g) and
∂(u, v, w)

∂(r, s, t)
are also used in place of det(g′) and this deter-

minant is called the Jacobian of g.

If V is an open subset of R
2 then we may identify V with the open subset Ṽ =

V ×(0, 1) in R
3. A function f : V → R is integrable over V if and only if f̃ , defined

by f̃ (x, y, z) = f (x, y), is integrable over Ṽ and, moreover,

∫∫∫

Ṽ

f̃ (x, y, z)dxdydz =
∫∫

V

f (x, y)dxdy.

If g : U ⊂ R
2
(r,s) → V ⊂ R

2
(u,v) is a mapping between the open sets U and V then

it is easily seen that g is a parametrization of V if and only if g̃ : Ũ ⊂ R
3
(r,s,t) −→

Ṽ ⊂ R
3
(u,v.w)

, defined by g̃(r, s, t) = (g(r, s), t), is a parametrization of Ṽ . Since

g̃′ =

⎛

⎝

0
g′

0

0 0 1

⎞

⎠

we have det(g′) = det(g̃′) and

∫∫

V

f =
∫∫∫

Ṽ

f̃ =
∫∫∫

Ũ

f̃ ◦ g̃| det(g̃′)|

=
∫∫

U

f ◦ g| det(g′)|.

This justifies the change of variables formula for double integrals (Chap. 9) and

yields the following familiar formula

∫∫

V =g(U )

f (u, v)dudv =
∫∫

U

f (g(r, s))

∣

∣

∣

∣

ur us

vr vs

∣

∣

∣

∣

drds

where g(r, s) = (u(r, s), v(r, s)). In particular, for polar coordinates in the plane,

g : (r, θ) → (x, y) = (r cos θ, r sin θ), we have

| det(g′)| =
∣

∣

∣

∣

cos θ sin θ

−r sin θ r cos θ

∣

∣

∣

∣

= r

and ∫∫

x2+y2<1

f (x, y)dxdy =
∫∫

0<r<1
0<θ<2π

f (r cos θ, r sin θ)rdrdθ.

http://dx.doi.org/10.1007/978-1-4471-6419-7_9
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U1 ⊂ R
2

g1

g−1
2 ◦ g1

S ⊂ R
3

g−1
2

U2 ⊂ R
2

Fig. 14.11

If S is a simple oriented surface in R
3 and (g1, U1) and (g2, U2) are parametriza-

tions of S consistent with the orientation then the bijectivity and smoothness of g1

and g2 imply that the mapping g−1
2 ◦ g1 is a parametrization of U2 (Fig. 14.11).

The change of variables formula for double integrals may now be used to show

that integrals over S are independent of the parametrization and justifies the notation

used in earlier chapters (we remark that g1 and g2 map onto the same side of S if and

only if det
(

(g−1
2 ◦ g1)

′
)

is always strictly positive).

We have noted above how a solid sphere is a union of surfaces, i.e.

{(x, y, z) : x2 + y2 + z2 < r2} =
⋃

0≤s<r

{(x, y, z) : x2 + y2 + z2 = s2}

and using parametrization of surfaces we were able to fill in to obtain a parame-

trization of the solid sphere. In fact, we do not quite get a parametrization of the full

solid, since to obtain a bijective mapping, we are forced to miss a small portion of the

sphere. This is the same problem that we encountered and discussed fully in parame-

trizing the classical surfaces (Chap. 10). We do not enter into a full discussion here

but remark that after a similar discussion we would arrive at an analogous conclusion

for solids. The portion of the solid omitted has volume zero and so for integration

purposes we may treat the mappings in the following example as parametrizations

of the full solid.

Example 14.4 The procedure outlined above for the sphere can be applied to a

number of solids and using Table 11.1 we obtain the following parametrizations.

(a) Solid sphere of radius a (spherical polar coordinates)

(0, a) × (0, π) × (0, 2π) ∈ R
3 −−−→

{

(x, y, z) : x2 + y2 + z2 < a2
}

(r, θ, ψ) −−−→ (r sin θ cos ψ, r sin θ sin ψ, r cos θ)

http://dx.doi.org/10.1007/978-1-4471-6419-7_10
http://dx.doi.org/10.1007/978-1-4471-6419-7_11


14 Triple Integrals 173

(b) Solid ellipsoid (elliptical polar coordinates)

(0, 1) × (0, π) × (0, 2π) ∈ R
3 −−−→

{

(x, y, z) :
x2

a2
+

y2

b2
+

z2

c2
< 1

}

(r, θ, ψ) −−−→ (ra sin θ cos ψ, rb sin θ sin ψ, rc cos θ)

(c) Solid of revolution generated by revolving the area beneath the plane curve

P(t) = (x(t), y(t)), t ∈ [a, b] and y(t) > 0, about the x–axis (Example 10.4),

(0, 1) × (a, b) × (0, 2π) ∈ R
3 −−−→ Solid of Revolution

(r, t, θ) −−−→ (x(t), r y(t) cos θ, r y(t) sin θ)

(d) The solid cylinder of radius r and height h parallel to the z-axis is defined by

{(x, y, z) : x2 + y2 < r2, 0 < z < h} and parametrized by

(s, θ, z) −−−→ (s cos θ, s sin θ, z)

with domain (0, r) × (0, 2π) × (0, h) (cylindrical coordinates)

(e) The inverted solid cone {(x, y, z) : x2 + y2 < z2, 0 < z < 1} is parametrized

by

(r, θ, z) −−−→ (r cos θ, r sin θ, z)

where 0 < r < z, 0 < θ < 2π , 0 < z < 1.

(f) The inverted solid paraboloid defined by {(x, y, z) : x2 + y2 < z, 0 < z < 1}
is parametrized by

(r, θ, z) −−−→ (r cos θ, r sin θ, z)

where 0 < r <
√

z, 0 < θ < 2π , 0 < z < 1.

Example 14.5 In this example we calculate the volume of a solid torus. We discussed

the boundary surface of a torus in Example 11.1 and obtained the parametrization

f (θ, ψ) = ((b + r cos θ) cos ψ, (b + r cos θ) sin ψ, r sin θ)

where 0 < θ < 2π , 0 < ψ < 2π (Fig. 11.4). We generate the solid torus by rotating

the disc and obtain the parametrization

F : (0, 2π) × (0, 2π) × (0, r) −−−→ Solid Torus

(θ, ψ, s) −−−→ ((b + s cos θ) cos ψ, (b + s cos θ) sin ψ, s sin θ) .

We will use the change of variable formula to calculate the volume but first note how

the following geometric observation immediately gives the answer. The solid torus

is obtained by rotating a disc of radius r with centre on the y-axis at a distance b

http://dx.doi.org/10.1007/978-1-4471-6419-7_11
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from the origin about the z-axis. Thus the disc is rotated through a distance 2πb and

generates a solid whose volume is

πr2 · 2πb = 2π2r2b.

By the change of variable formula

Volume (Torus) =
∫∫∫

[0,2π ]×[0,2π ]×[0,r ]

∣

∣det
(

F ′(θ, ψ, s)
)∣

∣ dθdψds.

From Table 11.1 we obtain, on replacing r by s, the first two columns of F ′; Fθ = fθ
and Fψ = fψ . Hence

F ′(θ, ψ, s) =

⎛

⎝

−s sin θ cos ψ −(b + s cos θ) sin ψ cos θ cos ψ

−s sin θ sin ψ (b + s cos θ) cos ψ cos θ sin ψ

s cos θ 0 sin θ

⎞

⎠ .

From the matrix representation it is easily seen that Fθ , Fψ and Fs , i.e. the columns

of F ′, are mutually perpendicular vectors and hence generate a parallelepiped shaped

like a rectangular box. In this case the volume is the product of the lengths of the sides.

A further application of Table 11.1 gives us ‖Fθ‖ = ‖ fθ‖ =
√

E = s and ‖Fψ‖ =
‖ fψ‖ =

√
G = b + s cos θ. Since ‖Fs‖ = (cos2 θ cos2 ψ + cos2 θ sin2 ψ +

sin2 θ)1/2 = 1 we have

∣

∣det
(

F ′(θ, ψ, s)
)∣

∣ = ‖Fθ‖ · ‖Fψ‖ · ‖Fs‖ = s(b + s cos θ).

and

Volume (Torus) =
∫

[0,2π ]

∫

[0,2π ]

r
∫

0

s(b + s cos θ)dθdψds

=
2π
∫

0

dψ ·
r

∫

0

{

2π
∫

0

(sb + s2 cos θ)dθ

}

ds

= 2π

r
∫

0

(sbθ + s2 sin θ)

∣

∣

∣

2π

0
ds

= 2π

r
∫

0

sb2πds = 4π2b
s2

2

∣

∣

∣

r

0
= 2π2br2.

http://dx.doi.org/10.1007/978-1-4471-6419-7_11
http://dx.doi.org/10.1007/978-1-4471-6419-7_11
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x

z

y

x

z

y

x

z

y

2a 2a 2a

Fig. 14.12

x

y

θ

θ

2a sinθ

2a

Fig. 14.13

Example 14.6 To find the volume of the solid contained within the sphere x2 + y2 +
z2 = 4a2 and the cylinder x2 + (y − a)2 = a2. In Example 12.3 we considered a

geometric situation similar to the present one. By not moving the origin we adopt

here a slightly different approach. From Fig. 14.12 we see that the solid lies above

and below the plane disc x2 + (y − a)2 ≤ a2 and this immediately suggests polar

coordinates.

The volume V is equal to

∫∫∫

x2+y2+z2<4a2

x2+(y−a)2<a2

1 dxdydz.

We parametrize the solid using polar coordinates in the xy-plane and the usual

Cartesian z coordinate, i.e. we use the cylindrical coordinates

F : (r, θ, z) −−−→ (r cos θ, r sin θ, z).

Since

F ′(r, θ, z) =

⎛

⎝

cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1

⎞

⎠
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x

y3

9

z

1

Fig. 14.14

we have det
(

F ′(r, θ, z)
)

= r . To find the limits of integration consider Fig. 14.13 in

the xy-plane.

We see that 0 < θ < π , 0 < r < 2a sin θ and, from Fig. 14.12, z2 < 4a2 − x2 −
y2 = 4a2 − r2, i.e. −

√
4a2 − r2 < z <

√
4a2 − r2. Hence

Volume =
π

∫

0

{

2a sin θ
∫

0

{

√
4a2−r2
∫

−
√

4a2−r2

rdz

}

dr

}

dθ

= 2

π
∫

0

{

2a sin θ
∫

0

r
√

4a2 − r2dr

}

dθ.

Let s = 4a2 − r2. Then ds = −2rdr and

Volume = 2

π
∫

0

{

4a2 cos2 θ
∫

4a2

(−
1

2
s1/2)ds

}

dθ

= −
π

∫

0

(

2s3/2

3

∣

∣

4a2 cos2 θ

4a2

)

dθ

=
16a3

3

π
∫

0

(1 − | cos3 θ |)dθ =
16a3

9
(3π − 4).

Example 14.7 In this example we calculate the volume of the region U bounded

above by the paraboloid z = 9 − x2 − y2, below by the xy-plane and which lies

outside the cylinder x2 + y2 = 1 (Fig. 14.14).

The presence of x2+y2 in the defining inequalities suggests cylindrical coordinates

(r, θ, z) (the presence of x2 + y2 + z2 would suggest geographical or spherical polar
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coordinates). From Fig. 14.14 we see that U projects onto {(x, y) : 1 ≤ x2 + y2 ≤ 9}
in the xy-plane. Hence 1 ≤ r ≤ 3 and z varies over 0 ≤ z ≤ 9 − x2 − y2 = 9 − r2.

From the previous example we know that the Jacobian is equal to r . Hence the

required volume is

2π∫

0

{

3
∫

1

{

9−r2
∫

0

rdz

}

dr

}

dθ =
2π
∫

0

{

3
∫

1

(9r − r3)dr

}

dθ

= 2π ·
(

9r2

2
−

r4

4

)

∣

∣

∣

3

1
= 32π.

Exercises

14.1 Show that the volume of the solid inside the cylinder x2 + y2 − 2ay = 0 and

between the plane z = 0 and the paraboloid 4az = x2 + y2 equals 3πa3/8.

14.2 Find the volume of the solid inside the cylinder x2 + y2 = 2ay which lies

between the plane z = 0 and the cone x2 + y2 = z2.

14.3 Show that the volume of the solid defined by the inequalities x2 + y2 ≤ 1 and

tan−1(y/x) ≤ z ≤ 2π equals π2.

14.4 Let U denote the region above the plane z = 0 between the cone z2 = x2 + y2

and the paraboloid z = 2 − x2 − y2. Show that this region projects onto the

unit disc in the xy-plane. Using cylindrical coordinates or otherwise show that

the volume of U equals 5π/6.

14.5 Evaluate the following integrals:

(a)

1
∫

−3

{

3−2y
∫

y2

{

(z−y2)1/2
∫

−(z−y2)1/2

dx

}

dz

}

dy

(b)

2
∫

−2

{

−1+(4−x2)1/2
∫

−1−(4−x2)1/2

{

3−2y
∫

x2+y2

dz

}

dy

}

dx

(c)

9
∫

0

{

√
z

∫

−
√

z

{

3−z
2

∫

−(z−x2)1/2

dy

}

dx

}

dz.

14.6 Use the change of variables formula to calculate the volumes of the solids

parametrized in Example 14.4.

14.7 Find the volume of the wedge of the cylinder {(x, y, z) : x2 + y2 ≤ 1} which

lies above the xy-plane and between the planes z = −y and z = 0.
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14.8 Find the volume of the open set which lies above the square 0 < x < 1,

0 < y < 1 in the xy-plane and below the surface z = (1 + x + y)1/2. Hence

write down the volume of the set enclosed by the surfaces z = (1+|x |+|y|)1/2,

z = −(1+|x |+|y|)1/2 and by the planes x = 1, x = −1, y = 1 and y = −1.

14.9 Find the volume (of the ice-cream cone) that lies above the xy-plane, inside

the cone 3(x2 + y2) = z2 and the sphere x2 + y2 + z2 = 4a2.

14.10 Evaluate ∫∫∫

V

zdxdydz

where V = {(x, y, z) : 0 < z < x
√

y, 0 < y < 1, 1 < x < 2}.
14.11 Use the change of variables

F : (u, v, w) −−−→
(

u(1 − v), uv(1 − w), uvw
)

to calculate
∫∫∫

V

xdxdydz and

∫∫∫

V

dxdydz

y + z

where V is the tetrahedron cut from the first octant by the plane x + y + z = 1.



Chapter 15

The Divergence Theorem

Summary We state, discuss and give examples of the divergence theorem of Gauss.

The divergence theorem of Gauss is an extension to R
3 of the fundamental theorem

of calculus and of Green’s theorem and is a close relative, but not a direct descendent,

of Stokes’ theorem. This theorem allows us to evaluate the integral of a scalar-valued

function over an open subset of R
3 by calculating the surface integral of a certain

vector field over its boundary.

In Chap. 6 we defined the divergence of the vector field F = ( f1, f2, f3) as

div(F) = ∇ · F =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)

· ( f1, f2, f3) =
∂ f1

∂x
+

∂ f2

∂y
+

∂ f3

∂z

and we have previously written symbolically

curl(F) = ∇ × F.

Carrying this symbolism a step further we now write

div(curl F) = ∇ · ∇ × F =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂x

∂

∂y

∂

∂z
∂

∂x

∂

∂y

∂

∂z

f1 f2 f3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

This suggests, since the determinant of a matrix with two identical rows is zero, that

div(curl F) = 0 for any smooth vector field F. This is indeed true. Symbolism, how-

ever, does not prove anything and it is necessary to verify this formally. At the same

time it is a good example of the role of symbolism (and notation) in mathematics—

it can be suggestive—and sometimes leads to true results that might otherwise be

overlooked.
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If F is the velocity of a gas then div(F) represents the rate of expansion (or com-

pression) per unit volume. The divergence theorem states that the total expansion

(or contraction) over a region U equals the total inflow (or outflow) across the bound-

ary. Very little physical intuition is required in order to accept this as reasonable. This

physical interpretation is responsible for the terminology “divergence”.

We now formally state the divergence theorem.

Theorem 15.1 (Gauss’ Divergence Theorem) Suppose S is an oriented surface in

R
3, with outward pointing normal, enclosing an open set U and F is a smooth vector

field on U (= U ∪ S) then
∫∫

S

F =
∫∫∫

U

div(F).

An initial proof uses Green’s theorem and Fubini’s theorem on cross-sections of

U and, as noted in earlier chapters, this places certain geometrical restrictions on

U and S. From the previous chapter we see that it suffices to have U bounded, top

and bottom, above and below, front and back by graphs of functions which form the

boundary S. This covers many examples involving classical Euclidean shapes.

Further examples, for instance the annulus 0 < r1 < x2 + y2 + z2 < r2 < ∞,

are obtained by dividing the open set into a finite number of sets on each of which

the initial proof applies (we refer to our discussion on Green’s theorem in Chap. 9

for further details). In general, the boundary will be composed of a finite number of

distinct simple surfaces.

The collection of sets to which the divergence theorem applies is quite large but

difficult to formulate precisely without recourse to further concepts from differential

geometry. For this reason we have carefully avoided proving the theorem and giving

detailed hypotheses on U and S in the statement of the theorem. The theorem, as

stated, is sufficient for the examples we consider.

Example 15.2 In this example we use the divergence theorem to evaluate

∫∫∫

V

div(F)dxdydz

where V is the solid cylinder {(x, y, z) : x2 + y2 < 1, 0 < z < 1} and

F(x, y, z) =
(

1 − (x2 + y2)3, 1 − (x2 + y2)3, x2z2
)

.

The boundary of V is composed of the cylinder {(x, y, z) : x2 + y2 = 1, 0 < z < 1}
and the flat discs {(x, y, z) : x2+y2 ≤ 1, z = 0} and {(x, y, z) : x2+y2 ≤ 1, z = 1}
(Fig. 15.1).

The outward normal on the curved surface at the point (x, y, z) is (x, y, 0). On the

upper and lower discs the outward normals are (0, 0, 1) and (0, 0,−1) respectively.

On the curved surface F · n = 0 since x2 + y2 = 1 and the third coordinate of n

http://dx.doi.org/10.1007/978-1-4471-6419-7_9
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is zero, on the bottom F · n = 0 since z = 0 and on the top F · n = x2. By the

divergence theorem

∫∫∫

V

div(F)dxdydz =
∫∫

x2+y2≤1

x2dxdy.

The double integral is evaluated by using the polar coordinates

(r, θ) −−−→ (r cos θ, r sin θ), 0 < r < 1, 0 < θ < 2π

on the unit disc and equals π/4.

Example 15.3 We use the divergence theorem to evaluate

∫∫

∂W

(x2 + y + z)

where W is the solid sphere x2 + y2 + z2 < 1 and ∂W is its boundary oriented out-

wards. The unit sphere has outward normal n(x, y, z) = (x, y, z). If F = ( f1, f2, f3)

is a vector field on W then the divergence theorem implies that

∫∫

∂W

( f1, f2, f3) =
∫∫

∂W

(x f1 + y f2 + z f3)d A (15.1)

=
∫∫∫

W

(

∂ f1

∂x
+

∂ f2

∂y
+

∂ f3

∂z

)

dxdydz. (15.2)

Hence we can use any smooth vector field on the closed unit sphere for which

x f1+ y f2+z f3 = x2+ y+z. This allows a wide choice but in such cases the simplest
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and most obvious option is usually the best. Let f1(x, y, z) = x , f2(x, y, z) = 1 and

f3(x, y, z) = 1. Then

∫∫

∂W

(x2 + y + z)d A =
∫∫∫

W

1dxdydz = Vol (W ) =
4

3
π.

Example 15.4 In this example we verify a particular case of the divergence theorem.

Let U denote the set defined by the inequalities z ≥ 0, x2 + y2 + z2 ≤ 4 and

x2 + y2 ≤ z2. These define the set of points, above the xy-plane, contained in the

sphere of radius 2 centred at the origin, which lie within the cone x2 + y2 ≤ z2

(Fig. 15.2).

The boundaries of the solid sphere and cone are given by the equalities x2 + y2 +
z2 = 4 and x2 + y2 = z2 respectively. These intersect in a curve which satisfies both

equations, i.e. x2 + y2 + z2 = 4 = z2 + z2. Hence z = ±
√

2 and x2 + y2 = 2. This

is a circle of radius
√

2 parallel to the xy-plane,
√

2 units above it with centre at the

point (0, 0,
√

2). The open set U is that portion of the cone which lies between the

planes z = 0 and z =
√

2 capped by the top of the sphere (Fig. 15.3). The boundary

of U consists of the portion S1 of the cone defined by x2 + y2 = z2, 0 ≤ z ≤
√

2, and

the portion of the sphere, S2, defined by x2 + y2 + z2 = 4,
√

2 ≤ z ≤ 2. Consider

the vector field

F(x, y, z) = (xz, yz, x2 + y2).

We have div(F) =
∂

∂x
(xz) +

∂

∂y
(yz) +

∂

∂z
(x2 + y2) = 2z. To evaluate

∫∫∫

U

2zdxdydz

we use spherical polar coordinates (Example 10.5):
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w : (r, θ, ψ) −−−→ (r sin θ cos ψ, r sin θ sin ψ, r cos θ).

From Fig. 15.3 the domain of w is

0 < θ <
π

4
, 0 < r < 2, 0 < ψ < 2π.

Since the rows of

w′ =

⎛

⎝

wr

wθ

wψ

⎞

⎠ =

⎛

⎝

sin θ cos ψ sin θ sin ψ cos θ

r cos θ cos ψ r cos θ sin ψ −r sin θ

−r sin θ sin ψ r sin θ cos ψ 0

⎞

⎠

are easily seen to be mutually orthogonal

det(w′) = 1 · r · r sin θ = r2 sin θ.

Hence

∫∫∫

U

2zdxdydz = 2

∫ π/4

0

∫ 2

0

∫ 2π

0

r2 sin θ · r cos θdrdθdψ

=
∫ π/4

0

sin 2θdθ ·
∫ 2

0

r3dr ·
∫ 2π

0

dψ

= 2π ·
r4

4

∣

∣

∣

∣

2

0

·
(

− cos 2θ

2

)
∣

∣

∣

∣

π/4

0

= 2π ·
16

4
·

1

2
= 4π.

To verify the divergence theorem we must show
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∫∫

S1

F +
∫∫

S2

F = 4π

where S1 and S2 both are oriented outwards. To ensure that we do not take an incorrect

sign we use the formula

∫∫

S

F =
∫∫

S

(F · n)
√

EG − F2

to evaluate the surface integrals where n is the outer normal. Since S1 is part of the

level set x2 + y2 − z2 = 0 its unit normals are

±
(2x, 2y,−2z)

(
(2x)2 + (2y)2 + (2z)2

)1/2
= ±

(x, y,−z)
√

2z
.

On S1, z > 0 and from Fig. 15.3 the outer normal has a negative z-component and

hence

n1(x, y, z) =
(x, y,−z)

√
2z

.

Hence

F · n1 = (xz, yz, x2 + y2) ·
(x, y,−z)

√
2z

=
x2z + y2z − z(x2 + y2)

√
2z

= 0

and
∫∫

S1

F = 0.

Since S2 is part of the sphere of radius 2 centred at the origin the outer normal at

(x, y, z) is (x, y, z)/2. Hence

F · n2 = (xz, yz, x2 + y2) ·
(x, y, z)

2
=

x2z + y2z + (x2 + y2)z

2
= (x2 + y2)z.

We parametrize the sphere using spherical polar coordinates (Example 10.5) and

obtain

g : (θ,ψ) −−−→ (2 sin θ cos ψ, 2 sin θ sin ψ, 2 cos θ).

From Fig. 15.3, the domain of g is 0 < θ < π/4, 0 < ψ < 2π . We have already

seen in Example 11.3 that

‖gθ × gψ‖ =
√

EG − F2 = 22 sin θ
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and from the above

F · n2 = 4 sin2 θ · 2 cos θ = 8 sin2 θ cos θ.

Hence

∫∫

S2

F =
∫ π/4

0

∫ 2π

0

32 sin3 θ cos θdθdψ.

If u = sin θ then du = cos θdθ and

∫∫

S2

F = 64π

∫ 1/
√

2

0

u3du

= 64π ·
u4

4

∣

∣

∣

∣

1/
√

2

0

=
64π

4
·

1

4
= 4π

and
∫∫∫

U

div(F) =
∫∫

S1

F +
∫∫

S2

F.

We have this verified the divergence theorem.

Hopefully we have developed, in the last few chapters, certain skills in handling

diagrams, parametrizations and linear algebra and seen that problems in integration

theory are handled by a mixture of techniques and ideas. With some practice readers

will find their own preferred approach and, indeed, recognise that there are alternative

approaches to a number of problems. Our next example is similar but somewhat more

complicated than the previous example. We could take the same approach but instead

use a few different ideas (some call them tricks) which may be useful elsewhere. This

example also highlights the relationship between the change of variables for triple

integrals and parametrizations of the boundary surfaces. Recall that we obtained

many of the change of variables formulae for solids by “filling in” parametrization

of boundary surfaces (Example 14.4). In the next example we see that restricting

parametrizations of solids to the boundaries leads to parametrizations of surfaces.

Example 15.5 In this example we verify the divergence theorem on a part of a solid

torus (Example 11.1). Consider the region A in the yz-plane determined by the

inequalities (y − b)2 + z2 ≤ a and b − y ≤ z ≤ y − b where b > a > 0. The

boundary of A consists of an arc of a circle of radius a with centre (b, 0) and two

straight lines which pass through the centre of the circle. These are easily sketched,

Fig. 15.4, and we will constantly refer to this simple diagram as it contains a great

deal of information.

If we revolve A about the z-axis we obtain a wedge-shaped portion U of the solid

torus (see Fig. 15.4 for a sketch of the torus). We parametrize the solid torus by filling
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in the toroidal polar coordinates given in Example 11.1 and use Fig. 15.4 to find the

domain of the parametrization P of the wedge U .

We obtain

P : (r, θ, ψ) −−−→ ((b + r cos θ) cos ψ, (b + r cos θ) sin ψ, r sin θ)

where 0 < r < a, −π/4 < θ < π/4 and 0 < ψ < 2π . Consider the vector field

F(x, y, z) =
(

x

(

(

x2 + y2
)1/2

− b

)

, y

(

(

x2 + y2
)1/2

− b

)

, z
(

x2 + y2
)1/2

)

.

In Cartesian coordinates,

div(F) = (x2 + y2)1/2 − b + x ·
1

2
· 2x(x2 + y2)−1/2 + (x2 + y2)1/2 − b

+ y ·
1

2
· 2y(x2 + y2)−1/2 + (x2 + y2)1/2

= 3(x2 + y2)1/2 − 2b + (x2 + y2) · (x2 + y2)−1/2

= 4(x2 + y2)1/2 − 2b

and, in toroidal polar coordinates,

div(F) = 4
(

(b + r cos θ)2 cos2 ψ + (b + r cos θ)2 sin2 ψ

)1/2
− 2b

= 4(b + r cos θ) − 2b = 2(b + 2r cos θ).
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Since

P ′ = (Pr , Pθ , Pψ ) =

⎛

⎝

cos θ cos ψ −r sin θ cos ψ −(b + r cos θ) sin ψ

cos θ sin ψ −r sin θ sin ψ (b + r cos θ) cos ψ

sin θ r cos θ 0

⎞

⎠

and Pr , Pθ and Pψ are easily seen, by inspection, to be mutually perpendicular we

have

| det(P ′)| = 1 · r · (b + r cos θ).

Hence

∫∫∫

U

div(F) =
∫ a

0
(r)

∫ π/4

−π/4
(θ)

∫ 2π

0
(ψ)

2(b + 2r cos θ)r(b + r cos θ)drdθdψ

= 4π

∫ π/4

−π/4

∫ a

0

(b2r + 3r2b cos θ + 2r3 cos2 θ)drdθ

= 4π

∫ π/4

−π/4

(

b2a2

2
+ ba3 cos θ +

a4

2
·

1 + cos 2θ

2

)

dθ

=
4πb2a2

2
·
π

2
+ 4πba3(sin θ)

∣

∣

∣

∣

π/4

−π/4

+
4πa4

4

(

θ +
sin 2θ

2

)
∣

∣

∣

∣

π/4

−π/4

= π2b2a2 + 4
√

2πba3 +
π2a4

2
+ πa4.

To verify the divergence theorem we calculate the integral over the boundary of U

oriented outwards. The boundary of U is obtained by revolving the boundary of

A about the z-axis. From Fig. 15.4 we see that the boundary of A consists of an

arc B1 of a circle which revolves into a part of the torus and two straight lines,

B2 and B3, which revolve into portions of cones. We denote by Si the outwardly

oriented surface obtained by revolving Bi about the z-axis, i = 1, 2, 3. We could

proceed to parametrize each of these surfaces using the methods developed earlier,

but instead we obtain our parametrizations by appropriate restrictions of P . For

example B1 is the boundary of A obtained by letting r = a in the parametrization

(r, θ) → (b + r cos θ, r sin θ) of A and if we let r = a in P(r, θ, ψ) we obtain a

parametrization f of S1 given by

f (θ, ψ) =
(

(b + a cos θ) cos ψ, (b + a cos θ) sin ψ, a sin θ
)

where −π/4 < θ < π/4 and 0 < ψ < 2π . Since partial derivatives are calcu-

lated by fixing all except one of the variables we have fθ (θ,ψ) = Pθ (a, θ, ψ) and

fψ (θ, ψ) = Pψ (a, θ, ψ). Thus the partial derivatives of f are the final two columns

of P ′ and as the columns of P ′ are mutually perpendicular the first column is parallel

to the normal of S1. Since the first column of P ′ is a unit vector it follows that the

unit normals to S1 are
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±(cos θ cos ψ, cos θ sin ψ, sin θ).

If θ = 0 and ψ = π/2 we get the point (0, b + a, 0) in S1 with unit normals at

this point given by ±(0, 1, 0). From Fig. 15.4 the outward normal is (0, 1, 0). Hence

the outward normal at any point of S1 is given by (cos θ cos ψ, cos θ sin ψ, sin θ).

Again, using orthogonality of the columns of P we see that

‖ fθ × fψ‖ = ‖ fθ‖ · ‖ fψ‖ = a(b + a cos θ).

On S1, x2 + y2 = (b + a cos θ)2 cos2 ψ + (b + a cos θ)2 sin2 ψ = (b + a cos θ)2

and

F = (a (b + a cos θ) cos ψ cos θ, a (b + a cos θ) sin ψ cos θ, a sin θ (b + a cos θ))

= a(b + a cos θ)(cos ψ cos θ, sin ψ cos θ, sin θ)

= a(b + a cos θ)n.

Hence

∫∫

S1

F =
∫∫

S1

F · n ‖ fθ × fψ‖dθdψ

=
∫ 2π

0
(ψ)

∫ π/4

−π/4
(θ)

a(b + a cos θ)n · a(b + a cos θ)ndψdθ

= 2πa2

∫ π/4

−π/4

(b2 + 2ab cos θ + a2 cos2 θ)dθ

= 2πa2 ·
b2π

2
+ 4πa3b(sin θ)

∣

∣

∣

∣

π/4

−π/4

+ 2πa4

∫ π/4

−π/4

1 + cos 2θ

2
dθ

= π2a2b2 + 4πa3b
√

2 + πa4 π

2
+

2πa4

2

(

cos 2θ

2

)
∣

∣

∣

∣

π/4

−π/4

= π2a2b2 + 4
√

2πa3b +
π2a4

2
+ πa4.

The boundary B2 of A is obtained by letting θ = π/4 in the parametrization (r, θ) →
(b + r cos θ, r sin θ) of A and hence a parametrization of S2 is obtained by letting

θ = π/4 in P(r, θ, ψ). This gives the parametrization

g(r, ψ) =
(

(

b +
r

√
2

)

cos ψ,

(

b +
r

√
2

)

sin ψ,
r

√
2

)

with domain 0 ≤ ψ ≤ 2π , 0 ≤ r ≤ a. As before the partial derivatives of g are

obtained from the first and third columns of P ′, with θ = π/4, and again, using

orthogonality of the rows of P ′, we see that the unit normals to S2 are obtained by
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normalising the second column of P ′. The normals are ±(cos ψ, sin ψ,−1)/
√

2.

From Fig. 15.4 the outer normal has a positive final coordinate and thus the outer

normal at the point g(r, ψ) is (− sin ψ,− cos ψ, 1)/
√

2. Figure 15.4 also shows that

S2 is part of the cone x2 + y2 = (z + b)2. On S2,

(x2 + y2)1/2 − b = b +
r

√
2

− b =
r

√
2
.

Hence

F ((r, ψ)) =
(

(

b +
r

√
2

)

cos ψ ·
r

√
2
,

(

b +
r

√
2

)

sin ψ ·
r

√
2
,

r
√

2

(

b +
r

√
2

)

)

=
(

b +
r

√
2

)

·
r

√
2

(cos ψ, sin ψ, 1) .

Hence

F · n =
(

b +
r

√
2

)

·
r

√
2

·
1

√
2
(− sin2 ψ − cos2 ψ + 1) = 0

and
∫∫

S2

F = 0.

The surface S3 is obtained by letting θ = −π/4 and we obtain in the same way a

parametrization

h : (r, ψ) −−−→
(

(

b +
r

√
2

)

cos ψ,

(

b +
r

√
2

)

sin ψ,−
r

√
2

)

with outer normal

(

−
cos ψ
√

2
,−

sin ψ
√

2
,−

1
√

2

)

at the point h(r, ψ). It is easily

checked that

F (h(r, ψ)) =
(

b +
r

√
2

)

·
r

√
2

(cos ψ, sin ψ,−1) ,

and

F · n =
(

b +
r

√
2

)

r
√

2
·

1
√

2

(

− sin2 ψ − cos2 ψ + 1
)

= 0.

Hence
∫∫

S3

F = 0. We have thus shown

∫∫∫

U

div(F) =
∫∫

S1

F +
∫∫

S2

F +
∫∫

S3

F
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and verified the divergence theorem.

This completes our programme on integration theory. We have concentrated

on motivating the basic definitions, the concept of orientation, the main theorems

(Stokes’ Theorem and the Divergence Theorem) and geometrical interpretations. We

have neglected mentioning practical and theoretical applications of several-variable

integration theory. The methods we have covered are not trivial and need time to

be mastered. We urge the reader to have patience and to keep revising until they

appear obvious. Further studies, of a pure and applied nature should then be highly

rewarding. The remaining chapters of this book are devoted to the geometry of

surfaces in R
3. The examples of surfaces that arose in integration theory are both

concrete and representative and should be referred to frequently as a means of appre-

ciating and understanding the abstract concepts we meet in the final three chapters.

Exercises

15.1 Prove the divergence theorem for the domain

U = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}.

15.2 Use the divergence theorem to evaluate

∫∫

S

F

where F(x, y, z) = (xy2, x2 y, y) and S is the surface, oriented outwards, of

the cylinder x2 + y2 ≤ 3 bounded above by the plane x + z = 0 and below by

the plane z = 0.

15.3 Evaluate
∫∫∫

U

xdxdydz

where U is the tetrahedron bounded by x ≥ 0, y ≥ 0, z ≥ 0 and the plane

x

a
+

y

b
+

z

c
= 1.

15.4 Evaluate directly and also using the divergence theorem

∫∫∫

0≤x,y,z≤1

yz2e−xyzdxdydz.
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15.5 Use the divergence theorem to prove

∫∫

S

(x2,−y2, 3xz) = 3π

where S is the outwardly oriented boundary of the region

{(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0, x2 + y2 + z2 ≤ 4}.

15.6 Let S denote a closed surface which bounds the open set V in R
3 and let n denote

the outward normal to S. If f and g have continuous first- and second-order

partial derivatives and ∇2 f =
∂2 f

∂x2
+

∂2 f

∂y2
+

∂2 f

∂z2
show that

∫∫

S

(

f
∂g

∂n
− g

∂ f

∂n

)

=
∫∫∫

V

(

f ∇2g − g∇2 f
)

dxdydz.

15.7 Let Ω denote the region bounded by the rays θ = a and θ = b and the curve

r = f (θ). Show that

Area (Ω) =
1

2

∫ b

a

f 2(θ)dθ.

Sketch the curve r = 1 + cos θ and show that it encloses a region with area

3π/2.

15.8 Find the area between the plane z = 0, the paraboloid z = ax2 + by2 and the

cylinder x2/c2 + y2/d2 = 1.



Chapter 16

Geometry of Surfaces in R3

Summary Using normal sections we define normal curvature, principal curvatures

and Gaussian curvature. Geometric interpretations and a method of calculating the

Gaussian curvature using parametrization are given.

Our geometric study of surfaces in R
3 is motivated by some very simple basic ques-

tions such as; what is curvature and how does one measure it? Is there any relationship

between surface area and curvature? What is the shortest distance between two points

on a surface? We start by taking an intuitive and non-rigorous look at an apparently

very special case and this leads us to mathematical concepts which are both useful

and natural. The surface we study is one with which we are already familiar and

this simple example gives us everything. We have already used all the techniques

that we require, and all the facts that we need are known to us—we just have to

look at things in a slightly different way. The surface S we consider is the graph

of the smooth function f where f (x, y) is the height above sea level. We suppose

f has a local maximum at (x0, y0) and we study S near p =
(

x0, y0, f (x0, y0)
)
.

Since the point (x0, y0) is a critical point of f the tangent plane to S at p is the

plane through the point (x0, y0, f (x0, y0)) parallel to the xy-plane in R
3. The unit

normals to the surface at p are ±(0, 0, 1) and, for convenience, we choose (0, 0, 1)

as our unit normal n(p). The tangent plane of S at p consists of all vectors of the

form (v1, v2, 0).

If our notion of curvature is meaningful it should say something when we take

cross-sections of a surface. For instance, if we keep getting circles when we take

cross-sections we should not be surprised if the surface is a sphere and if each cross-

section is either a line or a plane we expect the surface to be a plane. We consider

cross-sections of R
3 through the point p which contain the unit normal at p, n(p).

Since cross-sections of R
3 are two-dimensional this will cut the tangent plane and

we can find a unit tangent vector at p, v, such that our cross-section has the form

p + {xv + yn(p) : x, y ∈ R
2}.

We identify this cross-section of R
3 with R

2
(x,y)

by the correspondence
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Fig. 16.1

p + xv + yn(p) ∈ R
3 ←→ (x, y) ∈ R

2.

The intersection of this cross-section of R
3 and the surface S is a curve on the surface

called a normal section of the surface at p (Fig. 16.1).

Using this correspondence we may identify the normal section of the surface with

a curve Ŵ in R
2 passing through the origin. We direct Ŵ by requiring (0, 1) to be

the unit normal at the origin and calculate its curvature using the concept of plane

curvature in Chap. 7. The curvature of Ŵ at the origin in R
2 will depend on the

unit vector v and the choice of normal and we denote it by kp(v). We call kp(v)

the normal curvature of S at p in the direction v. By examining kp(v) as v ranges

over all unit tangent vectors to S at p we hope to draw conclusions on the shape

of the surface near p. For example, if kp(v) = 1/r for all v then we might expect

the surface to approximate a sphere of radius r near p. All normal sections are

paths on the surface leading to the point p (i.e. to the top of the mountain) and the

different normal curvatures distinguish between the steep and the not so steep paths.

Visualising circles of different radii going through p, with p as their highest point,

gives us an idea of the shape of the surface near p. Of course it is very laborious to

examine all these curves and to calculate all their curvatures so instead we examine

them collectively to see if any particular features of the set of all normal curvatures

captures the essence of the shape near p.

Since f has a local maximum at (x0, y0) and n(p) = (0, 0, 1) all normal circles

of curvature will lie on the same side of the tangent plane and on the opposite side

to the normal. This means that all normal curvatures will be negative. Choosing

(0, 0,−1) as unit normal at p changes the signs of all normal curvatures. If we were

examining a local minimum at (x0, y0) and n(p) = (0, 0, 1) we would have found

that all normal curvatures were positive.

But changing the normal or turning the surface upside down—this is equivalent

to changing local maxima into local minima and conversely—does not affect the

shape of the surface in any way and we conclude: if all normal curvatures are strictly

positive or all are strictly negative then the shape of S near p is similar to an ellipsoid

(Fig. 16.2). These points are called elliptic points of the surface. We can extend

http://dx.doi.org/10.1007/978-1-4471-6419-7_7
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local max.
kp(v) < 0 all v

local max.
kp(v) > 0 all v

local min.
kp(v) > 0 all v

local min.
kp(v) < 0 all v

n

n

n

n

Fig. 16.2

this analysis to arbitrary critical points and clearly if, at a point p, normal curvature

takes both positive and negative values then the surface near p is similar in shape to a

saddle point. Such points are called hyperbolic points of the surface. Our preliminary

investigation has shown that information on the shape of the surface can be obtained

from the range of values taken by kp(v) as v varies over the set of unit tangent vectors

at p. Since the range is determined by the extremal values we let k1(p) = max
‖v‖=1

kp(v)

and k2(p) = min
‖v‖=1

kp(v) and call k1(p) and k2(p) the principal curvatures at p. If the

maximum or minimum occurs at a vector v we call v a principal curvature direction.

We consider the various possibilities that may arise for k1(p) and k2(p). If k1(p) =
k2(p) then we call p an umbilic point and if k1(p) = k2(p) = 0 we call p a flat spot.

If p is umbilic then kp(v) = k1(p) for all v, ‖v‖ = 1, and if k1(p) �= 0 then the

surface near p is similar to a portion of a sphere of radius 1/|k1(p)|. If p is a flat spot

then all normal curvatures are zero and the surface near p is very flat and almost like

a part of a plane. At an umbilic point all directions are principal curvature directions.

We now consider non-umbilic points, i.e. k1(p) > k2(p). If k2(p) > 0 then for any

v, ‖v‖ = 1, we have 0 < k2(p) ≤ kp(v) and if k1(p) < 0 then kp(v) ≤ k1(p) < 0

for all v, ‖v‖ = 1. Hence, in both cases, all normal curvatures have the same sign and

near p the surface is shaped like an ellipsoid at one of its extreme points (i.e. like the

surface (x/a)2 + (y/b)2 + (z/c)2 = 1 at the point (0, 0, c) ). If k2(p) < 0 < k1(p)

then the surface near p is shaped like a saddle point.

To summarise our conclusions more concisely we introduce Gaussian curvature.

Definition 16.1 The Gaussian curvature, K (p), at a point p on a surface S, is the

product of the principal curvatures, k1(p)k2(p).

We have noted already that kp(v) depends on the choice of normal—changing the

normal changes the sign of kp(v)—but since two changes of sign cancel one another

it follows that K (p) does not depend on the choice of normal.

Although we have only considered critical points on the graph in our analysis we

will see shortly that our analysis applies to all points on a surface and for this reason

we state the following result in its full generality.
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Proposition 16.2 At a non-umbilic point on a surface S in R
3 we have:

K (p) > 0 ⇐⇒ near p, S is shaped like an ellipsoid,

K (p) < 0 ⇐⇒ near p, S is shaped like a saddle point,

K (p) = 0 ⇐⇒ near p, S is shaped like a cylinder or cone.

At an umbilic point K (p) ≥ 0 and

K (p) > 0 ⇐⇒ near p, S is shaped like a sphere,

K (p) = 0 ⇐⇒ near p, S is very flat.

Consider again the graph of a function f near a critical point (x0, y0). We suppose

for simplicity that (x0, y0) = (0, 0) and f (0, 0) = 0. The tangent plane at p =
(x0, y0, f (0, 0)) = (0, 0, 0) is the xy-plane and consists of the points {(v1, v2, 0) :
v1, v2 ∈ R}, and n = n(p) = (0, 0, 1) is our choice of unit normal. Let v =
(v1, v2, 0) be a fixed unit vector. The section of R

3 determined by n and v is the

plane

{(tv1, tv2, s) : t, s ∈ R} (16.1)

and the graph of f is the set

{(x, y, f (x, y)) : (x, y) ∈ domain( f )}. (16.2)

The points which satisfy both (16.1) and (16.2) form the normal section of the surface

through p defined by v and are easily seen near p to have the form

{(tv1, tv2, f (tv1, tv2)), t ∈ [−a, a]} = {tv + f (tv1, tv2)n : t ∈ [−a, a]} (16.3)

for some positive a.

On identifying the plane in R
3 spanned by v and n with R

2
(x,y)

we see that the

normal section can be parameterised by

P(t) = (t, f (tv1, tv2)), t ∈ [−a, a],

and may be identified with the graph of the function h : [−a, a] → R, h(t) =
f (tv1, tv2). If we parametrize the graph of h by t →

(

t, h(t)
)

we obtain (1, 0) as

unit tangent at (0, 0) and (0, 1) as unit normal (see Chap. 7). Hence the curvature of

the graph at the origin, directed by this parametrization, is the normal curvature of

S at p in the direction v. By Example 7.1 the curvature at (t, h(t)) is

h′′(t)

(1 + h′(t)2)3/2
.

http://dx.doi.org/10.1007/978-1-4471-6419-7_7
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By the chain rule

h′(t) = v1 fx (tv1, tv2) + v2 fy(tv1, tv2)

and

h′′(t) = fxx (tv1, tv2)v
2
1 + 2 fxy(tv1, tv2)v1v2 + fyy(tv1, tv2)v

2
2.

On letting t = 0 we obtain

kp(v) = fxx (0, 0)v2
1 + 2 fxy(0, 0)v1v2 + fy,y(0, 0)v2

2 = vH f (0,0)
t v

where

H f (0,0) =
(

fxx (0, 0) fxy(0, 0)

fxy(0, 0) fyy(0, 0)

)

is the Hessian of f at (0, 0). (We have taken the liberty of using v to denote both

(v1, v2) and (v1, v2, 0) and hope that this does not cause any confusion—it is a

practice that we do not recommend except in special circumstances.)

This is familiar territory and we use our knowledge of the function vH f (0,0)
t v

as v ranges over all unit vectors. In Chap. 4 we showed that the maximum and

minimum values of vH f (0,0)
t v over ‖v‖ = 1 are the eigenvalues of H f (0,0) and are

achieved at the corresponding eigenvectors. Hence the eigenvectors of H f (0, 0) are

the principal curvature directions and p is non-umbilic if and only if H f (0, 0) has

two distinct eigenvalues. Since eigenvectors corresponding to different eigenvalues

are perpendicular (Exercise 1.21) it follows that at a non-umbilic point there exist

precisely two principal curvature directions which are perpendicular to one another—

hence if we know one we can easily find the other. Note that we do not distinguish

between the directions v and −v.

We now discuss the case previously omitted, i.e. K (p) = 0, which corresponds to

a degenerate critical point of the function f . If K (p) = 0 and p is umbilic then since

K (p) = k1(p)k2(p) and k1(p) = k2(p) it follows that k1(p) = k2(p) = 0 and p is

a flat spot and we have already considered this case. If K (p) = 0 and p is not umbilic

then we have two possibilities, k2(p) < 0 = k1(p) and k2(p) = 0 < k1(p), and

which occurs depends on the choice of normal. Since both have the same geometrical

interpretation we just consider the first one. If v is the principal curvature direction

associated with k1(p), i.e. kv(p) = k1(p), then the normal section near p in the

direction v is approximately a straight line. If w ⊥ v = 0 then w is the other principal

curvature direction and the normal section in this direction is approximately a circle

of radius 1/|k2(p)| on the opposite side of the surface to the normal (Fig. 16.3a, b).

Figure 16.3b suggests a cylinder as an example and indeed a cylinder has Gaussian

curvature zero at all points. For the cylinder in Fig. 16.3c we have k1(p) = 0 and

k2(p) = −1/r . In general, if K (p) = 0 then all normal circles of curvature will lie

on the same side of the tangent plane and all normal curvatures will have the same

sign, that is, either all non-negative or all non-positive. The cylinder and cone (see

Exercise 16.2) are typical examples of surfaces without umbilics and with K (p) = 0.

One should, however, not assume that every surface with K (p) = 0 is of this type as

http://dx.doi.org/10.1007/978-1-4471-6419-7_4
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one can find quite strange surfaces with K (p) = 0 at isolated points. Our geometric

interpretations are meant as a rough guide and as such are reasonably useful in

visualising the shape of the surface but do not, of course, explain the full subtlety of

many situations—this requires further analysis.

So far we have considered a rather special situation—a critical point on a surface

which is the graph of a function—and it is time to see how representative this is of

the general situation.

What about non-critical points? Well, if looked at the right way, every point is a

critical point. For example, consider the torus in R
3 and take p as a typical point

on the surface (Fig. 16.4a). To turn p into a critical point we must choose a new

coordinate system for R
3. We choose our first two coordinates so that the tangent

plane to the surface at p corresponds to the (x, y)-plane and then take the z-direction

as one of the normal directions (Fig. 16.4b).

We define a function φ on the tangent plane near p by letting φ(x, y) denote

the distance squared from the tangent plane in the n(p) direction to the surface

(Fig. 16.5). This means that the surface S near p is the graph of φ and that φ, defined
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on the tangent space near p, has a local minimum at p. One can carry out a similar

analysis at any point on the surface, although it is not so easy to sketch at points

which become saddle points, e.g. the point q in Fig. 16.4a.

We conclude that our analysis applies everywhere on a graph. Our examination

of graphs, level sets, simple surfaces and surfaces at the end of Chap. 10 shows that

these objects are locally equivalent and since normal curvature, principal curvatures

and Gaussian curvature are locally defined our results obtained using graphs are valid

at all points on all surfaces.

Gaussian curvature is the most important number that we can geometrically asso-

ciate with a point on a surface. To use it effectively we need to be able to calculate

it directly from any parametrization, without first finding normal curvatures or prin-

cipal curvatures. To find a way to do this we turn again to normal curvatures and

results from Chaps. 7 and 8 on the curvature of plane curves. If P is a unit speed

parametrized curve in R
2 then

P ′(t) = T (t), T ′(t) = κ(t)N (t), κ(t) = 〈T ′(t), N (t)〉. (16.4)

Let φ denote a parametrization of the simple surface S. Let p ∈ S, v ∈
Tp(S), ‖v‖ = 1, and let n(p) denote a choice of normal to S at p. Let P : [−a, a] −→
Ŵ be a parameterized curve in S with P(0) = p and P ′(0) = v. If s denotes the

length function on Ŵ defined by P and Q = P ◦ s−1 then (see Chap. 5 and (8.9)),

P ′′(t) = (s′(t))2 Q′′(s(t)) + s′′(t)Q′(s(t)).

Since s′(0) = 1 and Q′(s(0)) ⊥ n(p), (16.4) implies

〈P ′′(0), n(p)〉 = 〈Q′′(s(0)), n(p)〉 = kp(v). (16.5)

Since Ŵ ⊂ S we may suppose

P : t ∈ [−a, a] �→ φ(x(t), y(t))

where t �→ x(t) and y �→ y(t) are real-valued smooth functions on [−a, a]. By the

chain rule

P ′(t) = x ′(t)φx (x(t), y(t)) + y′(t)φy(x(t), y(t))

and

P ′′(t) = x ′′(t) · φx (x(t), y(t)) + y′′(t) · φy(x(t), y(t))

+ (x ′(t))2 · φxx (x(t), y(t)) + 2x ′(t) · y′(t) · φxy(x(t), y(t))

+ (y′(t))2 · φyy(x(t), y(t)).

http://dx.doi.org/10.1007/978-1-4471-6419-7_10
http://dx.doi.org/10.1007/978-1-4471-6419-7_7
http://dx.doi.org/10.1007/978-1-4471-6419-7_8
http://dx.doi.org/10.1007/978-1-4471-6419-7_5
http://dx.doi.org/10.1007/978-1-4471-6419-7_8
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If p = (x(0), y(0)), v1 = x ′(0), v2 = y′(0) and we write, for simplicity, φx in place

of φx (p), φxx in place of φxx (p), n in place of n(p) etc., and let l := 〈φxx , n〉,
m := 〈φxy, n〉 = 〈φyx , n〉 and n := 〈φyy, n〉. Then P ′(0) = v = v1φx + v2φy and,

since φx and φy are tangent vectors, 〈φx , n〉 = 〈φy, n〉 = 0. Hence

〈P ′′(0), n(p)〉 = kp(v) = v2
1〈φxx , n〉 + 2v1v2〈φxy, n〉 + v2

2〈φyy, n〉
= lv2

1 + 2mv1v2 + nv2
2

for any unit tangent vector v ∈ Tp(S). If v = v1φx + v2φy is any non-zero vector in

Tp(S) then ‖v‖2 = Ev2
1 + 2Fv1v2 + Gv2

2 and

kp

( v1φx + v2φy

‖v1φx + v2φy‖

)
=

lv2
1 + 2mv1v2 + nv2

2

‖v‖2
=

lv2
1 + 2mv1v2 + nv2

2

Ev2
1 + 2Fv1v2 + Gv2

2

. (16.6)

This is an extremely useful formula, see Exercises 16.4, 16.9 and 17.2.

The principal curvatures are the maximum and minimum values of lv2
1 +

2mv1v2 + nv2
2 on the set v2

1 E + 2v1v2 F + v2
2G = 1. To simplify the notation

we let v1 = x and v2 = y. Then

f (x, y) = lx2 + 2mxy + ny2 = (x, y)

(
l m

m n

) (
x

y

)

and

g(x, y) = Ex2 + 2Fxy + Gy2 = (x, y)

(
E F

F G

) (
x

y

)
.

Since EG−F2 > 0 it is easily verified that {(x, y) : g(x, y) = 1} is a compact subset

of R
2 and ∇g �= 0 on this level set. Hence f achieves its maximum and minimum

on {(x, y) : g(x, y) = 1} and we may apply the method of Lagrange multipliers. On

writing the equation ∇ f (x, y) = λ∇g(x, y) in matrix form we obtain

(
l m

m n

) (
x

y

)
= λ

(
E F

F G

) (
x

y

)
(16.7)

and we may rewrite this as follows

(
l − λE m − λF

m − λF n − λG

)(
x

y

)
=

(
0

0

)
. (16.8)

By elementary linear algebra the λ for which (16.8) has non-zero solutions (x, y)

satisfy the quadratic equation

(l − λE)(n − λG) − (m − λF)2 = 0
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or equivalently

λ2(EG − F2) − λ(En − 2Fm + Gl) + ln − m2 = 0. (16.9)

If λ1 and λ2 solve (16.9) then, since K (p) = λ1λ2, we have proved the following

result.

Proposition 16.3 The Gaussian curvature at a point p on a surface S is

K (p) =
ln − m2

EG − F2
. (16.10)

By (16.7) the principle curvatures satisfy

(
E F

F G

)−1 (
l m

m n

) (
x

y

)
= λ

(
x

y

)

and we see that the principle curvatures are eigenvalues of a symmetric matrix and we

recover, using Exercise 1.21, a result already observed using graphs: at a non-umbilic

point the principal curvature directions are perpendicular to one another.

The appearance of EG − F2, previously encountered while calculating surface

area in Proposition 16.3, suggests a relationship between Gaussian curvature and

surface area. This comes to light in the Gauss–Bonnet theorem (Chap. 18).

Example 16.4 We calculate the Gaussian curvature of the surface z = xy. This

surface is the graph of the function f (x, y) = xy and we obtain a parametrization φ

by letting φ(x, y) = (x, y, xy). We have

φx = (1, 0, y), φy = (0, 1, x)

E = φx .φx = 1 + y2, F = φx .φy = xy, G = φy .φy = 1 + x2

EG − F2 = (1 + y2)(1 + x2) − x2 y2 = 1 + x2 + y2

φx × φy =

∣∣∣∣∣∣

i j k

1 0 y

0 1 x

∣∣∣∣∣∣
= (−y,−x, 1)

n =
φx × φy

‖φx × φy‖
=

(−y,−x, 1)

(1 + y2 + x2)1/2

φxx = (0, 0, 0), φxy = (0, 0, 1), φyy = (0, 0, 0)

l = 〈φxx , n〉 = 0, m = 〈φxy, n〉 =
1

(1 + x2 + y2)1/2
, n = 〈φyy, n〉 = 0.

http://dx.doi.org/10.1007/978-1-4471-6419-7_18
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Hence, if p = (x, y, xy), then

K (p) =
−m2

EG − F2
=

−1

(1 + x2 + y2)2
.

Since the Gaussian curvature is always strictly negative the surface z = xy consists

entirely of non-umbilic points which, looked at critically, are saddle points.

Although, in general, it may be difficult to find principal curvatures and principal

curvature directions it is possible in special cases and this is the content of the

following proposition. We say that a curve Ŵ on a surface is a line of curvature if its

tangents are principal curvature directions at each point.

Proposition 16.5 If φ : U ⊂ R
2 → S is a parametrized surface then the coordinate

curves of φ are lines of curvature if and only if F = m = 0 at all non-umbilic points.

In this case, at non-umbilic points, the principal curvatures are l/E and n/G.

Proof Fix p ∈ S and suppose the principles curvatures at p are λ1 and λ2, λ1 �= λ1.

Since the lines of curvature passing through p cross one another at right angles it

follows, if the coordinate curves are lines of curvature, that F = φx · φy = 0. Since

the vectors (1, 0) and (0, 1) solve (16.8) we obtain after making these substitutions

l − λE = m = n − λG = 0. In particular, we see that m = 0 and note also

{λ1, λ2} = { l
E
, n

G
}.

Conversely, suppose F = m = 0 at all non-umbilic points. By (16.6)

kp

(
v1φx + v2φy

‖v1φx + v2φy‖

)
=

lv2
1 + nv2

2

Ev2
1 + Gv2

2

.

when v = v1φx + v2φy �= 0. The maximum and minimum of f (v1, v2) = lv2
1 + nv2

2

on the set Ev2 + Gv2
2 = 1 are easily found using Lagrange multipliers and we see

that {λ1, λ2} =
{

l
E
, n

G

}
. Since ‖φx‖ =

√
E and ‖φy‖ =

√
G this implies

kp

(
φx√

E

)
=

l

E
and kp

(
φy√

G

)
=

n

G

and the coordinate curves are lines of curvature. This completes the proof. ⊓⊔

Example 16.6 The surface obtained by rotating the graph of h : (a, b) → R

(Example 10.4) is parametrized by

P(t, θ) = (t, h(t) cos θ, h(t) sin θ).

For this parametrization Pt = (1, h′ cos θ, h′ sin θ) and Pθ = (0,−h sin θ, h cos θ).

Hence E = 1 + (h′)2, F = 0, G = h2,

Pt t = (0, h′′ cos θ, h′′ sin θ)
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Ptθ = (0, −h′ sin θ, h′ cos θ)

and

Pθθ = (0, −h cos θ, −h sin θ).

Moreover,

Pt × Pθ = (h′h, −h cos θ, −h sin θ)

and

n =
(h′, − cos θ, − sin θ)

(

1 + (h′)2
)1/2

.

Hence

l = 〈Pt t , n〉 =
−h′′

(
1 + (h′)2

)1/2

m = 〈Ptθ , n〉 = 0

n = 〈Pθθ , n〉 =
h

(
1 + (h′)2

)1/2
.

By Proposition 16.5 the coordinate curves are lines of curvature and the principal

curvatures and Gaussian curvature are

l

E
=

−h′′
(
1 + (h′)2

)3/2
,

n

G
=

1

h
(
1 + (h′)2

)1/2
and K =

−h′′

h
(
1 + (h′)2

)2
.

An interesting case occurs when h(t) = c cosh(t/c). This is the shape assumed

by a hanging chain and is called a catenary. The surface of revolution is called a

catenoid. Using the identities

d

dt
(cosh t) = sinh t,

d

dt
(sinh t) = cosh t, cosh2 t − sinh2 t = 1,

we see that the principal curvatures for the catenoid are ±1/c cosh2(t/c). Hence k1 +
k2 = 0. A surface with this property is called a minimal surface. This terminology

arose in the following way. Take a closed curve in R
3—shaped, for instance, from a

piece of wire—and place a bubble over it. This will assume a certain shape in order

to minimise a physical quantity on the boundary called surface tension. The shape

assumed by the bubble is a minimal surface. The catenoid is the only surface of

revolution which is a minimal surface. On minimal surfaces k2(p) = −k1(p) and

hence

K (p) = k1(p)k2(p) = −k1(p)2 ≤ 0.

The quantity
k1(p) + k2(p)

2
is called the mean curvature.
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In this chapter we have covered a lot of theoretical and practical material in identi-

fying and calculating Gaussian curvature. In the next chapter we will summarise the

information we already have on this important concept and discuss further geometric

implications.

Exercises

16.1 Calculate the Gaussian curvature at an arbitrary point of the helicoloid parame-

trized by

P(t, θ) = (t cos θ, t sin θ, bθ)

t ∈ R, θ ∈ (0, 2π) and b a non-zero real number.

16.2 Find the principal curvatures and the Gaussian curvature at an arbitrary point

on the cone z2 = x2 + y2. Show that the cone has no umbilics.

16.3 Let S denote the surface parametrized by φ(u, v) = (u, v, u2+v2), (u, v) ∈ R
2.

Show that the curve Ŵ parametrized by

P(t) = φ(t2, t), −
1

2
< t < 2,

lies in S. Find the unit tangent to Ŵ at P(1) and find the (absolute) normal

curvature to S at P(1) in the direction P ′(1).

16.4 If P : U ⊂ R
2 → R

3 is a parametrization of a simple surface S show that

a point p is an umbilic point if and only if there exists a real number α such

that (l, m, n) = α(E, F, G) where each term is evaluated at p. Hence find all

umbilics on the surface z = xy.

16.5 Find the elliptic and hyperbolic points on the surface parametrized by φ(u, v) =
(u, v, u3 + v3).

16.6 Prove that the surface parametrized by

f (s, t) = (cos s, 2 sin s, t), 0 < s < 2π, t > 0

has constant Gaussian curvature. Describe this surface.

16.7 If the surface S is defined by the equations

x = a(u + v), y = b(u − v), z = uv

show that the coordinate curves are straight lines.
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16.8 Find the Gaussian curvature at an arbitrary point on the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1.

16.9 Show that a surface S is a minimal surface if and only if

En + Gl = 2Fm.

Show that the level set ez cos x = cos y is a minimal surface.



Chapter 17

Gaussian Curvature

Summary We define the Weingarten mapping or shape operator. This gives an

intrinsic approach to Gaussian curvature.

We first recall, from the previous chapter, the concepts introduced and the results

obtained concerning the shape of a surface near a point p. All these results were

obtained using plane curvature in R
2. We defined or obtained the following:

(a) kp(v), the normal curvature at p in the direction of the unit tangent vector v at

p

(b) principal curvatures at p, k1(p) and k2(p), where

k1(p) = max
‖v‖=1

kp(v) and k2(p) = min
‖v‖=1

kp(v)

(c) principal curvature directions, i.e. tangent vectors v1 and v2 such that

kp(vi ) = ki (p) for i = 1, 2

(d) umbilic points, i.e. points where k1(p) = k2(p), and flat spots, i.e. where k1(p) =
k2(p) = 0

(e) at an umbilic point all (tangential) directions are principal curvature directions;

at a non-umbilic point there are precisely two principal curvature directions v1

and v2 which are perpendicular to one another

(f) Gaussian curvature at p

K (p) = k1(p)k2(p) =
ln − m2

EG − F2

where φ is any parametrization,

E = φx · φx , F = φx · φy, G = φy · φy

S. Dineen, Multivariate Calculus and Geometry, 207
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l = φxx · n, m = φxy · n, n = φyy · n

n =
φx × φy

‖φx × φy‖

(h) the coordinate curves are lines of curvature if and only if F = m = 0 at all

non-umbilic points.

The Gaussian curvature contains less information than the principal curvatures,

that is to say if we know the principal curvatures then we can calculate the Gaussian

curvature but from the Gaussian curvature alone we cannot calculate the principal

curvatures. Thus, at first glance, it appears that in using Gaussian curvature we may

be neglecting important information.

However, experience and subsequent results show that the information lost is

generously compensated by other gains. To begin with, Gaussian curvature is a sin-

gle real number assigned to each point on a surface—the principal curvatures and

directions involve two real numbers and two vectors. Thus Gaussian curvature has

the advantage of simplicity. We have already seen that Gaussian curvature may be

easily calculated from any parametrization whereas it may be difficult to calculate

the principal curvatures. The principal curvatures depend, up to a factor ±1, on the

choice of normal while Gaussian curvature has the same value for any choice of

normal. In practice this means that any parametrization may be used to calculate

Gaussian curvature while only parametrizations consistent with the choice of nor-

mal may be used to find principal curvatures. Indeed, along these lines, we have

a celebrated theorem of Gauss—theorema egregium—which asserts that Gaussian

curvature is an intrinsic property of the surface. Roughly speaking this says that

Gaussian curvature may be calculated directly from functions defined internally on

the surface and without using such external properties as the normal or the fact

that the surface lies in R
3. Our method of calculating K uses the normal so Gauss’

theorem tells us that there is another way of calculating K which does not use the

normal. At first glance this may appear a rather minor point but it was this result

which paved the way for the development of a very powerful and a very general

type of geometry—Riemannian geometry—in which the key concepts are differ-

entiation and the length of tangent vectors. Thus for simplicity, for practical and

intrinsic reasons, Gaussian curvature has many advantages. However, in studying

surfaces all of the concepts we discussed play a useful role and none should be

neglected.

So far we have studied the shape of a surface by examining curves (normal sec-

tions) of the surface but there are other intuitive approaches to the same problem.

Almost invariably they lead back to Gaussian curvature. For example, following the

successful approach to plane curvature obtained by taking limits of circles, it is nat-

ural to regard the reciprocal of the radius of the sphere that sits closest to the surface

near p as a measure of the curvature at p. For surfaces the definition of the sphere

of closest fit is not so obvious, especially at saddle points, and an indirect approach

is taken. We use a normal n to project the surface near p onto the unit sphere in R
3
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Tp(S)

p q

Tq(S)

b

a

z

x

y

Fig. 17.1

and compare the area of the surface near p with the area of its image. When used in

this way n is called the Gauss map. If Bε is the ball with centre p and radius ε then

|K (p)| = lim
ε→0

∣∣∣∣
Area (n(S ∩ Bε))

Area(S ∩ Bε)

∣∣∣∣ .

Note that if S is a plane then n(S) consists of a single point and K (p) = 0 while if

S is a sphere of radius r then n(x) = ±x/r for all x ∈ S and K (p) = 1/r2. Further

geometric interpretations appear in the final chapter.

We list now a number of results on Gaussian curvature which give some idea of

its uses; more advanced and deeper results are given later. Think about these results,

ask yourself if they are geometrically plausible, how they fit in with your intuition,

what they say about the surfaces with which you are already familiar, and how you

might go about proving them.

(i) If S is a connected surface in R
3 consisting entirely of umbilics then S is either

an open subset of a sphere or a plane.

(ii) Every compact surface in R
3 contains a point p with K (p) > 0.

(iii) A compact connected surface of constant Gaussian curvature is a sphere.

(iv) Hilbert’s Lemma: If p is a non-umbilic point in S, k1 has a local maximum at

p and k2 has a local minimum at p, then K (p) ≤ 0.

Example 17.1 In this example we discuss the torus. From Fig. 17.1 we see that at

the point p the surface lies on one side of the tangent plane and K (p) > 0 while at q

it lies on both sides and K (q) < 0. From Figs. 17.1 and 17.2 it is clear that 1/a will

always be a principal curvature and that 1/b −a (respectively 1/b +a) is a principal

curvature at p (respectively q). We confirm this in our analysis.

We use toroidal polar coordinates for our parametrization,

P : (θ, φ) → ((b + a cos θ) cos φ, (b + a cos θ) sin φ, a sin θ)

(θ, φ) ∈ (0, 2π) × (0, 2π). From Examples 11.1 and 14.5, E = a2, F = 0,

G = (b + a cos θ)2, and
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ψ = const
θ = const

q
p

Fig. 17.2

n = −(cos θ cos φ, cos θ sin φ, sin θ)

Pθ = (−a sin θ cos φ, −a sin θ sin φ, a cos θ)

Pφ = (−(b + a cos θ) sin φ, (b + a cos θ) cos φ, 0)

Pθθ = (−a cos θ cos φ, −a cos θ sin φ, −a sin θ)

Pθφ = (a sin θ sin φ, −a sin θ cos φ, 0)

Pφφ = (−(b + a cos θ) cos φ, −(b + a cos θ) sin φ, 0) .

Hence

l = 〈Pθθ , n〉 = a cos2 θ cos2 φ + a cos2 θ sin2 φ + a sin2 θ = a

m = 〈Pθφ, n〉 = −a cos θ sin θ cos φ sin φ + a cos θ sin θ cos φ sin φ = 0

n = 〈Pφφ, n〉 = (b + a cos θ)(cos θ cos2 φ + cos θ sin2 φ)

= (b + a cos θ) cos θ.

By Proposition 16.5 the coordinate curves are lines of curvature, l
E

= 1
a

and
n
G

= cos θ
b+a cos θ

are the principal curvatures and

K =
ln − m2

EG − F2
=

a(b + a cos θ) cos θ

a2(b + a cos θ)2
=

cos θ

a(b + a cos θ)
.

We now have a formula for Gaussian curvature and also a diagram (Fig. 17.2) and we

may compare and combine them. By differentiating K (θ, φ), which only depends

on θ , we can locate the points of maximum and minimum Gaussian curvature, p

and q, and this confirms what the sketch tells us. For the torus F = m = 0. Hence

(−a sin θ cos φ,−a sin θ sin ψ, a cos θ) and (−(b + a cos θ) sin ψ, (b + a cos θ)

cos ψ, 0) are principal curvature directions and the principal curvatures, associated

with toroidal polar coordinates, are 1/a and cos θ/(b + a cos θ).

We now consider a more intrinsic approach to Gaussian curvature. If F : S −→
R

n , where (S, n) is an oriented surface in R
3, p ∈ S and v ∈ Tp(S), let
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Dv F(p) =
d

dt

(
F (P(t))

)

∣∣∣∣
t=0

(17.1)

where P : [−a, a] −→ Ŵ is any parametrized curve in S with P(0) = p and

P ′(0) = v. It can be shown that this definition does not depend on Ŵ or P . The

mapping v −→ Dv F(p) is a linear mapping.

Let φ : U −→ S denote a parametrization of a part of S. Here we use φx to

denote the mapping φ(U ) ∩ S −→ R
3 given by

φx (φ(x, y)) =
d

dt
(φ(x + t, y))

∣∣∣∣
t=0

. (17.2)

Using (17.1) and (17.2) we define Dφx φx , Dφx φy , Dφy φx and Dφy φy . The expres-

sions for these derivatives may initially appear cumbersome, e.g. for instance

(

Dφy φx

)

(φ(x, y)) =
d

dt

(

d

ds
φ(x + s, y + t)

∣∣∣∣
s=0

)
∣∣∣∣
t=0

.

However, since φ is a parametrization all its partial derivatives exist and hence,

using a two variables Taylor series expansion, we see that

(

Dφy φx

)

(φ(x, y)) =
∂2φ

∂y∂x
(x, y). (17.3)

We now use the notation φxx , φxy, φyx and φyy , respectively, in place of Dφx φx ,

Dφx φy , Dφy φx and Dφy φy . By (17.3), φxy = φyx (see also the introduction to

Chap. 4).

The product rule for differentiation and 〈n(p), n(p)〉 = 1 imply

〈Dvn(p), n(p)〉 + 〈n(p), Dvn(p)〉 = 0

i.e. 〈Dvn(p), n(p)〉 = 0 at any point p ∈ S and any v ∈ Tp(S). Hence Dvn(p) ⊥
n(p) and Dvn(p) belongs to the tangent space at p. This allows us to define a linear

mapping from the tangent space at p into itself by letting

L p : v ∈ Tp(S) −→ −Dvn(p) ∈ Tp(S).

This important mapping is called the Weingarten mapping or shape operator. We now

suppose that φ is consistent with the orientation and write n in place of n (φ(x, y)).

Since
d

dt
n(φ(x + t, y))|t=0 = Dφx n = −L pφx .

and 〈φx , n〉 = 0 we have

0 =
d

dt
〈φx (x + t, y), n(φ(x + t, y)〉|t=0

http://dx.doi.org/10.1007/978-1-4471-6419-7_4
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= 〈φxx , n〉 + 〈φx , Dφx n〉
= 〈φxx , n〉 − 〈φx , L pφx 〉

and

〈φx , L pφx 〉 = 〈φxx , n〉 = l.

Similarly m = 〈φy, L pφx 〉 = 〈φxy, n〉 = 〈φyx , n〉 = 〈φx , L pφy〉 and 〈φy, L pφy〉 =
〈φyy, n〉 = n.

Since {φx , φy} is a basis for the tangent space at p we can find scalars {a, b, c, d}
so that L p(φx ) = aφx + bφy and L p(φy) = cφx + dφy . On solving the system of

linear equations,

L p(φx ) · φx = aE + bF = l

L p(φx ) · φy = aF + bG = m

L p(φy) · φx = cE + d F = m

L p(φy) · φy = cF + dG = n

we see that

Ap =
1

EG − F2

(
lG − m F m E − l F

mG − nF nE − m F

)

is the matrix for L p with respect to the basis {φx , φy} for Tp(S). Since

(EG − F2)2 det(Ap) = (lG − m F)(nE − m F) − (m E − l F)(mG − nF)

= (EG − F2)(ln − m2)

we have proved, in view of Proposition 16.3, the following result.

Proposition 17.2 If φ parametrizes a surface S in R
3 then the determinant of the

matrix of the Weingarten mapping at p with respect to the basis for the tangent space

induced by φ is the Gaussian curvature of S at p.

If v = v1φx + v2φy and w = w1φx + w2φy then, by the above,

〈L p(v), w〉 = 〈L p(v1φx + v2φy), w1φx + w2φy〉
= v1w1〈L pφx , φx 〉 + (v1w2 + v2w1)〈L p(φx ), φy〉 + v2w2〈L p(φy), φy〉
= 〈v, L p(w)〉

and L p : Tp(S) −→ Tp(S) is a symmetric linear operator. Moreover,

〈L p(v), v〉 = lv2
1 + 2mv1v2 + nv2

2

and if v is a unit tangent vector at p then
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〈L p(v), v〉 = kp(v). (17.4)

Since L p is symmetric we can choose an orthonormal basis {e1, e2} for Tp(S) con-

sisting of eigenvectors for L p. Let β1 and β2 denote the corresponding eigenvalues.

If x, y ∈ R, x2 + y2 = 1 then v = xe1 + ye2 is a unit tangent vector at p and, by

(17.4),

kp(v) = 〈L p(xe1 + ye2), xe1 + ye2〉
= 〈xβ1e1 + yβ2e2, xe1 + ye2〉
= x2β1〈e1, e1〉 + 2xy〈e1, e2〉 + y2〈e2, e2〉
= x2β1 + y2β2.

This shows that the principal curvatures are the eigenvalues of L p and the eigenvec-

tors are the principal curvature directions. Since the matrix for L p with respect

to this basis is a diagonal matrix with the eigenvalues as entries we also have

K (p) = β1β2 = det(L p). We summarise what we have proved in the following

proposition.

Proposition 17.3 At a point p in a surface S the principal curvatures are the eigen-

values of L p, the principal curvature directions are the eigenvectors of L p, and the

Gaussian curvature, K (p), is the determinant of L p with respect to any orthonormal

basis for Tp(S).

Example 17.4 If p is umbilic then all normal curvatures are equal. If p is non-umbilic

and k1, k2, v1, and v2 are the principal curvatures and the corresponding principal

curvature directions then any unit tangent vector v at p has the form

v = cos θv1 + sin θv2

for some real number θ . By Proposition 17.3

L p(v1) = k1(p)v1 and L p(v2) = k2(p)v2

and, as p is non-umbilic, 〈v1, v2〉 = 0. By (17.2),

kp(v) = 〈L p(v), v〉 = 〈L p(cos θv1 + sin θv2), cos θv1 + sin θv2〉
= 〈cos θ L p(v1) + sin θ L p(v2), cos θv1 + sin θv2〉
= k1(p) cos2 θ + k2(p) sin2 θ.

This is known as Euler’s formula and shows that normal curvature in any direction

can be recovered from the principal curvatures and the principal curvature directions.
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θ

c

c

(x, h(x))

Fig. 17.3

Exercises

17.1 Find the Weingarten mapping for the torus.

17.2 Let S denote the graph of the function f (u, v) = u2 − 2v2 oriented by the

usual parametrization. Find a curve Ŵ in S such that the normal curvature in

the tangent direction to Ŵ is always zero. Hence find a straight line that lies

in S.

17.3 Suppose the two oriented surfaces S1 and S2 intersect in a curve Ŵ. Let κ denote

the curvature of Ŵ ⊂ R
3 and let λi denote the normal curvature of Ŵ in Si,

i = 1, 2. If θ is the angle between the normals to S1 and S2 show that

κ2 sin2 θ = λ2
1 + λ2

2 − 2λ1λ2 cos θ.

17.4 Use −Dv(n) to give another solution to Exercise 16.3.

17.5 Show that the average of the normal curvature over all directions is the mean

curvature.

17.6 Consider the plane curve h described by the following geometric condition:

start at the point (0, c) and move so that the tangent line always reaches the

x-axis after traveling a distance c. From Fig. 17.3 deduce that

h′ = −
h

√
c2 − h2

.

(Note that sin θ = −h/c, tan θ = h′ =
sin θ

√

1 − sin2 θ
.) Show that

h′′ =
c2h

(c2 − h2)2
.
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Orient the surface of revolution, B, of this curve so that the principal curvatures

are h′/c and −1/ch′. Hence deduce that B has constant negative Gaussian

curvature. Sketch the surface B—it may help you to know that it is called the

bugle surface.



Chapter 18

Geodesic Curvature

Summary We define geodesic curvature and geodesics. For a curve on a surface

we derive a formula connecting intrinsic curvature, normal curvature and geodesic

curvature. We discuss paths of shortest distance, further interpretations of Gaussian

curvature and introduce, informally and geometrically, a number of important results

in differential geometry.

Our study of normal curvature was based on identifying the normal of a curve with

the normal of the surface. It is also possible to arrange things so that the normal to

a curve in a surface is a tangent vector to the surface. This leads to a new type of

curvature, geodesic curvature, that we discuss and interpret in this chapter.

Let S denote an oriented surface in R
3 with smooth unit normal n and let

P : [a, b] → Γ ⊂ S denote a unit speed parametrized curve on the surface. Since the

tangent space at each point on the surface is two-dimensional and P ′(t) is a tangent

vector at P(t) it follows that there are precisely two unit tangent vectors at P(t)

which are perpendicular to P ′(t). We distinguish between them by using the normal

to the surface at P(t), n
(

P(t)
)
, and define the surface normal to Γ at P(t), nS(P(t))

to be n(P(t)) × T (t). To simplify our notation we sometimes write n(t) and nS(t)

in place of n
(
P(t)

)
and nS(P(t)), respectively. By construction

{P ′(t) = T (t), nS(t), n(t)}

is a right-handed orthogonal system, and in particular, an orthonormal basis for R
3.

In Chap. 7 we encountered a similar situation when we obtained the orthonormal

basis {T, N , B} at a point on a curve Γ . In that case we proceeded to obtain the

Frenet–Serret equations by differentiation and using properties of the orthonormal

basis. We follow precisely the same path to a similar end here and obtain real-valued

functions a(t), b(t) and c(t) such that

⎛

⎝

T (t)

nS(t)

n(t)

⎞

⎠

′

=

⎛

⎝

0 a(t) c(t)

−a(t) 0 b(t)

−c(t) −b(t) 0

⎞

⎠

⎛

⎝

T (t)

nS(t)

n(t)

⎞

⎠ . (18.1)
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In particular we see that

n′
S(t) = −a(t)T (t) + b(t)n(t) (18.2)

and the “part” of n′
S(t) which “lies” in the tangent space at P(t) is parallel to T (t).

This equation is similar to Eq. 7.11 in Chap. 7. We define the geodesic curvature of

Γ at P(t), κg(t), to be a(t). By (18.2)

κg(t) = −〈n ′
S(t), T (t)〉 = a(t) .

The entry b(t) is called the geodesic torsion of Γ at P(t) and written τg(t). Rewriting

Eq. (18.2) we obtain

n′
S(t) = −κg(t)T (t) + τg(t)n(t) .

From (18.1) and the definition of normal curvature we have

c(t) = −〈
d

dt
n
(

P(t)
)
, T (t)〉 = kP(t)

(
T (t)

)

and c(t) is the normal curvature at P(t) in the direction T (t). Hence, rewriting (18.1)

we obtain

⎛

⎝

T (t)

nS(t)

n(t)

⎞

⎠

′

=

⎛

⎝

0 κg(t) κn(t)

−κg(t) 0 τg(t)

−κn(t) −τg(t) 0

⎞

⎠

⎛

⎝

T (t)

nS(t)

n(t)

⎞

⎠ (18.3)

where we have written κn(t) in place of kP(t)

(

T (t)
)

.

By (18.3)

T ′(t) = κg(t)nS(t) + κn(t)n(t) . (18.4)

but if Γ , as a parametrized curve in R
3 has strictly positive curvature, we can add to

this, by using (7.1′) and (18.4), and obtain

T ′(t) = κ(t)N (t) = κg(t)nS(t) + κn(t)n(t) . (18.5)

To avoid confusion between the different types of curvature we call κ the intrinsic

curvature of Γ and use N to denote the normal to Γ in R
3 whenever it exists. By

(18.5) and Pythagoras’ Theorem,

κ2(t) = κ2
g (t) + κ2

n (t) .

Equation (18.5) is a decomposition of the intrinsic curvature into its normal and

tangential components and establishes a relationship between the three different

kinds of curvature. If we consider curvature as a measure of “bending” towards the

http://dx.doi.org/10.1007/978-1-4471-6419-7_7
http://dx.doi.org/10.1007/978-1-4471-6419-7_7
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normal then, since we have chosen our normal nS(t) to lie in the tangent space, this

and (18.5) suggest that we consider geodesic curvature as the surface curvature of the

parametrized curve. So far we have only considered a unit speed parametrized curve.

We define the geodesic curvature of a parametrized curve in an oriented surface as the

geodesic curvature of a unit speed reparametrization of the curve which preserves the

original sense of direction. Note that our definition of geodesic curvature is based, as

was normal curvature, on curvature in R
2—see the introduction to Chap. 7. Since the

two unit normals at any point on a surface are parallel, Eq. (18.4) shows that |κg|—
the absolute geodesic curvature—does not depend on either the choice of normal

or parametrization. As surfaces can be covered by simple, and hence orientable,

surfaces it follows that absolute geodesic curvature is well defined for any curve on

any orientable surface.

Curves with κg = 0 are said to have zero geodesic curvature. We give a geomet-

rical interpretation of this phenomena and afterwards discuss a practical method for

identifying such curves. If we are dealing with a curve in R
2 then zero curvature

implies that the curve is a straight line. If we identify R
2 with the oriented surface

R
2
(x,y)

in R
3 and consider a curve Γ in R

2 as a curve in R
3 then we see easily that its

plane curvature in R
2 coincides with its geodesic curvature in R

2
(x,y)

. In R
2 we also

note that a curve is a straight line if and only if it follows the shortest route between

any pair of its points. Now the tangent plane is the closest plane to the surface near

a given point p and since geodesic curvature is essentially curvature on the tangent

plane it is at least plausible that zero geodesic curvature implies that Γ follows the

shortest path on the surface between points on Γ close to p. This is indeed the case.

Formally we have the following definitions and results. A surface S is connected

if between any two points p and q on S there exists at least one path (or directed

curve) with initial point p and final point q. We define the distance between p and

q, d(p, q), as

inf {length(γ ), γ is a path with initial point p and final point q} .

A path γ joining p and q is a shortest path if

d(p, q) = length(γ ) .

Shortest paths may or may not exist and if they exist they may not be unique. For

instance it is easily seen that there is no shortest path on the surface S = {(x, y, 0) :
0 < x2 + y2 < 2} in R

3 joining the points (−1, 0, 0) and (1, 0, 0) although it is easy

to see that the distance between them is 2. On the other hand there exist an infinite

number of shortest paths on a sphere joining the North and South poles (any line of

longitude is a shortest path). Equation 18.5 leads to a simple practical criterion for

identifying unit speed curves of zero geodesic curvature since it is easily seen, using

(18.5), that P ′′(t) (or N (t)) is parallel to n(t), for any choice of normal, if and only

if κg(t) = 0. This motivates the following definition.

http://dx.doi.org/10.1007/978-1-4471-6419-7_7
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Definition 18.1 A parametrized curve P : [a, b] → Γ ⊂ S, where S is a surface in

R
3, is a geodesic in S if P ′′(t) (the acceleration of the parametrization) is parallel to

the normal to the surface at P(t) for all t .

Our remarks above show that a unit speed parametrized curve is a geodesic if and

only if it has zero geodesic curvature.

Proposition 18.2 A parametrized curve P : [a, b] → Γ ∈ S is a geodesic if and

only if it has constant speed and zero geodesic curvature.

Proof We may assume, without loss of generality, that [a, b] = [0, α]. We first

suppose that the parametrized curve is a geodesic. We have

d

dt
〈P ′(t), P ′(t)〉 = 2〈P ′′(t), P ′(t)〉.

Since the curve lies in S, P ′(t) is a tangent vector at P(t), and as P is a geodesic

P ′′(t) is perpendicular to every tangent vector. This implies 〈P ′(t), P ′′(t)〉 = 0 and
d

dt

(

‖P ′(t)‖2
)

= 0. Hence ‖P ′(t)‖ is a constant function of t and the parametrization

has constant speed c. This implies that the parametrization Q : [0, cα] → Γ ∈ S,

where Q(t) = P(t/c), is unit speed. Since Q′′(t) = P ′′(t/c)/c2, we see that Q′′(t)
is parallel to P ′′(t/c) and hence to n(P(t/c)) = n(Q(t)).

Conversely suppose P : [0, α] −→ S has constant speed, c, and zero geodesic

curvature. Then Q : [0, cα] −→ S where Q(t) = P(t/c) is unit speed and has zero

geodesic curvature. By (18.4), Q′′(t) is parallel to n(t/c) and since P ′′(t/c) and

Q′′(t) are parallel this shows that the curve parametrized by P is a geodesic. This

completes the proof. ⊓⊔

From the above considerations it is not difficult to show that a parametrized curve

is a geodesic if and only if it satisfies a certain ordinary differential equation. Exis-

tence theorems for ordinary differential equations show that any surface admits an

abundance of geodesics. The following is true.

Proposition 18.3 If S is a surface in R
3, p ∈ S and v ∈ Tp(S) is non-zero then

there exists ε > 0 and a unique geodesic P : [−ε, ε] → S such that P(0) = p and

P ′(0) = v.

Example 18.4 Let S2 denote the unit sphere with centre at the origin in R
3. Let v

and w denote perpendicular unit vectors in R
3 and let

P(t) = cos(at)v + sin(at)w, t ∈ R

where a is a fixed real number. By Pythagoras’ Theorem P defines a parametrized

curve in S2. We have

P ′′(t) = −a2 cos(at)v − a2 sin(at)w = −a2 P(t) .
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P A ε

γε

Fig. 18.1

Since n(t) = ±P(t) for the unit sphere with centre at the origin this implies P ′′(t) ‖

n(t) for all t and P is a geodesic. Proposition 18.3 shows that a geodesic is completely

determined by its position and velocity at a single point. Since P(0) = v and P ′(0) =

aw it follows that we have found all geodesics on the unit sphere.

We return to the problem we started with—the existence of a shortest path. Propo-

sitions 18.2 and 18.3 show that there are many curves on a surface with zero geodesic

curvature. From this it is possible to prove the following result which shows, at least

locally, that there are always shortest paths.

Proposition 18.5 If p is a point on a surface S in R
3 then there exists ε > 0 such

that for any q in S, d(p, q) < ε, there is a unique shortest path in S joining p and

q. This path has zero geodesic curvature and may be parametrized as a geodesic.

Geodesics also lead to a new derivation of Gaussian curvature. Take a point p on

the surface S. An extension of Proposition 18.3 shows that there exists ε > 0 such

that for every unit tangent vector v at p the geodesic with initial point p and initial

velocity v is defined on [0, ε]. If we consider the set of positions taken at time ε by

all unit speed geodesics starting at p we obtain a curve γε in S. We denote the inside

of this curve by Aε (Fig. 18.1).

Thus γε consists of those points in S whose distance to p is ε and Aε are the

points whose distance to p is less than ε. It can be shown that γε is a closed subset

of S and Aε is open. If S is flat then γε is a circle of radius ε and length 2πε and

Aε is a disc of area πε2. Hence the quantities 2πε − l(γε) and πε2−A(Aε) where

l = length and A = Area are some measure of the curvature of S. In fact, taking

limits we obtain the following

K (p) = lim
ε→0

3

πε3

(

2πε − l(γε)
)

= lim
ε→0

12

πε4

(
πε2 − A(Aε)

)
.

Thus both normal and geodesic curvature lead quite naturally to Gaussian curvature.

It is also worth noting that the two most important geometrical concepts that we

associated with a surface—Gaussian curvature and geodesics—both turned out to be

local properties independent of any orientations used for calculations or motivation.

To complete our introduction to the geometry of surfaces we present without

proof some rather remarkable results involving the concepts we have introduced.
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α

P

R

Q

Fig. 18.2

These results are easily stated while the proofs are rather involved. Even in the

absence of any ideas regarding the proofs it is well worth thinking about these results

and their geometric significance. You may consider verifying them on some of the

classical surfaces we have studied, e.g. the sphere, ellipsoid or torus. Trying to prove

them will take some time but if you make the effort and are patient you will learn a

lot regardless of how successful you are in completing the proofs.

The first result we discuss is a generalization of the well-known result in Euclidean

geometry which says that the sum of the interior angles in a (plane) triangle is equal

to π . This corresponds to the case where the surface is a plane and the Gaussian

curvature is zero. A triangle in a surface is a simple closed oriented curve formed by

three smooth directed curves (Fig. 18.2).

Each of these smooth curves is called an edge, the edges meet at a vertex and the

interior of the triangle is called its face. A triangle is called a geodesic triangle if

each edge is a geodesic. In the plane, geodesics are straight lines so the usual triangle

in the plane is a geodesic triangle. At the vertices P , Q and R the tangents of the two

curves which meet are in the same tangent space on the surface and we can define

the angle between them. It is also possible to define what we mean by an interior

angle (e.g. the angle α at the vertex P). Let A denote the face of the triangle.

Theorem 18.6 (Local Gauss–Bonnet Theorem) In a geodesic triangle on a simple

surface
∫∫

A

K =
∑

interior angles − π.

Stokes’ Theorem plays an important role in the proof. For example consider

the sphere of radius r . By Example 18.4 the lines of longitude and the equator are

geodesics. Hence the triangle formed by the lines of longitude corresponding to

ψ = 0 and ψ = π/2 and the equator are a geodesic triangle (Fig. 18.3).

The three interior angles are all π/2 and the area of the triangle is 1
8
× (total area

of the sphere) and hence equal to 4πr2/8. Since the Gaussian curvature is 1/r2 this

implies
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Fig. 18.4

∫∫

A

K =
1

r2
·

4πr2

8
=

π

2

while
∑

interior angles − π =
3π

2
− π =

π

2

and we have verified the local Gauss–Bonnet Theorem for this triangle.

Any compact (i.e. closed and bounded) oriented surface S in R
3 can be partitioned

into a finite number of triangles each of which is oriented in an anticlockwise direction

about the normal (Fig. 18.4a). This means that an edge which is in two triangles has

opposite orientations in each (Fig. 18.4b). Let V denote the total number of vertices,

E the total number of edges and F the total number of faces.

A remarkable result of Euler says that no matter how we partition the surface into

(not necessarily geodesic) triangles the quantity V − E + F remains unchanged. We

call this number the Euler–Poincaré characteristic of S and denote it by χ(S). As
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a consequence of the local Gauss–Bonnet Theorem we have the following global

result:

Theorem 18.7 (Global Gauss–Bonnet Formula) If S is a compact oriented surface

then
∫∫

S

K = 2πχ(S).

We call
∫∫

S

K the total curvature of the surface and it is remarkable that this

quantity is always an integer multiple of 2π . Applying this to a sphere of radius r

we find
∫∫

S

K =
1

r2
Surface Area (sphere) =

4πr2

r2
= 2πχ(S)

and see that χ(sphere) = 2.

On the other hand we may partition the sphere by the lines of longitude corre-

sponding to 0, ±π/2, π and the equator (Fig. 18.5). The outer edges are on the back

of the sphere and coincide with 180◦ East or 180◦ West (i.e. the international date

line). By counting we get V = 6, E = 12 and F = 8 and again

χ (sphere) = 6 − 12 + 8 = 2 .

Triangles can be replaced by rectangles in calculating the Euler-Poincaré charac-

teristic since each rectangle can be partitioned into triangles using diagonals. This

doubles the number of faces F and adds F new edges. Overall the sum V − E + F

is unchanged. On a box (Fig. 3.2) we have V = 8, E = 12, F = 6 and hence

V − E + F = 2. Since a box can be inflated into a sphere this shows once more that

the Euler-Poincaré characteristic of the sphere equals 2.

http://dx.doi.org/10.1007/978-1-4471-6419-7_3
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Fig. 18.6

Any compact oriented surface can be smoothly deformed into a surface with a

finite number of holes (Fig. 18.6). We call the number of holes the genus of the

surface. This smooth deformation does not change the number of faces, edges or

vertices of any partition and hence the Euler–Poincaré characteristic is unchanged.

It does, however, change the Gaussian curvature in many places, e.g. the sphere

can be changed into an ellipsoid and we know that these do not have the same

Gaussian curvature. The global Gauss–Bonnet Theorem says that the total curvature

is unchanged.

For any compact surface S we have

χ(S) = 2 − 2g

where g is the genus. This implies that the Euler–Poincaré characteristic is always

an even integer and the total curvature is an integer multiple of 4π . Thus we have

a remarkable set of relationships between total curvature, the number V − E + F

and the number of holes on a compact oriented surface S. This is not the end of the

story as they are all equal to the index of any smooth vector field on S. The index of

a vector field X , i(X), is obtained by assigning an integer to each zero following a

prescribed formula. Since χ (sphere) = 2 it follows that every smooth tangent vector

field on a sphere has at least one zero and explains the existence of the bald spot

which most people usually have at the point of maximal curvature on the midline of

the calva.

It is interesting to speculate in a purely geometric way why these things are the

way they are. For instance, we have seen that the total curvature of a sphere does

not depend on the radius. Think of blowing up a balloon. The bigger the radius the

larger the surface area. On the other hand the sphere is becoming less curved, i.e. the

Gaussian curvature is decreasing, and over the whole surface the increase in surface

area is counterbalanced by the decrease in curvature. Another simple observation:

from the formula χ(S) = 2 − 2g we see that adding holes decreases the Euler–

Poincaré characteristic and hence adds negative Gaussian curvature to the surface.

Why should this be so? If we recall our study of the Gaussian curvature of the torus

(Example 17.1) we noted that at the points P and Q in Fig. 18.6 we had negative

Gaussian curvature while at R and S we had positive Gaussian curvature. Adding

holes creates points like P ′ and Q′ while the outside, where the Gaussian curvature
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is positive, is relatively unchanged and it is at least plausible that we are increasing

the overall negative Gaussian curvature by adding holes.

Exercises

18.1 Show that every geodesic on the cylinder {(x, y, z) : x2 + y2 = 1} has the

form

φ(t) =
(

cos(at + b), sin(at + b), ct
)
, t ∈ R .

18.2 Let φ(t) =
(
x(t), y(t)

)
, a < t < b denote a unit speed parametrized curve in

R
2 and suppose y(t) > 0. Let S denote the surface obtained by rotating this

curve about the x-axis. If

P(t, θ) =
(
x(t), y(t) cos θ, y(t) sin θ

)

show that the mapping

ϕ : t −−−→ P(t, θ0)

is unit speed and a geodesic for every fixed θ0. Find the normal curvature in

the direction ϕ′(t) at the point P(t, θ0).

18.3 Prove that a straight line which lies in a surface is a geodesic. By using this

result find for each point P on the surface z = x2 − y2 two geodesics passing

through P .

18.4 Let P : [a, b] → Γ denote a unit speed parametrized curve on the surface S.

Suppose Γ has positive curvature in R
3. Show that Γ is a line of curvature if

and only if the geodesic torsion τg = 0. If Γ is a geodesic show that τg = τ

where τ is the torsion of Γ as a curve in R
3 (Chap. 7).

18.5 If Γ is a directed curve in a sphere with zero torsion show that Γ is part of a

circle.

18.6 Let P : [a, b] → Γ denote a unit speed curve with strictly positive intrinsic

curvature in an oriented surface S. Show that the normal curvature at P(t)

in the direction P ′(t) is zero if and only if the osculating plane to the curve

coincides with the tangent plane to the surface. (A curve with this property at

all points is called an asymptotic curve on the surface.)

18.7 Show that a curve in a sphere with constant geodesic curvature is part of a

circle.

18.8 Find the Euler–Poincaré characteristic of the torus by partitioning it into tri-

angles and calculating V − E + F . Verify your result by calculating the total

curvature (see Example 17.1).

18.9 If T1 and T2 are two triangulations of a compact oriented surface S then T1 ⊂ T2

(or T2 is a refinement of T1) if every triangle in T1 is a union of triangles from T2.

Let Vi , Ei and Fi denote, respectively, the number of vertices, edges and faces

http://dx.doi.org/10.1007/978-1-4471-6419-7_7
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in Ti , i = 1, 2.Show, by induction on V2−V1 that V1−E1+F1 = V2−E2+F2.

Hence show that the Euler-Poincaré characteristic is well defined– that is that

V − E + F has the same value for any triangulation of S.

18.10 Let Ti denote a triangulation of the compact oriented surface Si of genus

gi , i = 1, 2. Let ti denote a fixed triangle in Ti , i = 1, 2 and let S3 denote the

surface obtained by taking the union of S1 and S2, identifying the edges of t1
and t2 (preserving orientation) and removing the face t1 ≃ t2. Show that S3

is a compact oriented surface of genus g1 + g2. Use this result, χ(Torus) = 0

and induction to show

χ(S) = 2 − 2g

for any oriented surface S.



Solutions

Solutions, answers, hints or relevant remarks to selected exercises are provided.

Unexplained notation can be found in the text.

Chapter 1

1.1 The only non-empty open and closed subset of R
n is R

n . The union of open

sets is open and the intersection of closed sets is closed.

(a) Interior of a solid ellipse, open and bounded, not compact.

(b) Surface of a cone, closed, not bounded since (n, 0, n) lies in the surface for

all n, not compact.

(c) First octant in R
3—like the first quadrant in R

2. Closed, not bounded since

(n, 0, 0) lies in the set for all n. Hence not compact.

(d) x2 + y2 + (z − 1)2 = 1 is the surface of a sphere with centre (0, 0, 1) and

radius 1. Closed, bounded and hence compact.

(e) Intersection of sphere of radius 2 and centre (0, 0, 2) and cylinder parallel

to z-axis based on circle in (x, y)-plane with centre (0, 0) and radius 2.

Intersection is circle in the plane z = 2 of radius 2 with centre (0, 0, 2),

compact.

1.2 (a)
∂ f
∂x

= 2x log(1+x2 y2)+ 2(z2+x2)xy2

1+x2 y2 ,
∂ f
∂y

= 2(z2+x2)x2 y

1+x2 y2 ,
∂ f
∂z

= 2z log(1+
x2 y2).

(b)
∂g
∂x

= y tan−1(xz) + xyz

1+x2z2 ,
∂g
∂y

= x tan−1(xz),
∂g
∂z

= x2 y

1+x2z2 .
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1.3 F ′(x, y, z, w) =

⎛

⎜

⎜

⎝

2x −2y 0 0

2y 2x 0 0

z 0 x 0

2xz2w2 0 2zw2x2 2z2wx2

⎞

⎟

⎟

⎠

,

Dv F(1, 2,−1,−2) =

⎛

⎜

⎜

⎝

2 −4 0 0

4 2 0 0

−1 0 1 0

8 0 −8 −4

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

2

1

−2

−1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0

10

−4

36

⎞

⎟

⎟

⎠

.

1.4 ∇ f (x, y, z) = (2x−y,−x+z3, 3yz2−6). ∇ f (x, y, z) = (0, 0, 0) ⇔ 2x−y =
0, −x +z3 = 0, 3yz2 −6 = 0 ⇔ y = 2x, z3 = x, yz2 = 2 ⇔ y = 2x, z3 =
x, xz2 = 1 ⇔ y = 2x, z3 = x, z5 = 1 ⇔ z = 1, x = 1, y = 2. Solution

(1, 2, 1).

1.5 ∇ f = (2xey, x2ey, 0), ∇g = (zy2exz, 2yexz, xy2exz), f g = x2 y2ey+xz .

∇( f g) = (2xy2ey+xz + x2 y2zey+xz, 2x2 yey+xz + x2 y2ey+xz, x3 y2ey+xz) =
x2ey(zy2exz, 2yexz, xy2exz) + y2exz(2xey, x2ey, 0) = f ∇g + g∇ f .

1.6 If P(t) = (x1(t), x2(t), . . . , xn(t)) then ‖P(t)‖2 = x2
1 (t) + · · · + x2

n (t) and
d
dt

(‖P(t)‖2) = 2x1(t)x ′
1(t)+· · ·+2xn(t)x ′

n(t) = 2
∑n

i=1 xi (t)x ′
i (t) = 2P(t)◦

P ′(t) = 2〈P(t), P ′(t)〉 where we supposed for convenience that P(t) and P ′(t)
are in the same space. If ‖P(t)‖ does not depend on t then d

dt
(‖P(t)‖2) = 0

and 〈P(t), P ′(t)〉 = 0. The inner product of two vectors is zero if and only if

they are perpendicular. In this exercise, which is extensively used in Chaps. 5–8

and 16–18, we used the inner product notation. If we use matrix notation then

P(t) is a 1 × n matrix, P ′(t) is an n × 1 matrix and P(t) ◦ P ′(t) is a scalar.

1.7 F ′(X) =

⎛

⎝

2x 0 0

0 2y 2z

yz xz xy

⎞

⎠ , G ′(X) =

⎛

⎝

ex 0 0

0 2y −2z

yz xz xy

⎞

⎠

H(x, y, z) = x2ex + y4 − z4 + x2 y2z2,

∇H(x, y, z) = (2xex + x2ex + 2xy2z2, 4y3 + 2x2 yz2,−4z3 + 2x2 y2z).

Note F : R
3 → R

3 hence F ′ is a 3 × 3 matrix, G : R
3 → R

3 hence G ′ is a

3 × 3 matrix and 〈F, G〉 : R
3 → R

1 hence ∇(〈F, G〉) is a 1 × 3 matrix. This

means G ◦ F ′ + F ◦ G ′ is a 1×3 matrix and F ′ ◦ G + F ◦ G ′ would not give the

correct answer since it is not possible to add a 1 × 3 matrix and a 3 × 1 matrix.

1.8 ∂
∂x

(

(x2 + y2 + z2)−1/2
)

= − 1
2
(x2 + y2 + z2)−3/2 · 2x =

−x

(x2 + y2 + z2)3/2
.

1.9 Let F = ( f1, . . . , fm). Then ‖F‖ = ( f 2
1 + · · · + f 2

m)1/2 and ∂
∂xi

(‖F‖) =
1
2
( f 2

1 + f 2
2 + · · · + f 2

m)−1/2 · ∂
∂xi

(
∑m

j=1 f 2
j ) = 1

‖F‖ ·
∑m

j=1 f j
∂ f j

∂xi
=

〈F, ∂F
∂xi

〉/‖F‖, ∇v(‖F‖) =
∑n

i=1 vi
∂

∂xi
(‖F‖) = 1

‖F‖
∑n

i=1 vi 〈F, ∂F
∂xi

〉 =
1

‖F‖ 〈F,
∑n

i=1 vi
∂F
∂xi

〉 = 〈F,Dv F〉
‖F‖ . We require F(P) 
= 0 since we divide by

‖F‖. The result is not true otherwise, e.g. f (x) = |x |, x ∈ R, is not dif-

ferentiable at the origin. Note the use of the notation ∇v in place of Dv for

scalar-valued functions.

http://dx.doi.org/10.1007/978-1-4471-6419-7_5
http://dx.doi.org/10.1007/978-1-4471-6419-7_8
http://dx.doi.org/10.1007/978-1-4471-6419-7_16
http://dx.doi.org/10.1007/978-1-4471-6419-7_18
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1.10 Let F(x1, . . . , xn) = (x1, . . . , xn) in Exercise 1.9. Then Dei
F = ei and

Dei
(1/‖X‖) = − 1

‖X‖2 Dei
(‖X‖) = − 1

‖X‖2 Dei
(‖F‖) = − 〈F,Dei

F〉
‖X‖2‖F‖

= − 〈ei ,F〉
‖X‖3 = −xi/‖X‖3. Hence ∇(1/‖X‖) = −X/‖X‖3.

1.11 H(x, y, z) =
(

(xyz)2 + (x2 + y2)2, (xyz)2 − (x2 + y2)2, (x2 − y2)2 − z4 ,

(x2 − y2)2 + z4
)

and H2(x, y, z) = (xyz)2 − (x2 + y2)2. Hence ∂H2
∂x

=
2xy2z2 − 4x(x2 + y2).

G ′◦F ′ =

⎛

⎜

⎜

⎝

2u 2v 0 0

2u −2v 0 0

0 0 2w −2t

0 0 2w 2t

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

yz xz xy

2x 2y 0

2x −2y 0

0 0 2z

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

− − −
∂H2
∂x

− −
− − −
− − −

⎞

⎟

⎟

⎠

∂H2
∂x

= 2uyz − 2v · 2x = 2xyz · yz − 2(x2 + y2)2x = 2xy2z2 − 4x(x2 + y2).

1.12 h is the composition

(x1, . . . , xn) → (ex1 , . . . , exn )

‖
(y1, . . . , yn) → f (y1, . . . , yn)

∂h
∂xi

= exi ∂ f
∂yi

, ∂2h
∂xi

2 = exi ∂ f
∂yi

+ exi ∂
∂yi

(
∂ f
∂yi

) = exi ∂ f
∂yi

+ e2xi ∂2 f

∂yi
2 = yi

∂ f
∂yi

+

y2
i

∂2 f

∂yi
2 . Hence

∑n
i=1

∂2h
∂xi

2 =
∑n

i=1 yi
∂ f
∂yi

+
∑n

i=1 y2
i

∂2 f

∂yi
2 = 0.

1.14 P = (1, 1, 1), �X = (0.1, 0.05,−0.05), f (P) = 3, f (P + �X) =
3.42628125, ∇ f (P) = (3, 5, 3), f (P) + ∇ f (P) · �X = 3.40, Error=
0.02628125, Error×100/ f (P) = 0.87604166 %.

1.15 F−1(C) is the intersection of the cone z2 − x2 − y2 = 1 and the plane

2x − y = 2. Solving these equations yields y = 2x − 2 and z2 = 1 + x2 +
4(x − 1)2 = 1 + 5x2 − 8x + 4 = (9/5) + 5(x − 4/5)2. This shows that the

level set is a hyperbola.

1.19 The level set can be rewritten as y6 + (x − y)2 + (xy − 4z)2 = 51, hence

y6 < 64 and |y| < 2, (x − y)2 < 64 implies |x | < |y| + 8 < 10. Hence

|xy| < 20 and (xy − 4z)2 < 64 implies |4z| < |xy| + 8 < 28. Hence |z| < 7.

This shows that the level set is bounded. It is also closed.

1.21 AX = λX, AY = µY, λ 
= µ ⇒ λ〈X, Y 〉 = 〈λX, Y 〉 = 〈AX, Y 〉 =
〈X, AY 〉 = 〈X,µY 〉 = µ〈X, Y 〉 ⇒ (λ − µ)〈X, Y 〉 = 0 ⇒ X ⊥ Y since

λ 
= µ.
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Chapter 2

2.1 F ′
1(X) = ∇F1(X) = (2x1,−2x2, 0, 0). F1 has full rank except when x1 =

x2 = 0. x1 
= 0 ⇒ {x2, x3, x4} can be taken as the independent variables,

x2 
= 0 ⇒ {x1, x3, x4} can be taken as the independent variables. F1(P1) =
−3. If x1 
= 0 let φ1(x2, x3, x4) = (x2

2 − 3)1/2 near (x2, x3, x4) = (2, 0,−1)

F ′
2(X) =

(
2x1 −2x2 0 0

0 0 2x3 −2x4

)
,

full rank ⇔ x1 or x2 
= 0 and x3 or x4 
= 0. Pairs of independent vari-

ables (x1, x3), (x1, x4), (x2, x3), (x2, x4). F2(P2) = (1, 3), φ2(x2, x3) =
(

(1 + x2
2 )1/2,−(x2

3 − 3)1/2
)

near (x2, x3) = (0, 2), F ′
3(X) =

⎛

⎝

2x1 −2x2 0 0

0 0 2x3 −2x4

−2x1 0 0 2x4

⎞

⎠, full rank ⇔ any three of the variables x1, x2,

x3, x4 are non-zero. F3(P3) = (−3,−7, 15), φ3(x1) =
(

√

x2
1 + 3,

√

x2
1 + 8,

√

x2
1 + 15

)

near x1 = 1. Other solutions also exist.

2.2 (i) x2 + y2 = u2 cos2 v + u2 sin2 v = u2 ⇒ u = ±
√

x2 + y2 ⇒ ∂u
∂x

=
±x/

√

x2 + y2, y/x = u sin v/u cos v = tan v ⇒ v = tan−1(y/x) ⇒
∂v

∂x
= −y/(x2 + y2).

(ii)
∂u

∂x
cos v − u sin v

∂v

∂x
= 1,

∂u

∂x
sin v + u cos v

∂v

∂x
= 0. Solving these two

linear equations for ∂u
∂x

and ∂v
∂x

gives us ∂u
∂x

= cos v and ∂v
∂x

= − sin v/u

which agree with (i).

2.3 F ′(X) =

⎛

⎝

2x1x2
2 2x2

1 x2 0 0

x2x3 x1x3 x1x2 0

0 0 0 2x1

⎞

⎠, F ′(1, 2, 3, 4) =

⎛

⎝

8 4 0 0

6 3 2 0

0 0 0 8

⎞

⎠,

hence 8x1 + 4x2 = 0, 6x1 + 3x2 + 2x3 = 0, 8x4 = 0. Solution set

{(x1,−2x1, 0, 0) : x1 ∈ R}, Basis = {(1,−2, 0, 0)}, Tangent line = {(1 +
t, 1 − 2t, 3, 4) : t ∈ R}.

2.4 (a) Let f (x, y, z) = xey − z. Surface = f −1(0), ∇ f (x, y, z) = (ey, xey,−1),

∇ f (1, 0, 1) = (1, 1,−1), Normal line = {(1 + t, t, 1 − t) : t ∈ R}, Tangent

plane = {(x, y, z) : (x − 1) · 1 + y · 1 + (z − 1) · (−1) = 0} = {(x, y, z) :
x + y − z = 0}.

(b) Let F(x, y, z) = (x2 + y2 − z2, x + y + z). Ŵ is the set F−1(1, 5).

F ′(x, y, z) =
(

2x 2y −2z

1 1 1

)

, F ′(1, 2, 2) =
(

2 4 −4

1 1 1

)

Tangent line = (1, 2, 2) + {(x, y, z) : 2x + 4y − 4z = 0, x + y + z = 0} =
(1, 2, 2) + {(x, y, z) : y = 3z, x = −4z} = {(1 − 4t, 2 + 3t, 2 + t) : t ∈ R}.
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2.5 Equation of plane is ax + by + cz = d. Using (1, 2, 3) and (4, 5, 6) we obtain

a + 2b + 3c = d and 4a + 5b + 6c = d. Since the plane is perpendicular

to the plane 7x + 8y + 9z = 10 it follows that (a, b, c) · (7, 8, 9) = 0, i.e.

7a +8b +9c = 0. Solving for a, b, c and d gives b = −2a, c = a and d = 0.

Solution is {(x, y, z) : x − 2y + z = 0}.
2.6 Let f (x, y, z) =

√
x + √

y +
√

z, ∇ f (1, 4, 1) = (1/2, 1/4, 1/2). Tangent

plane to f −1(4) at (1, 4, 1) is {(x, y, z) : (x − 1) · (1/2) + (y − 4) · (1/4) +
(z − 1) · (1/2) = 0} = {(x, y, z) : 2x + y + 2z = 8}.

2.7 Let f (x, y, z) = x2 + 4y2 + 4z2, ∇ f (x, y, z) = (2x, 8y, 8z). Tangent planes

to f −1(1) at (1/
√

2, 1/4, 1/4) and (
√

3/2, 0, 1/4) are
√

2x +2y +2z = 2 and√
3x +2z = 2. Line of intersection = {(t, (

√
3−

√
2)t/2, 1− t

√
3/2) : t ∈ R}.

k = distance squared of line to the origin = (9 − 2
√

6)/(12 − 2
√

6) = (14 −√
6)/20.

2.8 Substitute x2 = 1+y2 into x2+2y2 = 4 to get 1+3y2 = 4. Hence 3y2 = 3 and

y = ±1, x = ±
√

2. Four points are (±
√

2,±1), (a, b) = (
√

2, 1). Tangent

line to hyperbola at (
√

2, 1),
√

2x − y = 1 has slope
√

2. Normal line to ellipse

points in direction (2
√

2, 4) and hence has slope 4/2
√

2 =
√

2. Both lines

pass through (
√

2, 1) and hence coincide. Tangent lines meet at (0,±1) and at

(±1/
√

2, 0). Area=
√

2.

2.9 Direction of normal line to paraboloid at (1, 1, 4) is (2, 2,−1). Tangent plane

at (1, 1, 4) is {(x, y, z) : 2x + 2y − z = 0}. Normal line through (1, 1, 4) is

{(1+2t, 1+2t, 4− t) : t ∈ R}, t = −9/8 gives the point (−5/4,−5/4, 41/8)

on paraboloid and on normal. Normal line through (−5/4,−5/4, 41/8) has di-

rection (−5/2,−5/2,−1), cos θ = (−5/2,−5/2,−1)·(2,2,−1)

(25/4+25/4+1)1/2(4+4+1)1/2 = −9
(27.9/2)1/2 =

−
√

2
3

.

2.10 Let f (x, y, z) = log(x2 + y2) − 2z, S = f −1(0) = Graph(g), where

g(x, y) = 1
2

log(x2 + y2), ∇ f (1,−1, 1
2

log 2) = (1,−1,−2). Tangent plane

= {(x, y, z) : x − y −2z = 2− log 2}, Normal line = {(1+ t,−1− t, 1
2

log 2−
t) : t ∈ R}.

2.11 At points of contact normals coincide. Hence ( f ′(x),−1, 0) = λ(2z, 1, 2z +
2x) ⇒ λ = −1 ⇒ z = −x and f ′(x) = (−1)(−2x) ⇒ f (x) = x2.
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Chapter 3

3.1 Let g(x, y, z) = xy + yz, f1(x, y, z) = x2 + y2 − 1, f2(x, y, z) = x − yz.

∇g = λ1∇ f1 + λ2∇ f2 ⇒ (y, x + z, y) = λ1(2x, 2y, 0) + λ2(1,−z,−y),

y = −λ2 y ⇒ y = 0 or λ2 = −1, y = 0 ⇒ x = 0 which contradicts

x2 + y2 = 1. λ2 = −1 ⇒ x + z = λ12y + z ⇒ x = λ12y = yz ⇒ z = 2λ1,

y = 2λ1x − 1 = zx − 1 = (x2/y) − 1 ⇒ y2 = x2 − y = 1 − y2 − y ⇒
2y2 + y − 1 = 0. Hence y = −1 or y = 1/2, y = −1 ⇒ x = 0 and z = 0.

Solution (0,−1, 0) and g(0,−1, 0) = 0. If y = 1/2, x = ±
√

3/2, z = ±
√

3.

Maximum = 3
√

3/4, minimum = −3
√

3/4.

3.2 Maximize z on {x2 + y2 = 1} ∩ {x + y + z = 1}, (0, 0, 1) = λ1(2x, 2y, 0) +
λ2(1, 1, 1) ⇒ λ2 = 1, 2xλ1 = −1 = 2yλ1 ⇒ x = y = ±1/

√
2, z =

1 ∓
√

2. Maximum 1 +
√

2, minimum 1 −
√

2.

3.3 Maximize ab + (1/2)bd subject to b + 2a + 2c = P , b2/4 + d2 = c2. (b, a +
(1/2)d, 0, (1/2)b) = λ1(2, 1, 2, 0) + λ2(0, b/2,−2c, 2d) ⇒ c = 2d, b =√

12d, a = (
√

3 + 1)d ⇒ P = (4
√

3 + 6)d. Maximum = (2 −
√

3)P2/4.

3.4 (2x, 2y, 2z) = λ1(1, 1,−1) + λ2(1, 3, 1) ⇒ 2x = λ1 + λ2, 2y = λ1 +
3λ2, 2z = −λ1 + λ2 ⇒ 2x − y + z = 0. Together with constraints this gives

solution (0, 1/2, 1/2). Minimum 1/4. The two constraints are planes which

intersect in a line. Question asks to find minimum and maximum distance

squared from line to the origin. Line contains points which tend to infinity so

no maximum.

3.5 The two constraints are planes which intersect in a line. This line contains

points which tend to infinity. f consists of positive terms added together and

tends to infinity as either x or y or z goes to infinity. Since f is always positive it

must have an absolute minimum. (2x, 2y, 4z) = λ1(1, 1, 1)+λ2(1,−1, 3) ⇒
. . . ⇒ x = 17/14, y = 16/14, z = 9/14. Minimum = 707/196. z =
3 − x − y = φ(x, y), f (x, y,φ(x, y)) = x2 + y2 + 2(3 − x − y)2 and con-

straint becomes 2x + 4y = 7.

φ1(x) = (7 − 2x)/4, φ2(x) = (1/4)(5 − 2x), f (x,φ1(x),φ2(x)) = x2 +
(7 − 2x)2/16 + (5 − 2x)2/8.

3.6 (
1

a
,

1

b
,

1

c
) = λ(

2x

a2
,

2y

b2
,

2z

c2
) ⇒ λ 
= 0,

1

a
=

2λx

a2
⇒ 1 =

2λx

a
=

2λy

b
=

2λz

c
⇒

x

a
=

y

b
=

z

c
⇒ x = ±

a
√

3
, y = ±

b
√

3
, z = ±

c
√

3
.

3.7 (yz, xz, xy) = λ(−1/x2,−1/y2,−1/z2) ⇒ λ 
= 0, x2 yz = −λ = xy2z =
xyz2 ⇒ x = y = z and 3/x = 1 ⇒ x = y = z = 3. Minimum 27.

3.8 V (x, y, z) = xyz, (yz, xz, xy) = λ(1/a, 1/b, 1/c) ⇒ . . . ⇒ x/a = y/b =
z/c. Maximum = abc/27.

3.9 Join the vertices to the centre and let x, y, z be the angles at the centre. Products

of lengths of sides = 8R3 sin x
2

sin
y
2

sin z
2

= f (x, y, z). Sum of squares of

lengths = 4R2(sin2 x
2

+ sin2 y
2

+ sin2 z
2
) = g(x, y, z). R is the radius of the

circle. h(x, y, z) = x + y + z − 2π.
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(a) ∇ f = λ∇h . . . ⇒ cos(x/2) = cos(y/2) = cos(z/2) ⇒ x = y = z.

(b) ∇g = λ∇h . . . ⇒ sin(x/2) = sin(y/2) = sin(z/2) ⇒ x = y = z.

3.10 Since x2 ≥ 0, 3x2 − y5 = 0 ⇒ y5 ≥ 0 ⇒ y ≥ 0. Hence f (x, y) = 2y ≥ 0

and f (0, 0) = 0 implies f has minimum value 0 at (0, 0). The method of

Lagrange multipliers does not work since the surface 3x2 − y5 = 0 does not

have full rank at (0, 0).

3.11 Minimize g(v) = 〈∇ f (P), v〉 over 〈v, v〉 = h(v) = 1. ∇g(v) = λ∇h(v) ⇒
∇ f (P) = λv and ‖v‖ = 1 ⇒ λ = ±‖∇ f (P)‖/2. Hence g(v) = . . . =
±‖∇ f (P)‖. Maximum increase in direction ∇ f (P)/‖∇ f (P)‖.

3.12 Let yi = xi/ i . Maximize n!y1 · · · yn on
∑n

i=1 y2
i = 1. Use the method in

Example 3.2 to get y1 = y2 = . . . = yn = 1/
√

n at maximum.

3.13 If x , y and z are perpendicular distances to the sides, of length a, b and c, then

it is necessary to minimize d, where d2 = x2 + y2 + z2, subject to constraint

Area = A = (1/2)(ax + by + cz). Minimum = 4A2/(a2 + b2 + c2).

3.14 Nearest point on line, (11, 2,−4). Distance =
√

6.

3.15 Since −1 ≤ cos θ ≤ +1, the result in Exercise 2.12 is equivalent to the

Cauchy–Schwarz inequality. We get the equality case by considering when

cos θ = ±1.

3.16 The constraints form a compact subset of R
4 so the function has a maxi-

mum and a minimum. If (x, y, u, v) = (a, 0, b, 0) then (xv − yu)2 = 0

and the minimum is 0. Let c = xv − yu. It suffices to consider c 
= 0. If

(x, y, u, v) = (a, 0, 0, b) then (xv − yu)2 = a2b2 and the maximum is posi-

tive. ∇((xv−yu)2) = 2c(v,−u,−y, x) = λ1(2x, 2y, 0, 0)+λ2(0, 0, 2u, 2v),

cv = λ1x, c(−u) = λ1 y, c(−y) = λ2u, cx = λ2v. c2v2 + c2u2 = λ2
1x2 +

λ2
1 y2 =⇒ c2b2 = λ2

1a2, c2 = cvx−cuy = c(vx−uy) = λ1(x2+y2) = λ1a2.

Hence λ1 = b2 and c2 = a2b2 = Maximum.

Alternatively, let x = a cos θ, y = a sin θ, u = b cos φ, v = b sin φ then

(xv − yu)2 = a2b2 sin2(θ − φ) and as sin2(θ − φ) ranges between 0 and 1 we

get the above result. Also this exercise is a special case of the Cauchy-Schwarz

inequality.
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Chapter 4

4.1 (a) ∇ f (x, y) = (2x + y + 2, x + 2) = (0, 0) ⇒ (−2, 2) is the only critical

point. H f (x,y) =
(

2 1

1 0

)
, det(H f (−2,2)) = −1 < 0 ⇒ f has a saddle

point at (−2, 2).

(b) local minimum at (1, 1), saddle point at (0, 0). To show the local mini-

mum is an absolute minimum over {(x, y); x > 1/2, y > 1/2} note that

det(H f (x,y)) = 36xy − 9 > 0 when x > 1/2 and y > 1/2.

(c) ∇ f (x, y, z) = (3x2z − 192, 2y − z, x3 − y),

f ′′(x, y, z) = H f (x,y,z) =

⎛

⎝

6xz 0 3x2

0 2 −1

3x2 −1 0

⎞

⎠ .

Critical point (2, 8, 16).

H f (2,8,16) =

⎛

⎝

192 0 12

0 2 −1

12 −1 0

⎞

⎠

saddle point.

(d) saddle points at (2, 4), (−1, 4), (2, 1), local maximum at (1, 3) (the change

of variables u = 2 − x , v = 4 − y simplifies the calculations).

(e) local maxima at (±1,±1, 1), (±1, 1,±1), (1,±1,±1).

(f) critical points at (±1/
√

2,±1/
√

2,±1/
√

2), local maxima if even number

of negative signs otherwise local minima. Using one variable calculus,

max of xe−x2
over R is 1/

√
2e1/2 and min is −1/

√
2e1/2. Hence max of

xyze−x2−y2−z2
over R

3 is 1/2
√

2e3/2 and min is −1/2
√

2e3/2.

(g) saddle point at (1, 1, 1/2).

(h) saddle point at (2
√

2, 2,−2).

(i) saddle point at (−1, 1/2, 1/2).

(j) saddle point at (1, 2, 1).

4.2 We always have f (x, y, z) ≥ 0. Since f (0, 0, 0) = 0, f has an absolute

minimum at (0, 0, 0). Critical points satisfy 2ax = 2x(ax2+by2+cz2), 2by =
2y(ax2 +by2 + cz2), 2cz = 2z(ax2 +by2 + cz2). Critical points are (0, 0, 0),

(±1, 0, 0), (0,±1, 0), (0, 0,±1) since if (x, y, z) is a critical point, x 
= 0

and y 
= 0 then 2ax/2by = 2x/2y ⇒ axy = bxy ⇒ a = b contradiction.

Similarly all critical points can have only one non-zero component and this must

be 1. Local minimum at (0, 0, 0), local maxima at (±1, 0, 0), saddle points at

(0,±1, 0) and (0, 0,±1). Since 2ex2
> x4, x2e−x2 −→ 0 as x −→ ±∞

and hence f (x, y, z) −→ 0 if any one of x, y, z −→ ±∞. Use the method

in Example 3.3 to show that f has an absolute maximum over R
3 at a critical

point. Absolute maximum a/e.
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4.3 Local minimum at (1/4, 1/4, 1/4), degenerate critical points at (x, 0, 0),

(0, y, 0), (0, 0, z), (0, y, 1 − y), (x, 1 − x, 0), (x, 0, 1 − x), x, y, z ∈ R.

4.4 The function is only defined when x 
= 0, y 
= 0 and z 
= 0. At a critical

point 2x3 = y3 + z3 ⇒ 3x3 = x3 + y3 + z3. Similarly 2y3 = x3 + z3 and

2z3 = x3 + z3 ⇒ x3 = y3 = z3 ⇒ x = y = z and (∗){(x, x, x) : x 
= 0} is a

set of critical points.

H f (x,x,x) =
1

x6

⎛

⎝

−2 1 1

1 −2 1

1 1 −2

⎞

⎠

and det(H f (x,x,x)) = 0.

4.5 Minimize d2 = (x + 1)2 + (y − 1)2 + (xy − 1)2. Critical points satisfy

x + 1 + (xy − 1)y = 0 and y − 1 + (xy − 1)x = 0. Adding we obtain

x2 y + y2x = xy(x + y) = 0. If x = 0 then y = 1 and if y = 0 then x = −1.

If y = −x ⇒ x3 + 2x + 1 = 0 ⇒ x < 0 and d2 = 2(x + 1)2 + (x2 + 1)2 =
x4 + 4(x + 1

2
)2 + 2 > 2. Minimum =

√
2. Lagrange multipliers can also be

used for this problem.

4.7 ∇
(∑m

i=1 ‖X − Yi‖2
)

= 2
(

m X −
∑m

i=1 Yi

)

.

4.8 2x + 6φφx − 2y − 2yφx = 0, 4y + 6φφy − 2x − 2φ − 2yφy = 0 and

φx = φy = 0 ⇒ x = y = φ ⇒ x = ±1. Critical points of φ at ±(1, 1),

det(Hφ(1,1)) = det(Hφ(−1,−1)) = 1/4. φxx (1, 1) < 0, local maximum at

(1, 1), φxx (−1,−1) > 0, local minimum at (−1,−1). The equation of the

level set yields two solutions; φ1(x, y) = (y +
√

6 − 3x2 − 5y2 + 6xy)/3,

φ2(x, y) = (y −
√

6 − 3x2 − 5y2 + 6xy)/3. Both have a local maximum at

(1, 1) and both have a local minimum (−1,−1).

4.10 |x | ≤ 2 and |y| ≤ 2 since x2 + y2 = 2 and |z| = |1 − x | ≤ 1 + |x | ≤ 3 and

F−1(2, 1) is bounded and hence compact since it is clearly closed.
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Chapter 5

5.1 P ′(t) = (6 sinh 3t,−6 cosh 3t, 6), ‖P ′(t)‖ = 6
√

2 cosh 3t , length

= 2 sinh 15.

5.2 (c) On [0, 1],
(

cos−1(s)
)′ = −(1 − s2)−1/2, P ′(s) = (−(1 − s2)1/2,−s, 0).

5.3 s(t) = t
√

r2 + h2, P(s−1(t)) =
(

r cos
(

t√
r2+h2

)

, r sin
(

t√
r2+h2

)

, ht√
r2+h2

)

.

5.4 (a) s(t) =
√

3(et −1), s−1(t) = log( t√
3
+1). Unit speed parametrization t →

( t√
3
+ 1)

(

cos(log( t√
3

+ 1)), sin(log( t√
3

+ 1)), 1
)

for 0 ≤ t ≤
√

3(e − 1).

(b) s−1(t) = sinh−1(t/
√

2). Unit speed parametrization

t →
(

(

1 +
t2

2

)1/2
,

t
√

2
, sinh−1

( t
√

2

)

)

where 0 ≤ t ≤
√

2 sinh(1).

5.5 Let P(t) =
(

√

t2 − t4

16
, 4 − t2

4
, t

)

for 0 ≤ t ≤ 4.

5.6 We need φ : [0, 1] → [0, 1], φ′(t) > 0 for 0 < t < 1, φ(0) = 0, φ(1) = 1,

φ′(0) = 0, φ′(1) = 0. Take φ(t) = 3t2 − 2t3.

P(t) =

⎧

⎨

⎩

(1, 2) + (3t2 − 2t3)(−2,−4), 0 ≤ t ≤ 1

(−1,−2) + (3(t − 1)2 − 2(t − 1)3)(5, 2), 1 ≤ t ≤ 2

(4, 0) + (3(t − 2)2 − 2(t − 2)3)(−3, 2), 2 ≤ t ≤ 3.

5.8 This exercise shows that the rate of change of f at X0 along two curves, which

pass through X0, depends only on the tangents to the curves at X0.

5.9 To show 〈T X, T Y 〉 = 〈X, Y 〉 expand ‖T (X + Y )‖2 and ‖T (X − Y )‖2 and

consider the difference. Use exercise 2.12 to show that angles are preserved. To

show that area is preserved it suffices (?) to show that the area of rectangles is

preserved. (Hint: think of Riemann sums.)

http://dx.doi.org/10.1007/978-1-4471-6419-7_5
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Chapter 6

6.1 (a) F(P(t)) · P ′(t) = t, 2π2; (b) F(P(t)) · P ′(t) = t2 + 2t7 + 3t6, 85/84; (c)

F(P(t)) · P ′(t) = (cos et , e, et ) · (0, 1, et ) = e + e2t , (e8 + 8e − 1)/2.

6.2 (a) x2 + yz + exz , (b) does not have a potential, (c) xy + z2 + sin(xyz), (d)

sin(x2 + yz).

6.4 (a) Use Exercise 1.10, (−2y+z, 2x−3z,−x+3y)/‖X‖3; (b) (xz2−xy2, yx2−
yz2, zy2 − zx2)/‖X‖3; (c) (0, 0, 0).

6.6 This exercise shows that div and curl operate like derivatives. In (b) the minus

sign is, perhaps, unexpected. A very careful application of the definitions is

needed to verify these formulae.

6.9 Use Exercise 6.7, ∇( f (‖X‖)) = ∇( f (
√

x2 + y2 + z2)) = f ′(‖X‖)X/‖X‖ and

∇2( f (‖X‖)) =
∂

∂x

(
f ′(‖X‖) ·

x

‖X‖

)
+

∂

∂y

(
f ′(‖X‖) ·

y

‖X‖

)

+
∂

∂x

(
f ′(‖X‖) ·

z

‖X‖

)

= f ′′(‖X‖)
x2 + y2 + z2

‖X‖
+ f ′(‖X‖) ·

2(x2 + y2 + z2)

‖X‖3
.

Then g harmonic ⇔ ∇2( f (‖X‖)) = 0 ⇔ 2 f ′(r)/r + f ′′(r) = 0 ⇔ r2 f ′′(r)+
2r f ′(r) =

(

r2 f ′(r)
)′ = 0 ⇔ f ′(r) = C/r2 ⇔ f (r) = B + (A/r).

http://dx.doi.org/10.1007/978-1-4471-6419-7_6
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Chapter 7

7.1 P(t) = (3 cos t, 9 sin t), 0 ≤ t ≤ 2π, ellipse, Curvature 27(9 sin2 t +
81 cos2 t)−3/2, maximum curvature at (0,±9).

7.2 |κ| =

∣∣∣∣∣∣∣

2
a2 (

2y

b2 )2 + 2
b2 ( 2x

a2 )2

(
( 2x

a2 )2 + (
2y

b2 )2
)3/2

∣∣∣∣∣∣∣
=

ab
(

x2b2

a2 + a2 y2

b2

)3/2
. If the ellipse has an anti-

clockwise orientation then |κ| = κ, otherwise κ = −|κ|.
7.4 Let P(t) = (x(t), y(t), z(t)) be unit speed. P ′(t) = (x ′(t), y′(t), z′(t)) is

independent of t ⇔ all tangents are parallel ⇔ P(t) = (a + bt, c + dt, e +
f t).

7.5 (a) T (t) = ((1 + t)1/2,−(1 − t)1/2,
√

2)/2, N (t) = ((1 − t)1/2, (1 +
t)1/2, 0)/

√
2, B(t) = (−(1 + t)1/2, (1 − t)1/2,

√
2)/2,κ(t) = τ (t) =√

2/4
√

1 − t2. (b) T (t) = (−(1 − t2)1/2,−t, 0), N (t) = (t,−(1 − t2)1/2, 0),

B(t) = (0, 0, 1), κ(t) = 1/
√

1 − t2, τ (t) = 0. (c) T (t) = (t (1 +
t2)−1/2, 2, (1 + t2)−1/2)/

√
5, N (t) = ((1 + t2)−1/2, 0,−t (1 + t2)−1/2),

B(t) = (−2t (1 + t2)−1/2, 1,−2(1 + t2)−1/2)/
√

5, κ(t) = 1/
√

5(1 + t2),

τ (t) = 2/
√

5(1 + t2). (The point of this exercise was to calculate the Frenet-

Serret apparatus directly. The curve in (b) lies in the xy-plane. By Proposition

8.1, τ (t) = 0 and B(t) = ±(0, 0, 1). It is necessary to calculate B(t) in order

to check which sign to take but the above advance information is useful in order

to know what to expect.)

7.6 ‖P ′(t)‖ = a sec α. Let ab = cos α. Then Q(t) := (a cos bt, a sin bt, t sin α)

is unit speed. T ′(t) = (−ab2 cos bt,−ab2 sin t, 0), κ(t) = ab2, N (t) =
(− cos bt,− sin bt, 0), N (0) = (−1, 0, 0), and normal points into cylinder,

hence centre of curvature = Q(t) + κ(t)N (t) = Q(t) + T ′(t) = ((a −
ab2) cos bt, (a−ab2) sin bt, t sin α), a helix, on the cylinder x2 + y2 = a2(1−
b2)2.

7.7 Q(t) = (a cos( b
a

sinh−1( t
b
)), a sin( b

a
sinh−1( t

b
)),

√
b2 + t2) is a unit speed

parametrization. Osculating plane at Q(t) := (q1(t), q2(t), q3(t)) is perpen-

dicular to Q′(t)× Q′′(t) and tangent plane at Q(t) is perpendicular to Q̃(t) :=
(q1(t), q2(t), 0). It suffices to show

[
Q′(t) × Q′′(t) · Q̃(t)

]
/‖Q′′(t)‖ · ‖Q̃(t)‖]

= α(t) is constant. ‖Q̃(t)‖ = a, Q′(t) × Q′′(t) · Q̃(t) = ab/(b2 + t2),

‖Q′′(t)‖ = b
√

a2 + b2/a(t2 + b2) and α(t) = a/
√

a2 + b2. Alternatively, if

P(t) = (a cos t, a sin t, b cosh at
b
) and P(t) = (a cos t, a sin t, 0) then results

in Chap. 8 show it suffices to prove
[
P ′(t) × P ′′(t) · P(t)

]
‖P ′(t) × P ′′(t)‖ ·

‖P(t)‖ is constant. ‖P(t)‖ = a, P ′(t) × P ′′(t) · P(t) = [a4 cosh(at/b)]/b,

and

‖P ′(t) × P ′′(t)‖ = [a2(a2 + b2)1/2 cosh(at/b)]/b.

7.11 Q′(t) = B(t) implies Q is unit speed and Q′ = TŴ̃ = B, Q′′ = T ′
Ŵ̃

= B ′ =
−τ N = κŴ̃ NŴ̃ . Hence κŴ̃ = τ (since τ ≥ 0 and κŴ̃ is positive) and NŴ̃ = −N .

BŴ̃ = TŴ̃ × NŴ̃ = B ×(−N ) = T, B ′
Ŵ̃

= −τŴ̃ NŴ̃ = T ′ = κN . Hence τŴ̃ = κ.

7.12 X = τT + κB.

http://dx.doi.org/10.1007/978-1-4471-6419-7_7
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Chapter 8

8.1 By inspection one can take u = (0, 0, 1) in (a) and (b) and u = (0, 1, 0) in (c).

8.2 T (t) = (1,−t−2,−t−2 − 1)/(2 + 2t−2 + 2t−4)1/2, N (t) = (1 + 2t−2, 2 +
t−2, 1− t−2)/(6+6t−2 +6t−4)1/2, B(t) = (1,−1, 1)/

√
3, κ(t) = 2t−3

√
3(2+

2t−2 + 2t−4)−3/2, τ (t) = 0.

Note By inspection P(t) ·(1,−1, 1) = −1 so Ŵ lies in the plane x − y + z = −1.

By Proposition 8.1, τ (t) = 0 and B(t) = ±(1,−1, 1)/
√

3. To know which sign

to take it was necessary to do the above calculations.

8.3 P ′(θ) = (− tan θ, cot θ,
√

2), ‖P ′(θ)‖ = 2
sin 2θ

, P ′′(θ) = (− sec2 θ,−cosec2θ,

0), ‖P ′(θ) × P ′′(θ)‖ = 4
√

2/(sin2 2θ), κ(θ) = sin 2θ/
√

2.

8.4 P ′(t) = 3(2t, 1− t2, 1+ t2), ‖P ′(t)‖ = 3
√

2(1+ t2), T (t) =
( √

2t
1+t2 , 1−t2

√
2(1+t2)

,

1√
2

)
, T (t) · (0, 0,±1) = ± 1√

2
, P ′(t) × P ′′(t) = 18(2t, 1 − t2,−1 − t2),

‖P ′(t) × P ′′(t)‖ = 18
√

2(1 + t2), κ(t) = 1/3(1 + t2)2, P ′′′(t) = 6(0,−1, 1),

〈P ′′′(t), P ′(t) × P ′′(t)〉 = −18 · 6 · 2, τ (t) = −1/3(1 + t2)2.

8.5 κ(t) = (
√

2/3)e−t , τ (t) = (1/3)e−t .

8.6 The normal plane at P(t) is {X : 〈P(t) − X, P ′(t)〉 = 0}. If X0 lies in every

normal plane then 〈P(t)− X0, P ′(t)〉 = 0 for all t . Hence d
dt

〈P(t)− X0, P(t)−
X0〉 = 0 and ‖P(t) − X0‖ is independent of t , and the curve lies on a sphere.

〈P(θ), P ′(θ)〉 = −2 sin 2θ, 〈(a, b, c), P ′(θ)〉 = 2a sin 2θ+2b sin θ + 2c cos 2θ.

Hence a = −1, b = 0 and c = 0 imply 〈P(θ) − (a, b, c), P ′(θ)〉 = 0. Centre

(−1, 0, 0), radius 2.

8.7 P ′(t) = (a, 2bt, 3t2), ‖P ′(t)‖2 = a2 + 4b2t2 + 9t4, P ′′(t) = (0, 2b, 6t),

P ′(t) × P ′′(t) = (6bt2,−6at, 2ab), ‖P ′(t) × P ′′(t)‖2 = 36b2t4 + 36a2t2 +
4a2b2, P ′′′(t) = (0, 0, 6), P ′′′(t) · P ′(t) × P ′′(t) = 12ab,

τ (t)/κ(t) = ‖P ′(t)‖3(P ′′′(t) · P ′(t) × P ′′(t))/‖P ′(t) × P ′′(t)‖3

= 12ab(a2 + 4b2t2 + 9t4)3/2/(36b2t4 + 36a2t2 + 4a2b2)3/2.

P parametrizes a generalised helix ⇔ a2 +4b2t2 +9t4 = α(36b2t4 +36a2t2 +
4a2b2) for some α ∈ R ⇔ α = 1/4b2 and 4b2 = α36a2 ⇔ 4b4 = 9a2.

http://dx.doi.org/10.1007/978-1-4471-6419-7_8
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Chapter 9

9.1
∫ 1

0 x2dx ·
∫ π/4

0 sin2 ydy = [x3/3]1
0[x/2 − (sin 2x)/4]π/4

0 = (π − 2)/24.

9.2 (a)
∫ π

0

{∫ x

0 x cos(x + y)dy
}

dx = π
2

,

(b)
∫ +1
−1

{∫ 1+
√

(1−x2)

1−
√

(1−x2)
(x2 + y2)dy

}
dx = 8/3

∫ 1
0 (1 − x2)1/2(2 + x2)dx =

3π/2; or alternatively, let x = r cos θ, y = 1 + r sin θ, dxdy = rdrdθ

and
∫ 1

0

∫ 2π
0 (r2 + 1 + 2r sin θ)rdrdθ = 3π/2,

(c)
∫ 2

1 {
∫ y

1/y
y2

x2 dx}dy =
∫ 2

1 (−y + y3) dy = 9/4.

9.3
∫ 2

0

{∫ 4y−y2

y2 dx
}

dy = 8/3.

9.4 Let F = (Q,−P). If t → (x(t), y(t)) is a unit speed parametrization then

n = (y′,−x ′). Now apply Green’s Theorem.

9.5 (a)
∫ 2

0

{∫ 3y

0 ey2
dx

}
dy = 3(e4 − 1)/2,

(b)
∫ 2

0

{∫ 2x

x2 ey/x dy
}

dx = e2 − 1.

9.6
∫∫

x2+y2≤1
x≥0,y≥0

(1 − xy)dx dy =
∫ 1

0

{∫ √
1−x2

0 (1 − xy)dy
}

dx = (2π − 1)/8. The

calculations are easier using polar coordinates.

9.7 20π.

9.8 (a) Once Green’s theorem has been used, symmetry implies that the answer is

0.

(b) By Green’s theorem
∫
Ŵ

=
∫∫

(x−2)2+y2<4

2xdx dy. This can be evaluated in

the usual fashion but some geometry avoids all the calculations:

∫

Ŵ
=

∫∫

(x−2)2+y2<4

2(x − 2)dx dy + 4

∫∫

(x−2)2+y2<4

dx dy = 0 + 4π.4 = 16π.

The first integral is zero since x − 2 has average value 0 on the disc and the

second integral is 4× (area of disc).

(c)
∫
Ŵ

=
∫∫
�

(−3y − 4x2 y)dx dy =
∫ 5

3 dx ·
∫ 4

1 −3ydy −
∫ 5

3 4x2dx ·
∫ 4

1 ydy =

−1025.

http://dx.doi.org/10.1007/978-1-4471-6419-7_9
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Chapter 10

10.1 (a) (u, v) → (a cosh u cos v, b cosh u sin v, c sinh u),−∞ < u < +∞, 0 <

v < 2π.

(b) (u, v) → (a cosh u, b sinh u cos v, c sinh u sin v),−∞ < u < +∞, 0 <

v < 2π;
10.2 (a) P1 is easily seen to be injective. For the remainder see Example 13.5.

(b) (P2)x = (cos θ, 0, 1), (P2)θ = (−x sin θ, y cos θ, 0) and

(P2)x × (P2)θ = (−y cos,−x sin, y cos2 θ).

If (P2)x × (P2)θ = 0 then cos θ = sin θ = 0. This is impossible since

cos2 θ + sin2 θ = 1. If P2(x, θ) = P2(x1, θ1) then x + a = x1 + a and

cos θ = cos θ1, sin θ = sin θ1. Hence x = x1 and θ = θ1.

(c) (P3)u × (P3)v = (u + v, v − u,−2) 
= (0, 0, 0), P3(u1, v1) =
P3(u2, v2) ⇒ u1 + v1 = u2 + v2 and u1 − v1 = u2 − v2 ⇒ u1 − u2 =
v2 − v1 = −(v2 − v1) ⇒ v1 = v2 and u1 = u2.

10.3 Parametrize the ellipsoid ((x/
√

2tr)2 + (y/
√

2tr)2 + (z/
√

2th)2 = 1 using

ellipsoidal polar coordinates and take the θ = π/4 cross section.

10.4 Parametrization formula unchanged. Range 0 < θ < π/2, 0 < ψ < π/2.

10.5 ‖(0, 0, 1) + t ((u, v, 0) − (0, 0, 1))‖2 = 1 ⇒ t2u2 + t2v2 + (1 − t)2 = 1.

Hence t = 0 or t = 2/(1 + u2 + v2), φ(u, v) =
(

2u/(1 + u2 + v2), 2v/

(1 + u2 + v2) , 1 − 2/(1 + u2 + v2)
)

. φ(u1, v1) = φ(u2, v2) ⇒ u2
1 + v2

1 =
u2

1 + v2
1 (from third coordinate) ⇒ u1 = u2 and v1 = v2 from the first and

second coordinates and φ is injective. φu × φv =
(

−2u(1 + u2 + v2)−2,

−2v(1 + u2 + v2)−2 , (1 − (u2 + v2)2)(1 + u2 + v2)−2
)


= (0, 0, 0) for all

(u, v) ∈ R
2. Also φ(R2) = S\(0, 0, 1).

10.6 Let P(u) = (u cos u, u sin u, u
√

3), 0 ≤ u ≤ 2, Length =
∫ 2

0 (4 + u2)1/2du =
2(

√
2 + sinh−1(1)). (Use u = 2 sinh θ, sinh−1(1) = log(1 +

√
2) and

sinh(2 sinh−1(1)) =
(

(1 +
√

2)2 − (1 +
√

2)−2
)

/2 = 2
√

2.

10.7 ∇ f (x, y, z) = (1 + y, x + z, y) 
= (0, 0, 0) since either y 
= −1 or y 
= 0.

U0 = {(x, y, z) : y 
= 0} and φ0(x, y) = (x, y,
1−x−xy

y
), (x, y) ∈ R

2 \
{(x, y); y 
= 0}. U1 = {(x, y, z) ∈ S, y 
= −1} and φ1(y, z) = (

1−yz
1+y

, y, z)

for (y, z) ∈ R
2 \{(y, z); y 
= −1}. (U0,φ0) and (U1,φ1) are graphs and hence

parametrized surfaces.

10.8 At time t , L is at units above the xy-plane. The (x, y) coordinates of a point

u units along L are (u sin bt, u cos bt) after time t .

http://dx.doi.org/10.1007/978-1-4471-6419-7_10
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Chapter 11

11.1 P(r, θ) = (r cos θ, r sin θ, r2), 0 < r < 2, 0 < θ < 2π, EG − F2 =
r2(1 + 4r2), surface area = π(173/2 − 1)/6.

11.2 (a) P(x, θ) = (x, x3 cos θ, x3 sin θ), 0 < x < 1, 0 < θ < 2π, EG − F2 =
x6(1 + 9x4). Use substitution u = 1 + 9x4, surface area = π(103/2 −
1)/27.

(b) P(x, θ) = (x, x2 cos θ, x2 sin θ), 0 < x < 1, 0 < θ < 2π, EG − F2 =
x4(1 + 4x2). Surface area =

∫ 2π
0

∫ 1
0 x2

√
1 + 4x2dx = 2π

8

∫ sinh−1(2)

0

sinh2(θ) cosh2(θ)dθ = π
32

∫ sinh−1(2)

0 (cosh(4θ) − 1)dθ = π(18
√

5 −
log(2 +

√
5))/32 (use substitution 2x = sinh θ and identity sinh−1(x) =

log(x +
√

x2 + 1)).

11.3 E = 1, F = 0, G = r2 + 1, surface area =
∫ 2π

0

∫ 1
0

√
1 + r2 drdθ =

2π
∫ sinh−1(1)

0 cosh2 φ dφ = π(
√

2 + log(1 +
√

2)). Substitution r = sinh φ.

11.4 If P(x, y) = (x, y, f (x, y)) then E = 1 + f 2
x , F = fx fy and G = 1 + f 2

y .

Hence EG − F2 = (1 = f 2
x )(1 + f 2

y ) − f 2
x f 2

y = 1 + f 2
x + f 2

y = 1 + ‖∇ f ‖2.

11.5 Use parametrization P(r, θ) = (r cos θ, r sin θ, r2/3), 0 < θ < 2π, 0 < r <
√

3. Surface area =
∫ 2π

0

∫ √
3

0 r
√

1 + (4r2/9) drdθ = (7
√

21 − 9)π/6.

11.6 Using P(x, y) = (x, y, xy). By Exercise 11.4, surface Area =
∫∫

x2+y2≤a2

(1 +

x2 + y2)1/2dx dy. Change to polar coordinates, (x, y) −→ (r cos θ, r sin θ).

Alternatively, let P1(r, θ) = (r cos θ, r sin θ, r2

2 sin 2θ), 0 < θ < 2π, 0 < r < a.

Then E = 1 + r2 sin2 2θ, F = r3

2
sin 4θ, G = r2(1+r2 cos2 2θ), EG − F2 =

r2 + r4. Surface area =
∫ 2π

θ=0

∫ a

r=0

r
√

1 + r2drdθ = 2π((1 + a2)3/2 − 1)/3

(substitution u = 1 + r2).

11.7 First octant ⇒ 0 < θ < π/2, between the planes ⇒ 0 < r < 8
√

3, in-

side cylinder ⇒ r2 cos2 θ < r2/4 ⇒ cos θ < 1
2

⇒ π/3 < θ < π/2. E =
(r2/64)+1, F = 0, G = r2. Surface area=

∫ π/2
π/3

∫ 8
√

3
0 r

√
1 + (r2/64) drdθ =

224π/9.

http://dx.doi.org/10.1007/978-1-4471-6419-7_11
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Chapter 12

12.1 S ⊂ {(x, y, z) : 6x +3y +2z = 6}, n(p) = (6, 3, 2)/7, F ·n = 18
7

,
∫∫
S

F = 18
7

∫∫
S

√
EG − F2dx dy = 18

7
(Area S) = 9. Area of triangle in R

3 with vertices

at a, b and c is 1
2
‖(a − b) × (a − c)‖. Alternatively, using projections onto

coordinate planes,
∫∫
S

F =
∫∫
S

( f, g, h) =
∫∫

Pyz

f +
∫∫

Pzx

g +
∫∫

Pxy

h = 1. 1
2
.2.3 +

2. 1
2
.1.3 + 3. 1

2
.1.2 = 9. Also, P(x, y) = (x, y, (6 − 6x − 3y)/2), (x, y) ∈

triangle � in xy-plane with vertices (0, 0), (1, 0) and (0, 2) parameterizes S

and Px × Py = (3, 3/2, 1) has the correct orientation.
∫∫
S

F =
∫∫
�

〈F, Px ×

Py〉dxdy = 9(Area �) = 9.

12.3 φ(u, v) = (u, v, uv3), φu = (1, 0, v3), φv = (1, 0, 3uv2) and φu × φv =
(−v3,−3uv2, 1). Hence F(φ(u, v)) ·φu(u, v)×φv(u, v) = 2+18u2v4 +2v9.

Answer 467.

12.4 P(θ,ψ) = ((b + a cos θ) cos ψ, (b + a cos θ) sin ψ, a sin θ), 0 < θ, ψ < 2π.

This surface is a torus (see Table 11.1). F(P(θ,ψ)) = (a cos θ cos ψ, a cos θ

sin ψ, a sin θ). 〈F, Pθ × Pψ〉 = −a2(b + a cos θ),
∫∫
S

F = −4π2a2b. Since

Pθ × Pψ(0, 0) = −a(b + a)(1, 0, 0) points inwards, P is not consistent with

the orientation. Answer = −(−4π2a2b).

12.5 Use spherical polar coordinates (see Table 11.1) with range 0 < θ < π/2,

0 < ψ < 2π. EG − F2 = a4 sin2 θ.

(a) y2 + z2 = a2 sin2 θ sin2 ψ + a2 cos2 θ, 4πa4/3

(b) (EG − F2)1/2(x2 + y2 + (z +a)2)−1/2 = a sin θ/(2+2 cos θ)1/2, 2πa(2−√
2).

12.6 Truncated cone, f (r, θ) = (r cos θ, r sin θ, r), 0 < θ < 2π, 1 < r < 3,

fr × fθ = (−r cos θ,−r sin θ, r), 〈F( f (r, θ)), fr × fθ〉 = 2r , 16π.

12.7 Fr × Fθ = (sin θ,− cos θ, r). 〈G(F(r, θ)), Fr × Fθ〉 = · · · = −rθ
/

(r2 +
θ2)3/2,

∫∫
S

G =
∫ 2π
π {

∫ θ
π (−rθ

/
(r2 + θ2)3/2)dr}dθ = π(3 −

√
10)/

√
2.

12.8 Method (b). Use polar coordinates on each coordinate plane and z = 0 on the

xy−plane.
∫∫

Pyz(S)

(y2 + z2)dy dz +
∫∫

Pzx (S)

tan−1(x/z)dz dx +
∫∫

Pxy(S)

0ex2+y2
dx dy =

∫∫
0<r<a,0<θ<π/2

r2rdr dθ+
∫∫

0<r<a,0<θ<π/2

θrdr dt =

a2π(2a2 + π)/16.

http://dx.doi.org/10.1007/978-1-4471-6419-7_12
http://dx.doi.org/10.1007/978-1-4471-6419-7_11
http://dx.doi.org/10.1007/978-1-4471-6419-7_11
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Chapter 13

13.1 (a) curl(zi − xk) = (0, 2, 0), (3π − 8)2a2/3.

(b) curl(−yi + xj) = (0, 0, 2), πa2.

(c) curl(−zj + yk) = (2, 0, 0), 8a2/3.

13.2 Pr × Pθ =
(

−r2

a
sin θ, −r2

a
cos θ, r

)
, curl(y, z, x) = (−1,−1,−1), Pr ×

Pθ · (−1,−1,−1) = r2

a
(sin θ + cos θ) − r .

∫
Ŵ

ydx + zdy + xdz =
∫ b

0

{∫ 2π
0 ( r2

a
(sin θ + cos θ) − r)dθ

}
dr = −πb2.

13.3 The mapping θ −→ (b + b cos θ, b − b cos θ,
√

2b sin θ), 0 ≤ θ ≤ 2π, para-

metrizes Ŵ a circle of radius
√

2b containing the points (2b, 0, 0), (b, b,
√

2b),

(0, 2b, 0) and (b, b,−
√

2b). Since curl(y, z, x) = (−1,−1,−1) and n ·
(−1,−1,−1) = −

√
2,

∫
Ŵ

ydx + zdy + xdz = −
√

2(Area circle)= −
√

2

π(
√

2b)2 = −2
√

2πb2.

13.4 Ŵ coils around S n times.
∫
Ŵ

−ydx + xdy =
∫ 2π

0 (b+a cos nt)2dt = π(2b2 +
a2). Area=

∫ 1
0

∫ 2π
0 r(b + a cos nt)2drdt = π(b2 + a2

2
).

13.5 If G is the vector field in Example 6.6 then curl(G) = F . For d > 0 let

Ŵd = {(x, y, z) : x2 + y2 = 1 − d2}. Then Ŵb ∪ Ŵc suitably oriented is

the boundary of Sb,c and P(θ) = (
√

1 − d2 cos θ,
√

1 − d2 sin θ,
√

1 − d2),

0 ≤ θ ≤ 2π, parametrizes Ŵd so that the sphere above the plane z = d is

on the left as Ŵd is rotated. Hence G(P(θ)) · P ′(θ) = (sin θ,− cos θ, 0) ·√
1 − d2(− sin θ, cos θ, 0) = −

√
1 − d2 and

∫
Ŵd

G = (−
√

1 − d2) · l(Ŵd) =
−

√
1 − d22π

√
1 − d2 = −2π(1 − d2). By Stokes’ Theorem

∫ ∫

Sb,c

F =
∫

Ŵc

G −
∫

Ŵb

G = 2π(c2 − b2).

13.6 P(r, θ) = (r cos θ, r sin θ, b(1− r cos θ
a

), 0 < r < a, 0 < θ < 2π parametrises

the portion S of the plane inside the cylinder. Pr × Pθ = (br/a, 0, r), curl(y −
z, z−x, x −y) = (−2,−2,−2),

∫∫
S

〈curl(y−z, z−x, x −y), Pr × Pθ〉dr dθ =

−2πa(a + b). Orientation inconsistent with positive answer. Choose opposite

orientation. Answer 2πa(a + b).

http://dx.doi.org/10.1007/978-1-4471-6419-7_13
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Chapter 14

14.1 P(r, θ, z) = (r cos θ, a + r sin θ, z), 0 < r < a, 0 < θ < 2π, 0 < z <

(a2 + r2 + 2ar sin θ)/4a, |det (P ′)| = r .

14.2 f (r, θ, z) = (r cos θ, r sin θ, z), 0 < θ < π, 0 < z < r , 0 < r < 2a sin θ,

volume=
∫ π

0

{∫ 2a sin θ
0

{∫ r

0 rdz
}

dr
}

dθ = 8a3/3
∫ π

0 sin θ(1 − cos2 θ)dθ =
32a3/9. Note that the parametrization in Exercise 14.1 leads to an unsuitable

integral. Use Fig. 14.13.

14.3 Use (r, θ, z) → (r cos θ, r sin θ, z), 0 < r < 1, 0 < θ < 2π, θ < z < 2π.

14.4 Paraboloid and cone intersect when x2 + y2 = z2 = 2 − z, z2 + z − 2 =
0, z = 1, z = −2. Above plane z = 0, hence z = 1. Region projects onto the

disc {(x, y, 1) : x2 + y2 ≤ 1} with paraboloid above and cone below. Para-

metrization (r, θ, z) −→ (r cos θ, r sin θ, z), 0 < r < 1, 0 < θ < 2π, r <

z < 2 − r2. Volume =
∫ 2π

0

{∫ 1
0

{∫ 2−r2

r
rdz

}
dr

}
dθ = 5π

6
.

14.5 (a) 8π;

(b) 8π;

(c) 81π
4

− 216
5

.

14.7 2/3.

14.8 V =
∫ 1

0 {
∫ 1

0 {
∫ (1+x+y)1/2

0 dx}dy}dx = 4(9
√

3 − 8
√

2 + 1)/15. By symmetry

the second volume is 8V .

14.9 (a) Volume =
∫ 2a

0 A(z)dz =
∫ √

3a

0 π(z2/3)dz +
∫ 2a√

3a
π(4a2 − z2)dz =

(πa3)/
√

3 + πa3( 16
3

− 3
√

3) = 8πa3

3
(2 −

√
3). (b) Use spherical po-

lar coordinates w : (r, θ,ψ) −→ (r sin θ cos ψ, r sin θ sin ψ, r cos θ), 0 <

θ < π/6, 0 < r < 2a, and 0 < ψ < 2π. Since det(w′) = r2 sin θ,

Volume=
∫ π/6

0 sin θdθ ·
∫ 2a

0 r2dr ·
∫ 2π

0 dψ = 8πa3

3
(2 −

√
3). See also Exam-

ple 15.3.

14.10 7
12

.

14.11 det (F ′) = u2v,
∫∫∫
V

xdx dy dz =
∫ 1

0 u3du
∫ 1

0 v(1 − v)dv
∫ 1

0 dw = 1/24,

∫∫∫
V

dx dy dz
y+z

=
∫ 1

0

∫ 1
0

∫ 1
0

u2v
uv

du dv dw = 1/2.

http://dx.doi.org/10.1007/978-1-4471-6419-7_14
http://dx.doi.org/10.1007/978-1-4471-6419-7_14
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Chapter 15

15.2 div(F) = y2 + x2. Interior of S = {(r cos θ, r sin θ, z) : 0 < r <
√

3,

π/2 < θ < 3π/2, 0 < z < −r cos θ}, div(F) = r2, 18
√

3/5.

15.3
∫ a

0 (
∫ b(1− x

a
)

0 (
∫ c(1− x

a
− y

b
)

0 xdz)dy)dx = a2cb/24.

15.4 Order of integration is important, first x and then y to get (e − 2)/2e.

15.5 div(x2,−y2, 3xz) = 5x − 2y,∫∫∫

x,y,x≥0

x2+y2+x2≤4

xdx dy dz =
∫∫∫

x,y,x≥0

x2+y2+x2≤4

ydx dy dz = π. Solution 3π.

15.8 Volume =
∫∫
D

(ax2 + by2)dx dy where D = {(x, y) : (x/c)2 + (y/d)2 < 1}.

If P(r, θ) = (rc cos θ, rd sin θ), 0 < r < 1, 0 < θ < 2π then dx dy =
rcd · dr dθ. Volume =

∫ 1
0

∫ 2π
0 (ac2r2 cos2 θ + bd2r2 sin2 θ)rcd · dr dθ =

cd
∫ 1

0 r3dr ·
∫ 2π

0 (ac2 cos2 θ + bd2 sin2 θ)dθ = cdπ(ac2 + bd2)/4.

http://dx.doi.org/10.1007/978-1-4471-6419-7_15


Solutions 249

Chapter 16

16.1 E = 1, F = 0, G = t2 + b2, l = 0, m = −b(t2 + b2)−1/2,

K = −b2
/

(t2 + b2)2.

16.2 Since the surface of a cone always lies on one side side of each tangent plane,

K ≥ 0, and since it contains a line, K = 0 and 0 is a principal curvature.

P(r, θ) = (r cos θ, r sin θ, r), n = (− cos θ,− sin θ, 1)/
√

2, E = 2, F =
0, G = r2, l = 0, m = 0, n = −r/

√
2. Principal curvatures 0,−1/r

√
2.

16.3 Use (16.6), E = 5, F = 4, G = 5, n = (−2,−2, 1)/3, l = −2/3, m = 0,

n = −2/3. φu(1, 1) = (1, 0, 2), φv(1, 1) = (0, 1, 2), v1 = 2, v2 = 1,

kp(v) = 10/123.

16.4 By (16.6), κP (v) = v2
1 l+2v1v2m+v2

2n

v2
1 E + 2v1v2 F+v2

2 G
= α (constant) for all (v1, v2) ⇔ v2

1(l−

αE)+2v1v2(m−αF)+v2
2(n−αG) = 0 for all (v1, v2) ⇔ l = αE, m = αF

and n = αG.

E = 1 + y2, F = xy, G = 1 + x2 and l = 0, m = (1 + x2 + y2)−1/2, n = 0.

At an umbilic point l = αE implies α = 0 and m = αF implies α 
= 0.

Hence there are no umbilics.

16.5 K = 36uv · (1+9u4 +9v4)−2, elliptic points uv > 0, hyperbolic points when

uv < 0.

16.6 m = n = 0 ⇒ K ≡ 0. This is the cylinder over the ellipse x2 + (y/2)2 = 1.

16.7 u → (av,−bv, 0) + u(a, b, v), v → (au, bu, 0) + v(a,−b, u).

16.8 K = 1
a2b2c2

(
x2

a4 + y2

b4 + z2

c4

)−2
.

16.9 It suffices to note that the coefficient of λ in (16.9) is En + Gl − 2Fm.

P(x, y) = (x, y, log cos y − log cos x), E = sec2x, F = − tan x tan y, G =
sec2 y, l = sec2x

/
(1+tan2 x +tan2 y)1/2, m = 0, n = −sec2 y

/
(1+tan2 x +

tan2 y)1/2.

http://dx.doi.org/10.1007/978-1-4471-6419-7_16
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Chapter 17

17.1 Use toroidal polar coordinates, L(x Pθ + y Pψ) = x
a

Pθ + y cos θ
b+a cos θ

Pψ .

17.2 φ(u, v) = (u, v, u2 − 2v2), φu = (1, 0, 2u), φv = (0, 1,−4v), φuu =
(0, 0, 2),φuv = (0, 0, 0),φvv = (0, 0,−4), E = 1 + 4u2, F = −8uv,

G = 1 + 16v2, n = (−2u, 4v, 1)/(1 + 4u2 + 16v2)1/2, l = 2/(1 +
4u2 + 16v2)1/2, m = 0, n = −4/(1 + 4u2 + 16v2)1/2. κP

(
v1φu+v2φv

‖v1φu+v2φv‖

)
=

2v2
1−4v2

2

(4u2+16v2+1)‖v1φu+v2φv‖2 . Let P(t) = φ(
√

2t, t) = (
√

2t, t, 0). By the chain

rule P ′(t) =
√

2φu +φv , and kP(t)(P ′(t)) = C(2(
√

2)2−4) = 0. The straight

line t −→ P(t) lies in S.

17.3 Suppose κ 
= 0 and n1 and n2, the normals to S1 and S2, are linearly indepen-

dent. If n1 · n2 = cos θ, then ‖n2 − 〈n1, n2〉n1‖2 = sin2 θ and sin θ 
= 0. Let

P denote a unit speed parametrization of Ŵ with P(0) = p and P ′(t) = T (t).

If N is the normal to Ŵ in R
3 then T ⊥ n1, n2 and N ∈ span(n1, n2). Then

DTT = P ′′(t) = κN and λi = −〈DTni , T〉 = 〈ni , DTT〉 = 〈ni ,κN〉. Hence

κN = 〈ni ,κN〉ni +
〈n2 − n1 cos θ,κN〉

sin θ

(n2 − n1 cos θ)

sin θ

and κ2 = λ2
1+

λ2
2−2λ1λ2 cos θ+λ2

1 cos2 θ

sin2 θ
, κ2 sin2 θ = λ2

1 sin2 θ + λ2
2−2λ1λ2 cos θ

+ λ2
1 cos2 θ = λ2

1 + λ2
2 − 2λ1λ2 cos θ, κ = 0 ⇒ λ1 = λ2 = 0. n1 and n2 are

not linearly independent ⇒ n1 = ±n2 and λ1 = ±λ2.

17.4 P(1) = (1, 1, 2) and P ′(1)/‖P ′(1)‖ = (2, 1, 6)/
√

41 = v, S = g−1(0)

where g(u, v, w) = u2 + v2 − w, ∇g/‖∇g‖ = (2u,2v,−1)

(4u2+4v2+1)1/2 ,
∇g

‖∇g‖ coincides

with n on S and is defined on an open set containing S. Calculate D(∇g/‖∇g‖)
and −Dv(∇g/‖∇g‖) = −D(∇g/‖∇g‖) · v.

D(
∇g

‖∇g‖ )(1, 1, 2) = 1
27

⎛

⎝

10 −8 0

−8 10 0

4 4 0

⎞

⎠, Dv(
∇g

‖∇g‖ )(1, 1, 2) = 1

9
√

41
(4,−2, 4),

κv(p) = 1

9
√

41
(4,−2, 4) · (2, 1, 6)/

√
41 = 10/123.

17.5 Use Euler’s formula.

http://dx.doi.org/10.1007/978-1-4471-6419-7_17
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Chapter 18

18.1 Cylinder = f −1(0), f (x, y, z) = x2 + y2 − 1, ∇ f = (2x, 2y, 0). Hence

n(φ(t)) ‖ (2 cos(at + b), 2 sin(at + b), 0) , φ′′(t) =
(

a2 cos(at + b),

a2 sin(at + b), 0
)

.

18.2 Unit speed parametrization φ(t) = (x(t), y(t)) ⇒ x ′′x ′ + y′′y′ = 0. Note

that ϕ is also unit speed. n(ϕ(t)) ‖ (y′(t),−x ′(t) cos θ,−x ′(t) sin θ), while

ϕ′′(t) = (x ′′(t), y′′(t) cos θ, y′′(t) sin θ) ⇒ ϕ′′(t) = α(t)n(ϕ(t)) where

α(t) = x ′′(t)/y′(t) if y′(t) 
= 0 and α(t) = y′′(t)/x ′(t) if x ′(t) 
= 0. Since

ϕ is a unit speed geodesic (18.5) implies ϕ′′(t) = T ′(t) = κn(t)n(ϕ(t)), and

the normal curvature at P(t, θ0) is x ′′(t)/y′(t), if y′(t) 
= 0, and y′′(t)/x ′(t),
if x ′(t) 
= 0.

18.3 If P(t) = a + tb parametrizes the straight line then P has constant speed and,

since P ′′(t) = T ′(t) = 0, (18.4) implies the geodesic curvature is zero and,

by Proposition 18.2, straight lines are geodesics. (x0, y0, z0) + t (a, b, c) lies

in the surface z = x2 − y2 ⇔ (x0 + ta)2 − (y0 + tb)2 = z0 + tc for all

t ⇔ (2x0a − 2y0b − c)t + (a2 − b2)t2 = 0 for all t . Letting a = 1, b =
1, 2x0 − 2y0 = c and a = 1, b = −1, 2x0 + 2y0 = c gives two lines on the

surface.

18.4 Since P is unit speed T (t) = P ′(t) and κn(t) = kP(t)(T (t)). By (18.3),

τg = 0 ⇔ n′ = −κnT ⇔ L P(t)(T (t)) = κn(t)T (t) ⇔ T (t) is a principal

curvature for all t ⇔ Ŵ is a line of curvature. Ŵ a geodesic =⇒ κg = 0 =⇒
T ′ = κN = κnn. Hence N = ±n, B = T × N = T × (±n) = ∓ns and

−τ N = B ′ = ∓(ns)
′ = ∓(τgn) = ∓τg(±N ) = −τg N and τ = τg .

18.5 By Proposition 8.1, Ŵ lies in a plane. Using the proof in Example 8.2, we

see that the non-zero curvature is constant. An application of the result in

Example 8.4 completes the proof.

18.6 By (18.5), since the tangent space to S at P(t) is 2 dimensional and T (t) ⊥
N (t), we have kP(t)(T (t)) = 0 ⇐⇒ N (t)‖nS(t) ⇐⇒ N (P(t)) ∈ TS(P(t))

⇐⇒ TS(P(t)) = span {T (t), N (t)} ⇐⇒ tangent plane= osculating plane.

18.7 Assume sphere has centre at the origin and radius r . Let P be a unit speed

parametrization of the curve. By (16.5) the normal curvature is ±1/r and,

by (18.5), κg(t) constant ⇐⇒ κ(t) constant. By Example 8.2, κ(t) 
= 0 and

τ (t)〈P(t)−c, B(t)〉 = −( 1
κ(t)

)′ = 0. This implies τ (t) = 0 and Exercise 18.5

implies the required result.

http://dx.doi.org/10.1007/978-1-4471-6419-7_18
http://dx.doi.org/10.1007/978-1-4471-6419-7_18
http://dx.doi.org/10.1007/978-1-4471-6419-7_18
http://dx.doi.org/10.1007/978-1-4471-6419-7_16


Index

A

Absolute area, 136

Absolute curvature, 70

Absolute geodesic curvature, 219

Absolute maximum, 43

Absolute minimum, 45

Acceleration, 220

Angle, 23, 53, 75, 81, 110, 214, 222

Annulus, 180

Anticlockwise direction, 48, 69, 98, 141

Area, 29, 33, 53, 93, 123, 221

Arithmetic mean, 28

Asymptotic curve, 226

Axis of rotation, 65

Azimuth, 116

B

Basis, 26, 78

orthonormal, 76, 213, 217

unit vector, 2

Bijective mapping, 106

Binormal, 74

Boundary, 3, 27, 121, 143, 149, 180, 185

Bounded set, 3

Bugle surface, 215

C

Calva, 225

Catenary, 203

Catenoid, 203

Cauchy–Schwarz inequality, 31, 34, 53, 87,

91, 132

Chain rule, 5, 17

Change of variables, 118, 167

Circle of curvature, 72

Clockwise direction, 48

Closed curve, 48

Closed set, 3

Colatitude, 116

Compact set, 3, 28

Cone, 108, 196

parametrization of, 173

Connected set, 60

Connected surface, 219

Constant Gaussian curvature, 209

Constant geodesic curvature, 226

Constraint, 25

Continuous function, 3, 94

Convex set, 43, 61

Coordinate curve, 111, 204, 208

Coordinate function, 26

Coordinate plane, 140

Coordinate system, 114, 169

Coordinates

Cartesian, 106

curvilinear, 114

cylindrical, 133, 173, 176

elliptical, 173

geographical, 109, 133

polar, 106, 181

spherical, 109

toroidal, 186

spherical, 133, 172

toroidal, 126, 134

Corner, 52

Counterclockwise direction, 69

Critical point, 35

Cross product, 21, 53, 64, 141

properties of, 75

Cross section, 114, 162, 193

Cubical grid, 168

Curl, 64, 154
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Curvature, 70, 74, 91

absolute, 70

centre of, 72, 81

circle of, 72

Gaussian, 207–215, 221

constant, 209

negative, 225

zero, 197

geodesic

absolute, 219

constant, 226

zero, 219, 220

geometric significance of, 71

intrinsic, 218

line of, 202

mean, 203, 214

normal, 194, 213, 218

principal, 195, 207

radius of, 72

total, 224

Curve

closed, 48

directed, 47

piecewise smooth, 52

oriented, 47

parametrized, 49

Cylinder, 9, 27, 50, 81, 108, 123, 124, 150,

159, 173, 175, 176, 191, 196

D

Degenerate critical points, 40

Derivative, 5

directional, 7, 111

partial, 1, 7, 35, 98, 187

first-order, 7

higher-order, 8

Determinant, 14, 26, 38, 75, 212, 213

Differentiable function, 4

Differentiation

implicit, 18

Directed curve, 47, 219

piecewise smooth, 52

Directed interval, 97

Distance, 49, 219

Divergence, 65, 179

Divergence theorem, 180–190

Dot product, 2

Double integral, 93

E

Edge, 222

Eigenspace, 38

Eigenvalue, 12, 38, 197, 213

Eigenvector, 12, 38, 197, 213

Ellipse, 23, 27, 73, 80, 113

Ellipsoid, 23, 33, 109, 196, 225

parametrization of, 109

Elliptic point, 194

Equator, 222

Euler’s formula, 213

Euler–Poincaré characteristic, 223–226

Extremal value, 55

F

Face, 223

Final point, 47, 52, 219

Flat spot, 195, 207

Frenet approximation, 85

Frenet–Serret apparatus, 78, 85, 86, 90, 91

Frenet–Serret equations, 78, 83, 84, 86, 87,

89, 91, 217

Fubini’s theorem, 95, 161

Full rank, 14, 38

Function

continuous, 3

differentiable, 4

integrable, 93

Riemann integrable, 161

scalar-valued, 138

smooth, 48

Fundamental theorem of calculus, 59, 97,

149, 179

G

Gauss map, 209

Gauss’ divergence theorem, 180

Gauss–Bonnet formula, 224

Gauss–Bonnet theorem, 222

Gaussian curvature, 195, 207, 221

Generalised helix, 87, 92

Genus, 225

Geodesic, 220, 226

Geodesic curvature, 217, 218

Geodesic torsion, 218, 226

Geodesic triangle, 222

Geometric mean, 28

Gradient, 5, 19

Graph, 8, 15, 94, 105, 120, 193

Green’s theorem, 98, 141, 162, 179

H

Hanging chain, 203

Harmonic function, 67, 101
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Helicoid, 131

Helicoloid, 204

Helix, 50, 53, 78, 81

Hemisphere, 105, 159

Hessian, 35, 197

Hilbert’s Lemma, 209

Hyperbola, 23

Hyperbolic point, 195

I

Implicit differentiation, 18

Implicit function theorem, 9, 15, 119

Independent variables, 13

Index, 225

Initial point, 47, 52, 91, 219

Inner normal, 73

Inner product, 2, 53, 77

Integrable function, 93

Integral

double, 93

line, 56

triple, 167

Interior angle, 222

Intermediate value theorem, 43, 83, 87

International date line, 115

Inverse mapping theorem, 119

J

Jacobian, 171

L

Lagrange multipliers, 26–33, 36, 200

Lambert’s equal area projection, 123

Laplacian, 67

Latitude

parallels of, 115

Length, 2, 49, 53, 221

Length function, 51

Level set, 8, 15, 109

Line

normal, 19

tangent, 19

Line integral, 150

Line of curvature, 202

Linear approximation, 5, 13, 19

Linear mapping, 2

Linearly independent solutions, 13

Lines of longitude, 115

Local maximum, 4

Longitude

lines of, 115

M

Matrix, 3

Matrix of coefficients, 14

Maximum, 4

global, 43

local, 4, 25, 36

strict, 4, 36, 39

Maximum existence theorem, 4

Maximum rank, 14

Mean value theorem, 124

Mercator’s projection, 115, 123

Meridian, 115, 123

Minimal surface, 203

Minimum, 4

local, 4, 36

strict, 4, 36, 39

Minimum existence theorem, 4

Moving frame, 76

Multiplicity, 38

N

Negative Gaussian curvature, 225

Non-degenerate critical points, 40

Non-umbilic points, 202

Norm, 2

Normal, 111, 136, 141, 150, 180

unit, 69, 73, 146

Normal curvature, 194, 213

Normal form, 20

Normal line, 19

Normal plane, 19, 92

Normal section, 194

O

Open set, 3

Open set of type I, 94

Open set of type II, 95

Oriented curve, 47

Oriented surface, 136

Orthonormal basis, 76, 213, 217

Osculating plane, 74, 81, 85

Outer normal, 184

P

Paraboloid, 23, 127, 128, 131, 165, 177, 191

solid, 173

Parallelepiped, 136, 168, 174

Parallels of latitude, 115

Parametric form, 20

Parametrization, 47, 169
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unit speed, 52

Parametrization of cone, 133

Parametrization of cylinder, 133

Parametrization of ellipsoid, 173

Parametrization of paraboloid, 127

Parametrization of solids, 133, 172

Parametrization of sphere, 133, 172

Parametrization of surface of revolution, 134

Parametrization of torus, 125, 134

Parametrized curve, 49

Parametrized surface, 104

Partial derivative, 1, 7

Partition, 52, 93

Pentagon, 33

Perpendicular vectors, 2, 21, 69, 111, 197

Plane

normal, 19

tangent, 19

Polar coordinates, 175, 181

Polygon, 43

Positive interval, 135

Potential

scalar, 59

vector, 65

Principal curvature, 195, 207

Principal curvature direction, 195, 197, 207

Principal minor, 38

Profile curve, 108

Projection, 145, 170

Pythagoras’ theorem, 77, 86, 218

Q

Quadratic approximation, 72

R

Radius of curvature, 72

Rank

full, 14, 25

maximum, 14, 26

Rectangle, 33, 93, 121, 224

Riemann sum, 56, 93, 121, 137, 161, 169

Riemannian geometry, 208

Right-hand rule, 74, 141, 217

S

Saddle point, 35, 36, 39, 196

Scalar field, 59

Scalar product, 2

Scalar valued function, 138

Set

bounded, 3

closed, 3

compact, 3, 28

connected, 60

convex, 43

open, 3

Shape, 123

Shape operator, 211

Shortest path, 219

Smooth function, 48

Solid, 172

Solid cylinder, 173, 180

Solid ellipsoid, 173

Solid of revolution, 173

Solid sphere, 181

Solid torus, 173, 185

Speed, 49

Sphere, 3, 9, 85, 92, 108, 128, 138, 172, 209,

224

solid, 172

Sphere of closest fit, 208

Spiral staircase, 155

Square filling curve, 124

Stokes’ Theorem, 149, 179

Surface, 119

connected, 219

minimal, 203, 205

normal, 217

of revolution, 105

orientable, 138

oriented, 136

parametrized, 104

positive side of, 136

simple, 104

Surface area, 29, 121, 122, 201

Surface of revolution, 131, 134

Surface tension, 203

Symmetric matrix, 35

Symmetric operator, 212

System of equations, 13

T

Tangent

space, 19, 211

unit, 58

Tangent line, 19

Tangent plane, 19, 137, 193

Tangent space, 111

Tangent vector, 111

Taylor series, 84

Tetrahedron, 178

Theorem

Gauss divergence, 180
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Gauss–Bonnet, 222

Green’s, 98

implicit function, 119

intermediate value, 43

Inverse Mapping, 119

maximum existence, 4

minimum existence, 4

Pythagoras, 77, 86, 218

Theorema Egregium, 208

Torsion, 74, 91

geometric significance of, 83–86

zero, 83

Torus, 125, 159, 173, 185, 198, 209, 214, 227

parametrization of, 185

Triangle, 33, 53, 75, 145, 222

Triple integral, 162

U

Umbilic point, 195, 196, 207

Uniform continuity, 161

Unit normal, 184, 193

Unit speed parametrization, 47, 69

Unit tangent, 221

Unit vector basis, 2

Upper half-plane, 43

V

Vector field, 55, 138, 225

conservative, 59

continuous, 55

smooth, 55

Velocity, 49

Vertex, 223

Volume, 29, 94, 137, 161

Volume of torus, 173

W

Weingarten mapping, 211, 214

Z

Zero torsion, 226
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